Skip to main content

Carbohydrate-Active Enzymes from Hyperthermophiles: Biochemistry and Applications

  • Reference work entry
Extremophiles Handbook

Background

Carbohydrate-active enzymes (cazymes) are enzymatic activities involved in the hydrolysis, synthesis, recognition, and binding of carbohydrates, thereby contributing to the metabolism and mobilization of sugars and glycoconjugates (glycoproteins and glycolipids). Cazymes play a central role in glycobiology, a relatively new discipline, which aims to recognize the confluence of the traditional disciplines of carbohydrate chemistry and biochemistry with modern understanding of the cellular and molecular biology of glycans (Varki et al. 2008). In the centrality of glycobiology in life science, the study of cazymes is fundamental for the understanding of the biochemical and enzymatic processes at the basis of glycan mobilization, which regulate important cellular events including energy metabolism, intracellular regulatory switch, protein trafficking, signal transduction, cell–cell interaction, host–parasite interaction, and many others.

The study of cazymes is also recognized...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Qarn M, Eichler J, Sharon N (2008) Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr Opin Struct Biol 18:544–550

    Article  PubMed  CAS  Google Scholar 

  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217

    Article  PubMed  CAS  Google Scholar 

  • Brown SH, Kelly RM (1993) Characterization of amylolytic enzymes, having both alpha-1, 4 and alpha-1, 6 hydrolytic activity, from the thermophilic archaea pyrococcus furiosus and thermococcus litoralis. Appl Environ Microbiol 59:2614–2621

    PubMed  CAS  Google Scholar 

  • Buchholz K, Seibel J (2008) Industrial carbohydrate biotransformations. Carbohydr Res 343:1966–1979

    Article  PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37(Database issue):D233–D238

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Conte F, Bedini E, Corsaro MM, Parrilli M, Sulzenbacher G, Lipski A, Dal Piaz F, Lepore L, Rossi M, Moracci M (2009) beta-Glycosyl azides as substrates for alpha-glycosynthases: preparation of efficient alpha-L-fucosynthases. Chem Biol 16:1097–1108

    Article  PubMed  CAS  Google Scholar 

  • Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM (2006) Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 30:872–905

    Article  PubMed  CAS  Google Scholar 

  • Empadinhas N, Marugg JD, Borges N, Santos H, da Costa MS (2001) Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key enzymes. J Biol Chem 276:43580–43588

    Article  PubMed  CAS  Google Scholar 

  • Godfrey T (1996) Textiles. In: Godfrey E, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 361–371

    Google Scholar 

  • Hancock SM, Vaughan MD, Withers SG (2006) Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol 10:509–519

    Article  PubMed  CAS  Google Scholar 

  • Horcajada C, Guinovart JJ, Fita I, Ferrer JC (2006) Crystal structure of an archaeal glycogen synthase: insights into oligomerization and substrate binding of eukaryotic glycogen synthases. J Biol Chem 281:2923–2931

    Article  PubMed  CAS  Google Scholar 

  • Igura M, Maita N, Kamishikiryo J, Yamada M, Obita T, Maenaka K, Kohda D (2008) Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J 27:234–243

    Article  PubMed  CAS  Google Scholar 

  • Kouril T, Zaparty M, Marrero J, Brinkmann H, Siebers B (2008) A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch Microbiol 190:355–369

    Article  PubMed  CAS  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  PubMed  CAS  Google Scholar 

  • Ly HD, Withers SG (1999) Mutagenesis of glycosidases. Annu Rev Biochem 68:487–522

    Article  PubMed  CAS  Google Scholar 

  • Magidovich H, Eichler J (2009) Glycosyltransferases and oligosaccharyltransferases in Archaea: putative components of the N-glycosylation pathway in the third domain of life. FEMS Microbiol Lett 300:122–130

    Article  PubMed  CAS  Google Scholar 

  • Maiorano AE, Piccoli RM, da Silva ES, de Andrade Rodrigues MF (2008) Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnol Lett 30:1867–1877

    Article  PubMed  CAS  Google Scholar 

  • Moracci M, Trincone A, Cobucci-Ponzano B, Perugino G, Ciaramella M, Rossi M (2001) Enzymatic synthesis of oligosaccharides by two glycosyl hydrolases of Sulfolobus solfataricus. Extremophiles 5:145–152

    Article  PubMed  CAS  Google Scholar 

  • Mueller M, Takemasa R, Schwarz A, Atomi H, Nidetzky B (2009) “Short-chain” alpha-1, 4-glucan phosphorylase having a truncated N-terminal domain: functional expression and characterization of the enzyme from Sulfolobus solfataricus. Biochim Biophys Acta 1794:1709–1714

    Article  PubMed  CAS  Google Scholar 

  • Osanjo G, Dion M, Drone J, Solleux C, Tran V, Rabiller C, Tellier C (2007) Directed evolution of the alpha-L-fucosidase from Thermotoga maritima into an alpha-L-transfucosidase. Biochemistry 46:1022–1033

    Article  PubMed  CAS  Google Scholar 

  • Perugino G, Trincone A, Rossi M, Moracci M (2004) Oligosaccharide synthesis by glycosynthases. Trends Biotechnol 22:31–37

    Article  PubMed  CAS  Google Scholar 

  • Perugino G, Cobucci-Ponzano B, Rossi M, Moracci M (2005) Recent advances in the oligosaccharide synthesis promoted by catalytically engineered glycosidases. Adv Synth Catal 347:941–950

    Article  CAS  Google Scholar 

  • Rashid N, Cornista J, Ezaki S, Fukui T, Atomi H, Imanaka T (2002) Characterization of an archaeal cyclodextrin glucanotransferase with a novel C-terminal domain. J Bacteriol 184:777–784

    Article  PubMed  CAS  Google Scholar 

  • Ryu SI, Park CS, Cha J, Woo EJ, Lee SB (2005) A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization. Biochem Biophys Res Commun 329:429–436

    Article  PubMed  CAS  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9–32

    Article  PubMed  Google Scholar 

  • Urushibata Y, Ebisu S, Matsui I (2008) A thermostable dolichol phosphoryl mannose synthase responsible for glycoconjugate synthesis of the hyperthermophilic archaeon Pyrococcus horikoshii. Extremophiles 12:665–676

    Article  PubMed  CAS  Google Scholar 

  • van der Veen BA, Uitdehaag JC, Dijkstra BW, Dijkhuizen L (2000) Engineering of cyclodextrin glycosyltransferase reaction and product specificity. Biochim Biophys Acta 1543:336–360

    Article  PubMed  Google Scholar 

  • Vanfossen AL, Lewis DL, Nichols JD, Kelly RM (2008) Polysaccharide degradation and synthesis by extremely thermophilic anaerobes. Ann NY Acad Sci 1125:322–337

    Article  PubMed  CAS  Google Scholar 

  • Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M (2008) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, ISBN 0-87969-770-9

    Google Scholar 

  • Wang LX (2009) Expanding the repertoire of glycosynthases. Chem Biol 16:1026–1027

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, Walker S (2007) Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proc Natl Acad Sci USA 104:5348–5353

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Moracci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this entry

Cite this entry

Cobucci-Ponzano, B., Rossi, M., Moracci, M. (2011). Carbohydrate-Active Enzymes from Hyperthermophiles: Biochemistry and Applications. In: Horikoshi, K. (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_20

Download citation

Publish with us

Policies and ethics