Skip to main content

Mechanisms of Migraine and Its Treatment

  • Reference work entry
Handbook of Headache

Abstract

Migraine is characterized by recurrent unilateral headaches, accompanied by nausea, vomiting, photophobia, and/or phonophobia, and in some cases facial symptoms. Current theories suggest that the initiation of a migraine attack involves a primary CNS event, putatively involving mutations in ion channels that render the individuals more sensitive to environmental factors, resulting in a wave of cortical spreading depression when the attack is initiated. Early positron emission tomography (PET) suggested the involvement of a migraine active region in the brainstem. In migraine attacks, data suggest that the pain is associated with the activation of the trigeminal nerve and the release of calcitonin gene-related peptide (CGRP) from the trigeminovascular system. Administration of triptans (5-HT1B/1D receptor agonists) causes the headache to subside and the levels of CGRP to normalize. Administration of CGRP receptor antagonists aborts the headache by specifically blocking the CGRP receptors located within the trigeminovascular system. Modern acute migraine therapy involves modulation of both CGRP and 5-HT1B/1D receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbab MA, Delgado T, Wiklund L, Svendgaard NA (1988) Brain stem terminations of the trigeminal and upper spinal ganglia innervation of the cerebrovascular system: WGA-HRP transganglionic study. J Cereb Blood Flow Metab 8:54–63

    PubMed  CAS  Google Scholar 

  • Ashina M, Bendtsen L, Jensen R, Schifter S, Olesen J (2000) Evidence for increased plasma levels of calcitonin gene-related peptide in migraine outside of attacks. Pain 86:133–138

    PubMed  CAS  Google Scholar 

  • Bahra A, Matharu MS, Buchel C, Frackowiak RS, Goadsby PJ (2001) Brainstem activation specific to migraine headache. Lancet 357:1016–1017

    PubMed  CAS  Google Scholar 

  • Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trgeminal meningeal afferents in a migraine model. Nat Med 8(2):136–142

    PubMed  CAS  Google Scholar 

  • Bradley SR, Pieribone VA, Wang W, Severson CA, Jacobs RA, Richerson GB (2002) Chemosensitive serotonergic neruons are closely associated with large medullary arteries. Nat Neurosci 5:401–402

    PubMed  CAS  Google Scholar 

  • Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79:964–982

    PubMed  CAS  Google Scholar 

  • Cady RK, Vause CV, Ho TW, Bigal ME, Durham PL (2009) Elevated saliva calcitonin gene-related peptide levels during acute migraine predict therapeutic response to rizatriptan. Headache 49:1258–1266

    PubMed  Google Scholar 

  • Castro ME, Pascual J, Romon T, del Arco C, del Olmo E, Pazos A (1997) Differential distribution of [3H]sumatriptan binding sites (5-HT1B, 5-HT1D and 5-HT1F receptors) in human brain: focus on brainstem and spinal cord. Neuropharmacology 36:535–542

    PubMed  CAS  Google Scholar 

  • Christiansen T, Bruun A, Knight YE, Goadsby PJ, Edvinsson L (2003) Immunoreactivity of NOS, CGRP, PACAP, SP and VIP in the trigeminal nucleus caudalis and in the cervical spinal cord C1and C2 of the cat. J Headache Pain 4:156–163

    CAS  Google Scholar 

  • Cohen Z, Bonvento G, Lacombe P, Hamel E (1996) Serotonin in the regulation of brain microcirculation. Prog Neurobiol 50:335–362

    PubMed  CAS  Google Scholar 

  • Edvinsson L (2004) Blockade of CGRP receptors in the intracranial vasculature: a new target in the treatment of headache. Cephalalgia 24:611–622

    PubMed  CAS  Google Scholar 

  • Edvinsson L (2008) CGRP blockers in migraine therapy: where do they act? Br J Pharmacol 155:967–969

    PubMed  CAS  Google Scholar 

  • Edvinsson L (2009) Migraine: telcagepant provides new hope for people with migraine. Nat Rev Neurol 5:240–242

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Krause DN (2002) Cerebral blood flow and metabolism. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Edvinsson L, Uddman R (2005) Neurobiology in primary headaches. Brain Res Brain Res Rev 48:438–456

    PubMed  Google Scholar 

  • Edvinsson L, Nielsen KC, Owman C, Sporrong B (1972) Cholinergic mechanisms in pail vessels. Histochmistry, electron microscopy and pharmacology. Z Zellforsch Mikrosk Anat 134:311–325

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Falck B, Owman C (1977) Possibilities for a cholinergic action on smooth musculature and on sympathetic axons in brain vessels mediated by muscarinic and nicotinic receptors. J Pharmacol Exp Ther 200:117–126

    PubMed  CAS  Google Scholar 

  • Edvinsson L, McCulloch J, Uddman R (1981) Substance P: immunohistochemical localization and effect upon cat pial arteries in vitro and in situ. J Physiol 318:251–258

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Degueurce A, Duverger D, MacKenzie ET, Scatton B (1983) Central serotonergic nerves project to the pial vessels of the brain. Nature 306:55–57

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Ekman R, Jansen I, McCulloch J, Uddman R (1987) Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J Cereb Blood Flow Metab 7:720–728

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Hara H, Uddman R (1989) Retrograde tracing of nerve fibers to the rat middle cerebral artery with true blue: colocalization with different peptides. J Cereb Blood Flow Metab 9:212–218

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Jansen I, Kingman TA, McCulloch J (1990) Cerebrovascular responses to capsaicin in vitro and in situ. Br J Pharmacol 100:312–318

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Jansen Olesen I, Kingman TA, McCulloch J, Uddman R (1995) Modification of vasoconstrictor responses in cerebral blood vessels by lesioning of the trigeminal nerve: possible involvement of CGRP. Cephalalgia 15:373–383

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Gulbenkian S, Barroso CP, Cunhae Sa M, Polak JM, Mortensen A et al (1998a) Innervation of the human middle meningeal artery: immunohistochemistry, ultrastructure, and role of endothelium for vasomotility. Peptides 19:1213–1225

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Mulder H, Goadsby PJ, Uddman R (1998b) Calcitonin gene-related peptide and nitric oxide in the trigeminal ganglion: cerebral vasodilatation from trigeminal nerve stimulation involves mainly calcitonin gene-related peptide. J Auton Nerv Syst 70:15–22

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Elsås T, Suzuki N, Shimizu T, Lee TJ (2001) Origin and Co-localization of nitric oxide synthase, CGRP, PACAP, and VIP in the cerebral circulation of the rat. Microsc Res Tech 53:221–228

    PubMed  CAS  Google Scholar 

  • Edvinsson L, Alm R, Shaw D, Rutledge RZ, Koblan KS, Longmore J et al (2002) Effect of the CGRP receptor antagonist BIBN4096BS in human cerebral, coronary and omental arteries and in SK-N-MC cells. Eur J Pharmacol 434:49–53

    PubMed  CAS  Google Scholar 

  • Fanciullacci M, Alessandri M, Figini M, Geppetti P, Michelacci S (1995) Increase in plasma calcitonin gene-related peptide from the extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain 60:119–123

    PubMed  CAS  Google Scholar 

  • Fanciullacci M, Alessandri M, Sicuteri R, Marabini S (1997) Responsiveness of the trigeminovascular system to nitroglycerine in cluster headache patients. Brain 120(Pt 2):283–288

    PubMed  Google Scholar 

  • Fields HL, Basbaum AI (1994) Central nervous system mechanisms of pain modulation. In: Wall PD, Melzack R (eds) Textbook of pain. Churcill Livingstone, Edinburgh

    Google Scholar 

  • Friberg L, Olesen J, Olsen TS, Karle A, Ekman R, Fahrenkrug J (1994) Absence of vasoactive peptide release from brain to cerebral circulation during onset of migraine with aura. Cephalalgia 14(1):47–54

    PubMed  CAS  Google Scholar 

  • Gallai V, Sarchielli P, Floridi A, Franceschini M, Codini M, Glioti G et al (1995) Vasoactive peptide levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally. Cephalalgia 15:384–390

    PubMed  CAS  Google Scholar 

  • Goadsby PJ, Edvinsson L (1993) The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 33:48–56

    PubMed  CAS  Google Scholar 

  • Goadsby PJ, Edvinsson L (1994) Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. Brain 117(Pt 3):427–434

    PubMed  Google Scholar 

  • Goadsby PJ, Hoskin KL (1997) The distribution of trigeminovascular afferents in the nonhuman primate brain Macaca nemestrina: a c-fos immunocytochemical study. J Anat 190:367–375

    PubMed  Google Scholar 

  • Goadsby PJ, Zagami AS (1991) Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brainstem and upper cervical spinal cord of the cat. Brain 114:1001–1011

    PubMed  Google Scholar 

  • Goadsby PJ, Edvinsson L, Ekman R (1988) Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 23:193–196

    PubMed  CAS  Google Scholar 

  • Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28:183–187

    PubMed  CAS  Google Scholar 

  • Goadsby PJ, Uddman R, Edvinsson L (1996) Cerebral vasodilatation in the cat involves nitric oxide from parasympathetic nerves. Brain Res 707:110–118

    PubMed  CAS  Google Scholar 

  • Goadsby PJ, Lipton RB, Ferrari MD (2002) Migraine–current understanding and treatment. N Engl J Med 346:257–270

    PubMed  CAS  Google Scholar 

  • Goldstein DJ, Wang O, Saper JR, Stoltz R, Silberstein SD, Mathew NT (1997) Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia 17:785–790

    PubMed  CAS  Google Scholar 

  • Gulbenkian S, Uddman R, Edvinsson L (2001) Neuronal messengers in the human cerebral circulation. Peptides 22:995–1007

    PubMed  CAS  Google Scholar 

  • Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B et al (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA 98:4687–4692

    PubMed  CAS  Google Scholar 

  • Hara H, Hamill GS, Jacobowithz DM (1985) Origin of cholinergic nerves to the rat major cerebral arteries: coexistence with vasoactive intestinal polypeptide. Brain Res Bull 25:179–188

    Google Scholar 

  • Ho TW, Ferrari MD, Dodick DW, Galet V, Kost J, Fan X et al (2008) Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet 372:2115–2123

    PubMed  CAS  Google Scholar 

  • Hoffmann J, Neeb L, Israel H, Dannenberg F, Triebe F, Dirnagl U et al (2009) Intracisternal injection of inflammatory soup activates the trigeminal nerve system. Cephalalgia 29:1212–1217

    PubMed  CAS  Google Scholar 

  • Holthusen H, Kindgen-Milles D, Ding ZP (1997) Substance P is not involved in vascular nociception in humans. Neuropeptides 31:445–448

    PubMed  CAS  Google Scholar 

  • Honey AC, Bland-Ward PA, Connor HE, Feniuk W, Humphrey PPA (2002) Study of an adenosine A1 receptor agonist on trigeminally evoked dural blood vessel dilation in the anaesthetized rat. Cephalalgia 22:260–264

    PubMed  CAS  Google Scholar 

  • Hoskin KL, Zagami AS, Goadsby PJ (1999) Stimulation of the middle meningeal artery leads to Fos expression in the trigeminocervical nucleus: a comparative study of monkey and cat. J Anat 194:579–588

    PubMed  CAS  Google Scholar 

  • Hou M, Kanje M, Longmore J, Tajti J, Uddman R, Edvinsson L (2001) 5-HT(1B) and 5-HT(1D) receptors in the human trigeminal ganglion: co-localization with calcitonin gene-related peptide, substance P and nitric oxide synthase. Brain Res 909:112–120

    PubMed  CAS  Google Scholar 

  • Jansen I, Alafaci C, McCulloch J, Uddman R, Edvinsson L (1991) Tachykinins (substance P, neurokinin A, neuropeptide K, and neurokinin B) in the cerebral circulation: vasomotor responses in vitro and in situ. J Cereb Blood Flow Metab 11:567–575

    PubMed  CAS  Google Scholar 

  • Jansen-Olesen I, Goadsby PJ, Uddman R, Edvinsson L (1994) Vasoactive intestinal peptide (VIP) like peptides in the cerebral circulation of the cat. J Auton Nerv Syst 49(Suppl):S97–S103

    PubMed  CAS  Google Scholar 

  • Juhasz G, Zsombok T, Modos EA, Olajos S, Jakab B, Nemeth J et al (2003) NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release. Pain 106:461–470

    PubMed  CAS  Google Scholar 

  • Juhasz G, Zsombok T, Jakab B, Nemeth J, Szolcsanyi J, Bagdy G (2005) Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia 25:179–183

    PubMed  CAS  Google Scholar 

  • Kaube H, Keay KA, Hoskin KL, Bandler R, Goadsby PJ (1993) Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res 629:95–102

    PubMed  CAS  Google Scholar 

  • Knyihar-Csillik E, Tajti J, Samsam M, Sary G, Slezak S, Vecsei L (1997) Effect of a serotonin agonist (sumatriptan) on the peptidergic innervation of the rat cerebral dura mater and on the expression of c-fos in the caudal trigeminal nucleus in an experimental migraine model. J Neurosci Res 48:449–464

    PubMed  CAS  Google Scholar 

  • Knyihar-Csillik E, Tajti J, Csillik AE, Chadaide Z, Mihaly A, Vecsei L (2000) Effects of eletriptan on the peptidergic innervation of the cerebral dura mater and trigeminal ganglion, and on the expression of c-fos and c-jun in the trigeminal complex of the rat in an experimental migraine model. Eur J Neurosci 12:3991–4002

    PubMed  CAS  Google Scholar 

  • Kruuse C, Iversen HK, Jansen-Olesen I, Edvinsson L, Olesen J (2010) Calcitonin gene-related peptide (cgrp) levels during glyceryl trinitrate (gtn)-induced headache in healthy volunteers. Cephalalgia 30(4):467–474

    PubMed  CAS  Google Scholar 

  • Lauritzen M (1994) Pathophysiology of the migraine aura. The spreading depression theory. Brain 117(Pt 1):199–210

    PubMed  Google Scholar 

  • Lee TJ (1980) Direct evidence against acetylcholine as the dilator transmitter in the cat cerebral artery. Eur J Pharmacol 68:393–394

    PubMed  CAS  Google Scholar 

  • Lee TJ (1982) Cholinergic mechanism in the large cat cerebral artery. Circ Res 50:870–879

    PubMed  CAS  Google Scholar 

  • Lee TJ (2000) Nitric oxide and the cerebral vascular function. J Biomed Sci 7:16–26

    PubMed  CAS  Google Scholar 

  • Lennerz JK, Ruhle V, Ceppa EP, Neuhuber WL, Bunnett NW, Grady EF et al (2008) Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol 507:1277–1299

    PubMed  CAS  Google Scholar 

  • Levy D, Burstein R, Strassman AM (2005) Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann Neurol 58:698–705

    PubMed  CAS  Google Scholar 

  • Linde M, Mellberg A, Dahlof C (2006) The natural course of migraine attacks. A prospective analysis of untreated attacks compared with attacks treated with a triptan. Cephalalgia 26:712–721

    PubMed  CAS  Google Scholar 

  • Liu Y, Broman J, Edvinsson L (2004) Central projections of sensory innervation of the rat superior sagittal sinus. Neuroscience 129:431–437

    PubMed  CAS  Google Scholar 

  • Liu Y, Broman J, Edvinsson L (2008) Central projections of the sensory innervation of the rat middle meningeal artery. Brain Res 1208:103–110

    PubMed  CAS  Google Scholar 

  • Longmore J, Shaw D, Smith D, Hopkins R, McAllister G, Pickard JD et al (1997) Differential distribution of 5HT1D- and 5HT1B-immunoreactivity within the human trigemino-cerebrovascular system: implications for the discovery of new antimigraine drugs. Cephalalgia 17:833–842

    PubMed  CAS  Google Scholar 

  • Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7:4129–4136

    PubMed  CAS  Google Scholar 

  • May A, Goadsby PJ (1999) The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab 19:115–127

    PubMed  CAS  Google Scholar 

  • McCulloch J, Uddman R, Kingman TA, Edvinsson L (1986) Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci USA 83:5731–5735

    PubMed  CAS  Google Scholar 

  • Moller K, Zhang YZ, Hakanson R, Luts A, Sjolund B, Uddman R et al (1993) Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience 57:725–732

    PubMed  CAS  Google Scholar 

  • Nielsen KC, Owman C (1967) Adrenergic innervation of pail arteries related to the circle of Willis in the cat. Brain Res 6(4):773–776

    PubMed  CAS  Google Scholar 

  • Nozaki K, Moskowitz MA, Maynard KI, Koketsu N, Dawson TM, Bredt DS et al (1993) Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibers in cerebral arteries. J Cereb Blood Flow Metab 13:70–79

    PubMed  CAS  Google Scholar 

  • Olesen J (2008) The role of nitric oxide (NO) in migraine, tension-type headache and cluster headache. Pharmacol Ther 120:157–171

    PubMed  CAS  Google Scholar 

  • Olesen J, Friberg L, Olsen TS, Iversen HK, Lassen NA, Andersen AR et al (1990) Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann Neurol 28:791–798

    PubMed  CAS  Google Scholar 

  • Olesen J, Thomsen LL, Lassen LH, Jansen-Olesen I (1995) The nitric oxide hypothesis of migraine and other vascular headaches. Cephalalgia 15:94–100

    PubMed  CAS  Google Scholar 

  • Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U et al (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110

    PubMed  CAS  Google Scholar 

  • Olesen J, Goadsby PJ, Ramadan NM, Tfelt-Hansen P, Welch KMA (2006) The headaches, 3rd edn. Lipincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  • Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM et al (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552

    PubMed  CAS  Google Scholar 

  • Pascual J, Del Arco C, Romon T, Del Olmo E, Pazos A (1996) [3H]Sumatriptan binding sites in human brain: regional-dependent labelling of 5-HT1D and 5-HT1F receptors. Eur J Pharmacol 295:271–274

    PubMed  CAS  Google Scholar 

  • Phebus LA, Johnson KW, Stengel PW, Lobb KL, Nixon JA, Hipskind PA (1997) The non-peptide NK-1 receptor antagonist LY303870 inhibits neurognic dural inflammation in guinea pigs. Life Sci 60:1553–1561

    PubMed  CAS  Google Scholar 

  • Pietrobon D, Striessnig J (2003) Neurobiology of migraine. Nat Rev Neurosci 4:386–398

    PubMed  CAS  Google Scholar 

  • Piper RD, Edvinsson L, Ekman R, Lambert GA (1993) Cortical spreading depression does not result in the release of calcitonin gene-related peptide into the external jugular vein of the cat: relevance to human migraine. Cephalalgia 13:180–183

    PubMed  CAS  Google Scholar 

  • Rahmann A, Wienecke T, Hansen JM, Fahrenkrug J, Olesen J, Ashina M (2008) Vasoactive intestinal peptide causes marked cephalic vasodilation, but does not induce migraine. Cephalalgia 28:226–236

    PubMed  CAS  Google Scholar 

  • Ray B, Wolff H (1940) Experimental studies on headaches, pain sensitive structures of the heada and their significance in headaches. Arch Surg 41:813–856

    Google Scholar 

  • Saito A, Wu JY, Lee TJ (1985) Evidence for the presence of cholinergic nerves in cerebral arteries: an immunohistochemical demonstration of choline acetyltransferase. J Cereb Blood Flow Metab 10:399–408

    Google Scholar 

  • Salvatore CA, Hershey JC, Corcoran HA, Fay JF, Johnston VK, Moore EL et al (2008) Pharmacological characterization of MK-0974 [N-[(3R, 6S)-6-(2, 3-difluorophenyl)-2-oxo-1-(2, 2, 2-trifluoroethyl)azepan-3- yl]-4-(2-oxo-2, 3-dihydro-1H-imidazo[4, 5-b]pyridin-1-yl)piperidine-1-carbox amide], a potent and orally active calcitonin gene-related peptide receptor antagonist for the treatment of migraine. J Pharmacol Exp Ther 324:416–421

    PubMed  CAS  Google Scholar 

  • Schytz HW, Birk S, Wienecke T, Kruuse C, Olesen J, Ashina M (2009) PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 132:16–25

    PubMed  Google Scholar 

  • Schytz HW, Wienecke T, Olesen J, Ashina M (2010) Carbachol induces headache, but not migraine-like attacks, in patients with migraine without aura. Cephalalgia 30:337–345

    PubMed  CAS  Google Scholar 

  • Seki Y, Suzuki Y, Baskaya MK, Kano T, Saito K, Takayasu M et al (1995) The effects of pituitary adenylate cyclase-activating polypeptide on cerebral arteries and vertebral artery blood flow in anesthetized dogs. Eur J Pharmacol 275:259–266

    PubMed  CAS  Google Scholar 

  • Shepheard SL, Williamson DJ, Hill RG, Hargreaves RJ (1993) The non-peptide neurokinin1 receptor antagonist, RP 67580, blocks neurogenic plasma extravasation in the dura mater of rats. Br J Pharmacol 108:11–12

    PubMed  CAS  Google Scholar 

  • Shepheard SL, Williamson DJ, Williams J, Hill RG, Hargreaves RJ (1995) Comparison of the effects of sumatriptan and the NK1 antagonist CP-99, 994 on plasma extravasation in dura mater and c-fos mRNA expression in trigeminal nucleus caudalis of rats. Neuropharmacology 34:255–261

    PubMed  CAS  Google Scholar 

  • Shepheard S, Edvinsson L, Cumberbatch M, Williamson D, Mason G, Webb J et al (1999) Possible antimigraine mechanisms of action of the 5HT1F receptor agonist LY334370. Cephalalgia 19:851–858

    PubMed  CAS  Google Scholar 

  • Stepien A, Jagustyn P, Trafny EA, Widerkiewicz K (2003) Suppressing effect of the serotonin 5HT1B/D receptor agonist rizatriptan on calcitonin gene-related peptide (CGRP) concentration in migraine attacks. Neurol Neurochir Pol 37:1013–1023

    PubMed  Google Scholar 

  • Suzuki N, Hardebo JE, Owman C (1988) Origins and pathways of cerebrovascular vasoactive intestinal polypeptide-positive nerves in rat. J Cereb Blood Flow Metab 8:697–712

    PubMed  CAS  Google Scholar 

  • Suzuki N, Hardebo JE, Owman C (1990) Origins and pathways of choline acetyltransferase=positive parasympathetic nerve fibers to crebral vessels in rat. J Cereb Blood Flow Metab 10:399–408

    PubMed  CAS  Google Scholar 

  • Tajti J, Uddman R, Moller S, Sundler F, Edvinsson L (1999) Messenger molecules and receptor mRNA in the human trigeminal ganglion. J Auton Nerv Syst 76:176–183

    PubMed  CAS  Google Scholar 

  • Terwindt GM, Ophoff RA, Haan J, Vergouwe MN, van Eijk R, Frants RR et al (1998) Variable clinical expression of mutations in the P/Q-type calcium channel gene in familial hemiplegic migraine. Neurology 50:1105–1110

    PubMed  CAS  Google Scholar 

  • Tvedskov JF, Lipka K, Ashina M, Iversen HK, Schifter S, Olesen J (2005) No increase of calcitonin gene-related peptide in jugular blood during migraine. Ann Neurol 58:561–568

    PubMed  CAS  Google Scholar 

  • Uddman R, Edvinsson L, Ekman R, Kingman T, McCulloch J (1985) Innervation of the feline cerebral vasculature by nerve fibers containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P. Neurosci Lett 62:131–136

    PubMed  CAS  Google Scholar 

  • Uddman R, Goadsby PJ, Jansen I, Edvinsson L (1993) PACAP, a VIP-like peptide: immunohistochemical localization and effect upon cat pial arteries and cerebral blood flow. J Cereb Blood Flow Metab 13:291–297

    PubMed  CAS  Google Scholar 

  • Uddman R, Tajti J, Hou M, Sundler F, Edvinsson L (2002) Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia 22:112–116

    PubMed  CAS  Google Scholar 

  • Villalón CM, Olesen J (2009) The role of CGRP in the pathophysiology of migraine and efficacy of CGRP receptor antagonists as acute antimigraine drugs. Pharmacol Ther 124:309–323

    PubMed  Google Scholar 

  • Wahl M, Schilling L, Parsons AA, Kaumann A (1994) Involvement of calcitonin gene-related peptide (CGRP) and nitric oxide (NO) in the pial artery dilatation elicited by cortical spreading depression. Brain Res 637:204–210

    PubMed  CAS  Google Scholar 

  • Wang X, Fang Y, Liang J, Yin Z, Miao J, Luo N (2010) Selective inhibition of 5-ht7 receptor reduces cgrp release in an experimental model for migraine. Headache 50:579–587

    PubMed  Google Scholar 

  • Weiller C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV et al (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1:658–660

    PubMed  CAS  Google Scholar 

  • Wienecke T, Olesen J, Oturai PS, Ashina M (2009) Prostaglandin e2(pge2) induces headache in healthy subjects. Cephalalgia 29:509–519

    PubMed  CAS  Google Scholar 

  • Wienecke T, Olesen J, Ashina M (2010) Prostaglandin i(2) (epoprostenol) triggers migraine-like attacks in migraineurs. Cephalalgia 30:179–190

    PubMed  CAS  Google Scholar 

  • Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL (1997) Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene-related peptide on dural vessel diameter in the anaesthetized rat. Cephalalgia 17:518–524

    PubMed  CAS  Google Scholar 

  • Zagami AS, Goadsby PJ, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 16:69–75

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The studies of the authors reviewed here have in part been supported by the Swedish Research Council (project no. 5958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Edvinsson M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Lifting The Burden

About this entry

Cite this entry

Edvinsson, L., van den Brink, A.M., Villalón, C.M. (2011). Mechanisms of Migraine and Its Treatment. In: Martelletti, P., Steiner, T.J. (eds) Handbook of Headache. Springer, Milano. https://doi.org/10.1007/978-88-470-1700-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1700-9_16

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1699-6

  • Online ISBN: 978-88-470-1700-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics