Skip to main content

Adipose-Derived Stem Cells and Their Secretory Factors for Skin Aging and Hair Loss

  • Reference work entry
  • First Online:
Textbook of Aging Skin
  • 551 Accesses

Abstract

Human mesenchymal stem cells, by virtue of its capability to self-renew and differentiate into a variety of cell types, represent the first pluripotent stem cells to be used in clinical settings related to damage or degeneration. Therefore, there is an urgent need to understand how mesenchymal stem cells and their secretory factors contribute to regenerative medicine. Recent studies on the role of stem cells for skin and hair regeneration by many researchers including the authors have been remarkable. These scientific data enabled us to achieve the cost-effective treatment of skin aging using the legally acceptable cell therapeutic agents and their secretory factors. Objective data on the improvement of diverse aspects of skin aging including wound healing, wrinkle, and melasma due to photoaging have been available. Another progress has been made using the protein extract of the mesenchymal stem cells from the adipose tissue to promote hair growth in vitro, ex vivo, and in vivo by modulating the follicular cell cycles and hair cycle and protecting the follicular cells from androgens and reactive oxygen species. These approaches might mark the first practical application of stem cells among various trials in the field of skin and hair regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barry FP, et al. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.

    Article  CAS  PubMed  Google Scholar 

  2. Gimble J, et al. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5:362–9.

    Article  PubMed  Google Scholar 

  3. Kinnaird T, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94:678–85.

    Article  CAS  PubMed  Google Scholar 

  4. Zuk PA, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim WS, et al. Antiwrinkle effect of adipose derived stell cell: activation of dermal fibroblast by secretory factors. J Dermatol Sci. 2009;53:96–102.

    Article  CAS  PubMed  Google Scholar 

  6. Kim WS, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48:15–24.

    Article  CAS  PubMed  Google Scholar 

  7. Park BS, et al. Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatol Surg. 2008;34:1323–6.

    CAS  PubMed  Google Scholar 

  8. Kim WS, et al. Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci. 2008;49:133–42.

    Article  CAS  PubMed  Google Scholar 

  9. Kim WS, et al. Whitening effect of adipose-derived stem cells: a critical role of TGF-beta 1. Biol Pharm Bull. 2008;31:606–10.

    Article  CAS  PubMed  Google Scholar 

  10. Shin H, et al. Clinical use of conditioned media of adipose tissue-derived stem cells in female pattern hair loss: a retrospective case series study. Int J Dermatol. 2015;54(6):730–5.

    Article  PubMed  Google Scholar 

  11. Shin H, et al. Up-to-date clinical trials of hair regeneration using conditioned media of adipose-derived stem cells in male and female pattern hair loss. Curr Stem Cell Res Ther. (accepted for publication).

    Google Scholar 

  12. Won CH, et al. Hair growth promoting effects of adipose tissue-derived stem cells. J Dermatol Sci. 2010;57(2):134–7.

    Article  CAS  PubMed  Google Scholar 

  13. Won CH, et al. The basic mechanism of hair growth stimulation by mesenchymal stem cells and their secretory factors for the treatment of hair loss. Curr Stem Cell Res Ther. (accepted for publication).

    Google Scholar 

  14. Izadpanah R, et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem. 2006;99:1285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Porada CD, et al. Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther. 2006;1:365–9.

    Article  CAS  PubMed  Google Scholar 

  16. Boquest AC, et al. Epigenetic programming of mesenchymal stem cells from human adipose tissue. Stem Cell Rev. 2006;2:319–29.

    Article  CAS  PubMed  Google Scholar 

  17. Huang T, et al. Neuron-like differentiation of adipose derived stem cells from infant piglets in vitro. J Spinal Cord Med. 2007;30:35–40.

    Article  Google Scholar 

  18. Kern S, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.

    Article  CAS  PubMed  Google Scholar 

  19. Katz AJ, et al. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells. 2005;23:412–23.

    Article  CAS  PubMed  Google Scholar 

  20. Anghileri E, et al. Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev. 2008;17:909–16.

    Article  CAS  PubMed  Google Scholar 

  21. Bunnell BA, et al. Differentiation of adipose stem cells. Methods Mol Biol. 2008;456:155–71.

    Article  PubMed  Google Scholar 

  22. Gimble JM, et al. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.

    Article  CAS  PubMed  Google Scholar 

  23. Schipper BM, et al. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg. 2008;60:538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jurgens WJ, et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res. 2008;332:415–26.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Oedayrajsingh-Varma MJ, et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006;8:166–77.

    Article  CAS  PubMed  Google Scholar 

  26. Schachinger V, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210–21.

    Article  CAS  PubMed  Google Scholar 

  27. Schachinger V, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27:2775–83.

    Article  PubMed  Google Scholar 

  28. Uemura R, et al. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006;98:1414–21.

    Article  CAS  PubMed  Google Scholar 

  29. Wang M, et al. Pretreatment with adult progenitor cells improves recovery and decreases native myocardial proinflammatory signaling after ischemia. Shock. 2006;25:454–9.

    Article  PubMed  Google Scholar 

  30. Crisostomo PR, et al. In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery. 2007;142:215–21.

    Article  PubMed  Google Scholar 

  31. Patel KM, et al. Mesenchymal stem cells attenuate hypoxic pulmonary vasoconstriction by a paracrine mechanism. J Surg Res. 2007;143:281–5.

    Article  CAS  PubMed  Google Scholar 

  32. Roche S, et al. Comparative proteomic analysis of human mesenchymal and embryonic stem cells: towards the definition of a mesenchymal stem cell proteomic signature. Proteomics. 2009;9:223–32.

    Article  CAS  PubMed  Google Scholar 

  33. Zvonic S, et al. Secretome of primary cultures of human adipose-derived stem cells. Mol Cell Proteomics. 2007;6:18–28.

    Article  CAS  PubMed  Google Scholar 

  34. Wu Y, et al. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25:2648–59.

    Article  CAS  PubMed  Google Scholar 

  35. Sasaki M, et al. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180:2581–7.

    Article  CAS  PubMed  Google Scholar 

  36. Chen L, et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008;3:e1886.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moon KM, et al. The effect of secretory factors of adipose-derived stem cells on human keratinocytes. Int J Mol Sci. 2012;13(1):1239–57. doi:10.3390/ijms13011239. Epub 2012 Jan 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baregamian N, et al. IGF-1 protects intestinal epithelial cells from oxidative stress induced apoptosis. Surg Res. 2006;136:31–7.

    Article  CAS  Google Scholar 

  39. Rahman ZA, et al. Antioxidant effects of glutathione and IGF in a hyperglycaemic cell culture model of fibroblasts: some actions of advanced glycaemic end products (AGE) and nicotine. Endocr Metab Immune Disord Drug Targets. 2006;6:279–86.

    Article  CAS  PubMed  Google Scholar 

  40. Shibuki H, et al. Expression and neuroprotective effect of hepatocyte growth factor in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci. 2002;43:528–36.

    PubMed  Google Scholar 

  41. Tsao YP, et al. Pigment epithelium derived factor inhibits oxidative stress-induced cell death by activation of extracellular signal-regulated kinases in cultured retinal pigment epithelial cells. Life Sci. 2006;79:545–50.

    Article  CAS  PubMed  Google Scholar 

  42. Kida H, et al. Protective effect of IL-6 on alveolar epithelial cell death induced by hydrogen peroxide. Am J Physiol. 2005;288:342–9.

    Google Scholar 

  43. Liochev SI, et al. How does superoxide dismutase protect against tumor necrosis factor: a hypothesis informed by effect of superoxide on “free” iron. Free Radic Biol Med. 1997;23:668–71.

    Article  CAS  PubMed  Google Scholar 

  44. Kang SH, et al. Improvement of melasma and scars with the secretory factors from ADSCs. Korean J Dermatol. 2007;45 Suppl 2:136.

    Google Scholar 

  45. Kang WH, et al. Melasma: histopathological characteristics in 56 Korean patients. Br J Dermatol. 2002;146:228–37.

    Article  CAS  PubMed  Google Scholar 

  46. Kim EH, et al. The vascular characteristics of melasma. J Dermatol Sci. 2007;46:111–6.

    Article  CAS  PubMed  Google Scholar 

  47. Park BS, et al. Rejuvenation of aging skin using fractional CO2 laser resurfacing followed by topical application of ADSC protein extract. Korean J Dermatol. 2008;46 Suppl 1:266–7.

    Google Scholar 

  48. Elliott K, et al. Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J Invest Dermatol. 1999;113(6):873–7.

    Article  CAS  PubMed  Google Scholar 

  49. Yoon SY, et al. A role of placental growth factor in hair growth. J Dermatol Sci. 2014;74(2):125–34.

    Article  CAS  PubMed  Google Scholar 

  50. Shin H, et al. Induction of transforming growth factor-beta 1 by androgen is mediated by reactive oxygen species in hair follicle dermal papilla cells. BMB Rep. 2013;46(9):460–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim JH, et al. The pivotal role of reactive oxygen species generation in the hypoxia-induced stimulation of adipose-derived stem cells. Stem Cells Dev. 2011;20(10):1753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park BS, et al. Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. Biomed Res. 2010;31(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  53. Lee YB, et al. Effects of topical application of growth factors followed by microneedle therapy in women with female pattern hair loss: a pilot study. J Dermatol. 2013;40(1):81–3.

    Article  CAS  PubMed  Google Scholar 

  54. Matsumoto D, et al. Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 2006;12:3375–82.

    Article  CAS  PubMed  Google Scholar 

  55. Park BS. Stem cell cosmetics: development, safety regulation, mechanism and practical application. J Korean Med Soc Cosmetics. 2014;3(2):66–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Soon Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Park, BS., Kim, WS. (2017). Adipose-Derived Stem Cells and Their Secretory Factors for Skin Aging and Hair Loss. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics