Skip to main content

Personentracking in Luftbildsequenzen

  • Living reference work entry
  • First Online:
Handbuch der Geodäsie

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

  • 311 Accesses

Zusammenfassung

In diesem Kapitel wird ein Ansatz zur automatischen Detektion und Verfolgung (Tracking) von Einzelpersonen in Luftbildsequenzen vorgestellt. Die Verwendung von Luftbildern schafft die Grundlage zur flexiblen Beobachtung großflächiger Szenen wie z. B. Volksfeste oder Public Viewing Veranstaltungen, ohne dass dafür eigens terrestrische Kameranetze installiert werden müssten. Durch die geringere räumliche und zeitliche Auflösung solcher Bilddatensätze werden jedoch Herausforderungen an die Bildanalysemethodik gestellt. Daher wird auf einen stringenten stochastischen Ansatz zurückgegriffen, der in der Lage ist, diese Herausforderungen umfassend und im Sinne der Wahrscheinlichkeitsrechnung konsistent zu behandeln. Weiterhin wird anhand von manuell erstellten Referenzdaten dargestellt, mit welcher Qualität die Trajektorien von Einzelpersonen automatisch abgeleitet werden können sowie welche Einschränkungen in Kauf genommen werden müssen.

Dieser Beitrag ist Teil des Handbuchs der Geodäsie, Band „Photogrammetrie und Fernerkundung“, herausgegeben von Christian Heipke, Hannover. Das Kapitel ist eine kondensierte und umfassend modifizierte Version der Arbeit des Co-Autors (F. Schmidt. Ein integraler stochastischer Ansatz zur Bestimmung von Personentrajektorien aus Luftbildsequenzen. Dissertation, Deutsche Geodätische Kommission, Reihe C, Nr. 696, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  1. Bar-Shalom, Y., Blackman, S., Fitzgerald, R.J.: Dimensionless score function for multiple hypo- thesis tracking. IEEE Trans. Aerosp. Electron. Syst. 43(1), 392–400 (2007). doi:10.1109/TAES.2007.357141

    Article  Google Scholar 

  2. Bar-Shalom, Y., Daum, F., Huang, J.: The probabilistic data association filter. IEEE Control Syst. Mag. 29(6), 82–100 (2009). doi:10.1109/MCS.2009.934469

    Article  Google Scholar 

  3. Baumann, A., Boltz, M., Ebling, J., Koenig, M., Loos, H.S., Merkel, M., Niem, W., Warzelhan, J.K., Yu, J.: A review and comparison of measures for automatic video surveillance systems. EURASIP J. Image Video Process. 2008, 1–30 (2008). doi:10.1155/2008/824726

    Article  Google Scholar 

  4. Biederman, I., Mezzanotte, R.J., Rabinowitz, J.C.: Scene perception: detecting and judging objects undergoing relational violations. Cogn. Psychol. 14(2), 143–177 (1982). doi:10.1016/0010–0285(82)90007–X

    Article  Google Scholar 

  5. Blackman, S.: Multiple-target tracking with radar applications. Artech House, (1986). ISBN:978-0890061794

    Google Scholar 

  6. Blackman, S.: Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electro- n. Syst. Mag. 19(1), 5–18 (2004). doi:10.1109/MAES.2004.1263228

    Article  Google Scholar 

  7. Blackman, S., Popoli, R.: Design and analysis of modern tracking systems. Artech House (1999). ISBN:978-1-58053-006-4

    Google Scholar 

  8. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997). doi:10.1016/S0004–3702(97) 00063–5

    Google Scholar 

  9. Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking- by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1820–1833 (2011). doi:10.1109/TPAMI.2010.232

    Article  Google Scholar 

  10. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998). doi:10.1023/A:1009715923555

    Article  Google Scholar 

  11. Butenuth, M., Burkert, F., Kneidl, A., Borrmann, A., Schmidt, F., Hinz, S., Sirmacek, B., Hartmann, D.: Integrating pedestrian simulation, tracking and event detection for crowd analysis. In First IEEE ICCV Workshop on Modeling, Simulation and Visual Analysis of Large Crowds, S. 150–157 (2011). doi:10.1109/ICCVW.2011.6130237

    Google Scholar 

  12. Collins, J.B., Uhlmann, J.K.: Efficient gating in data association with multivariate gaussian dis- tributed states. IEEE Trans. Aerosp. Electron. Syst. 28(3), 909–916 (1992). doi:10.1109/7.256316

    Article  Google Scholar 

  13. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–577 (2003). doi:10.1109/TPAMI.2003.1195991

    Article  Google Scholar 

  14. Cox, I.J.: A review of statistical data association techniques for motion correspondence. Int. J. Comput. Vis. 10(1), 53–66 (1993). doi:10.1007/BF01440847

    Article  Google Scholar 

  15. Cox, I.J., Hingorani, S.L.: An efficient implementation of Reid’s multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 18(2), 138–150 (1996). doi:10.1109/34.481539

    Article  Google Scholar 

  16. Crow, F.C.: Summed-area tables for texture mapping. In: Conference on Computer Graphics and Interactive Techniques, S. 207–212. ACM (1984). doi:10.1145/800031.808600

    Google Scholar 

  17. De Laet, T.: Rigorously Bayesian multitarget tracking and localization. Dissertation, Katholieke Universiteit Leuven (2010)

    Google Scholar 

  18. Demos, G.C., Ribas, R.A., Broida, T.J., Blackman, S.S.: Applications of MHT to dim moving targets. In: Conference on Signal and Data Processing of Small Targets, Bd. 1305, S. 297–309. SPIE (1990). doi:10.1117/12.21598

    Google Scholar 

  19. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley (2001). ISBN:978-0- 471-05669-0

    Google Scholar 

  20. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). doi:10.1006/jcss.1997.1504

    Article  Google Scholar 

  21. Galleguillos, C., Belongie, S.: Context based object categorization: a critical survey. Comput. Vis. Image Underst. 114(6), 712–722 (2010). doi:10.1016/j.cviu.2010.02.004

    Article  Google Scholar 

  22. Ge, W., Collins, R.T.: Marked point processes for crowd counting. In: IEEE Conference on Computer Vision and Pattern Recognition, S. 2913–2920 (2009). doi:10.1109/CVPRW.2009.5206621

    Google Scholar 

  23. Gennari, D., Hager, G.D.: Probabilistic data association methods in visual tracking of groups. In: IEEE Conference on Computer Vision and Pattern Recognition, Bd. 2, S. 876–881 (2004). doi:10.1109/CV-PR.2004.1315257

    Google Scholar 

  24. Gerónimo, D., López, A.M., Sappa, A.D., Graf, T.: Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1239–1258 (2010). doi:10.1109/TPAMI.2009.122

    Article  Google Scholar 

  25. Grabner, H., Nguyen, T.T., Gruber, B., Bischof, H.: On-line boosting-based car detection from ae- rial images. ISPRS J. Photogramm. Remote Sens. 63(3), 382–396, (2008). doi:10.1016/j.isprsjprs.2007.10.005

    Article  Google Scholar 

  26. Henriques, J.F., Caseiro, R., Batista, J.: Globally optimal solution to multi-object tracking with merged measurements. In: IEEE International Conference on Computer Vision, S. 2470–2477 (2011). doi:10.1109/IC-CV.2011.6126532

    Google Scholar 

  27. Hinz, S.: Detection and counting of cars in aerial images. In: IEEE International Conference on Image Processing, Bd. 3, S. 997–1000 (2003). doi:10.1109/ICIP.2003.1247415

    Google Scholar 

  28. Hinz, S.: Density and motion estimation of people in crowded environments based on aerial image sequences. In ISPRS Hannover Workshop 2009: High-Resolution Earth Imaging for Geospatial Infor- mation, Bd. XXXVIII–1–4–7/W5 aus IAPRS, S. 1–6, ISPRS (2009)

    Google Scholar 

  29. Hinz, S., Lenhart, D., Leitloff, J.: Traffic extraction and characterisation from optical remote sensing data. Photogramm. Rec. 23(124), 424–440 (2008). doi:10.1111/j.1477–9730.2008.00497.x

    Article  Google Scholar 

  30. Jacques Junior, J.C.S., Musse, S.R., Jung, C.R.: Crowd analysis using computer vision techniques. IEEE Signal Process. Mag. 27(5), 66–77 (2010). doi:10.1109/MSP.2010.937394

    Google Scholar 

  31. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000). doi:10.1109/34.824819

    Article  Google Scholar 

  32. Jiang, S., Zhou, X., Kirchhausen, T., Wong, S.T.C.: Detection of molecular particles in live cells via machine learning. Cytom. Part A 71A(8), 563–575 (2007). doi:10.1002/cyto.a.20404

    Article  Google Scholar 

  33. Joo, S.-W., Chellappa, R.: A multiple-hypothesis approach for multiobject visual tracking. IEEE Trans. Image Process. 16(11), 2849–2854 (2007). doi:10.1109/TIP.2007.906254

    Article  Google Scholar 

  34. Jüngling, K.: Ein generisches System zur automatischen Detektion, Verfolgung und Wiedererkennung von Personen in Videodaten. Dissertation, Institut für Photogrammetrie und Fernerkundung, Karlsruher Institut für Technologie (KIT), (2011). URN:urn:nbn:de:swb:90–223579.

    Google Scholar 

  35. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012). doi:10.1109/TPAMI.2011.239

    Article  Google Scholar 

  36. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955). doi:10.1002/nav.3800020109

    Article  Google Scholar 

  37. Kurz, F., Müller, R., Stephani, M., Reinartz, P., Schroeder, M.: Calibration of a wide-angle digital camera system for near real time scenarios. In High Resolution Earth Imaging for Geospatial Information, ISPRS Workshop, ISPRS, S. 1–6 (2007)

    Google Scholar 

  38. Lafarge, F., Descombes, X., Zerubia, J., Pierrot-Deseilligny, M.: Automatic building extraction from dems using an object approach and application to the 3d-city modeling. J. Photogramm. Remote Sens. 63(3), 365–381 (2008)

    Article  Google Scholar 

  39. Lau, B., Arras, K., Burgard, W.: Multi-model hypothesis group tracking and group size estimation. Int. J. Soc. Robot. 2, 19–30 (2010). doi:10.1007/s12369–009–0036–0

    Article  Google Scholar 

  40. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categori- zation and segmentation. Int. J. Comput. Vis. 77(1–3), 259–289 (2008). doi:10.1007/s11263–007–0095–3

    Article  Google Scholar 

  41. Leica Geosystems. Leica RCD30 series datasheet. http://www.leica-geosystems.com/downloads123/zz/airborne/RCD30/brochures-datasheet/Leica_RCD30_DS_en.pdf (2012)

  42. Leitloff, J., Hinz, S., Stilla, U.: Vehicle detection in very high resolution satellite images of city areas. IEEE Trans. Geosci. Remote Sens. 48(7), 2795–2806 (2010). doi:10.1109/TGRS.2010.2043109

    Article  Google Scholar 

  43. Levi, D., Weiss, Y.: Learning object detection from a small number of examples: the importance of good features. In: IEEE Conference on Computer Vision and Pattern Recognition, Bd. 2, S. 53–60 (2004). doi:10.1109/CVPR.2004.1315144

    Google Scholar 

  44. Li, K., Miller, E.D., Chen, M., Kanade, T., Weiss, L.E., Campbell, P.G.: Cell population tracking and lineage construction with spatiotemporal context. Medical Image Anal. 12(5), 546–566 (2008). doi:10.1016/j.media.2008.06.001

    Article  Google Scholar 

  45. Li, Y., Huang, C., Nevatia, R.: Learning to associate: Hybridboosted multi-target tracker for crowded scene. In: IEEE Conference on Computer Vision and Pattern Recognition, S. 2953–2960 (2009). doi:10.1109/CVPR.2009.5206735

    Google Scholar 

  46. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: IEEE International Conference on Image Processing, Bd. 1, S. 900–903 (2002). doi:10.1109/ICIP.2002.1038171

    Google Scholar 

  47. Mallick, M., La Scala B.: Comparison of single-point and two-point difference track initiation algorithms using position measurements. Acta Automatica Sinica 34(3), 258–265 (2008). doi:10.3724/SP.J.1004.2008.00258

    Article  Google Scholar 

  48. Microsoft. UltraCam-Xp technical specification. http://download.microsoft.com/download/7/4/3/743EFD09-258B-4BFA-8D56-3148C60DD137/UCAMTechnicalDocuments/UltraCamXp-Specs.pdf (2011)

  49. Miller, M.L., Stone, H.S., Cox, I.J.: Optimizing Murty’s ranked assignment method. IEEE Trans. Aerosp. Electron. Syst. 33(3), 851–862 (1997). doi:10.1109/7.599256

    Article  Google Scholar 

  50. Mucientes, M., Burgard, W.: Multiple hypothesis tracking of clusters of people. In: IEEE International Conference on Intelligent Robots and Systems, S. 692–697 (2006). doi:10.1109/IROS.2006.282614

    Google Scholar 

  51. Niculescu-Mizil, A., Caruana, R.: Obtaining calibrated probabilities from boosting. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, S. 413–420. AUAI Press, Corvallis (2005)

    Google Scholar 

  52. Niemeier, W.: Ausgleichsrechnung. de Gruyter (2008). ISBN:978-3110190557

    Google Scholar 

  53. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templa- tes. In: IEEE Conference on Computer Vision and Pattern Recognition, S. 193–199 (1997). doi:10.1109/CV-PR.1997.609319

    Google Scholar 

  54. Pentico, D.W.: Assignment problems: A golden anniversary survey. Eur. J. Oper. Res. 176(2), 774–793 (2007). doi:10.1016/j.ejor.2005.09.014

    Article  Google Scholar 

  55. Perko, R., Leonardis, A.: A framework for visual-context-aware object detection in still images. Comput. Vis. Image Underst. 114(6), 700–711 (2010). doi:10.1016/j.cviu.2010.03.005

    Article  Google Scholar 

  56. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized like- lihood methods. In: Advances in Large Margin Classifiers, S. 61–74. MIT, Cambridge (1999)

    Google Scholar 

  57. Popp, R.L., Pattipati, K.R., Bar-Shalom, Y.: M-best s-d assignment algorithm with application to multitarget tracking. IEEE Trans. Aerosp. Electron. Syst. 37(1), 22–39 (2001). doi:10.1109/7.913665

    Article  Google Scholar 

  58. Pulford, G.W.: Taxonomy of multiple target tracking methods. In: IEE Proceedings of Radar, Sonar and Navigation, Bd. 152, S. 291–304 (2005). doi:10.1049/ip–rsn:20045064

    Google Scholar 

  59. Reid, D.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24(6), 843–854 (1979). doi:10.1109/TAC.1979.1102177

    Article  Google Scholar 

  60. Reilly, V., Solmaz, B., Shah, M.: Geometric constraints for human detection in aerial imagery. In: Computer Vision – ECCV 2010, Bd. 6316 aus LNCS, S. 252–265. Springer (2010). doi:10.1007/978–3–642–15567–3_19

    Google Scholar 

  61. Rodriguez, M., Ali, S., Kanade, T.: Tracking in unstructured crowded scenes. In: IEEE International Conference on Computer Vision, S. 1389–1396 (2009). doi:10.1109/ICCV.2009.5459301

    Google Scholar 

  62. Rodriguez, M., Laptev, I., Sivic, J., Audibert, J.-Y.: Density-aware person detection and tracking in crowds. In: IEEE International Conference on Computer Vision, S. 2423–2430. IEEE (2011). doi:10.1109/ICCV.2011.6126526

    Google Scholar 

  63. Shafique, K., Shah, M.: A noniterative greedy algorithm for multiframe point correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 51–65 (2005). doi:10.1109/TPAMI.2005.1

    Article  Google Scholar 

  64. Shafique, K., Lee, M.W., Haering, N.: A rank constrained continuous formulation of multi-frame multi-target tracking problem. In: IEEE Conference on Computer Vision and Pattern Recognition, S. 1–8 (2008). doi:10.1109/CVPR.2008.4587577

    Google Scholar 

  65. Sittler, R.W.: An optimal data association problem in surveillance theory. IEEE Trans. Mil. Electron. 8(2), 125–139 (1964). doi:10.1109/TME.1964.4323129

    Article  Google Scholar 

  66. Still, G.K.: Crowd Dynamics. Dissertation, Department of Mathematics, University of Warwick (UK) (2000)

    Google Scholar 

  67. Suetens, P., Fua, P., Hanson, A.J.: Computational strategies for object recognition. ACM Comput. Surv. 24, 5–62 (1992). doi:10.1145/128762.128763

    Article  Google Scholar 

  68. Sung, K.-K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 39–51 (1998). doi:10.1109/34.655648

    Article  Google Scholar 

  69. Thomas, U., Rosenbaum, D., Kurz, F., Suri, S., Reinartz, P. A new software/hardware architecture for real time image processing of wide area airborne camera images. J. Real-Time Image Process. 4(3), 229–244 (2008). doi:10.1007/s11554–008–0109–6

    Article  Google Scholar 

  70. Ulrich, M. Hierarchical Real-Time Recognition of Compound Objects in Images. Dissertation, Technische Universität München (2003)

    Google Scholar 

  71. Vapnik, V.N.: The nature of statistical learning theory. Springer (2000). ISBN:978-0-387-98780-4

    Google Scholar 

  72. Veenman, C.J., Reinders, M.J.T., Backer, E.: Resolving motion correspondence for densely moving points. IEEE Trans. Pattern Anal. Mach. Intell. 23(1), 54–72 (2001). doi:10.1109/34.899946

    Article  Google Scholar 

  73. Vidal, C., Boureau, J.-G., Robert, N., Py, N., Zerubia, J., Descombes, X., Perrin, G.: Automatic crown cover mapping to improve forest inventory. In: Proceedings of the eighth annual forest inventory and analysis symposium; 2006 October 16–19; Monterey, CA. Gen. Tech. Report WO-79. Washington, DC: U.S. Department of Agriculture, Forest Service.

    Google Scholar 

  74. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conference on Computer Vision and Pattern Recognition, Bd. 1, S. 511–518 (2001). doi:10.1109/CV-PR.2001.990517

    Google Scholar 

  75. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int. J. Comput. Vis. 63(2), 153–161 (2005). doi:10.1007/s11263–005–6644–8

    Article  Google Scholar 

  76. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945). doi:10.1214/aoms/1177731118

    Article  Google Scholar 

  77. Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. Int. J. Comput. Vis. 75, 247–266 (2007). doi:10.1007/s11263–006–0027–7

    Article  Google Scholar 

  78. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4), 1–45 (2006). doi:10.1145/1177352.1177355

    Article  Google Scholar 

  79. Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L.-Q.: Crowd analysis: A survey. Mach. Vis. Appl. 19, 345–357 (2008). doi:10.1007/s00138–008–0132–4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hinz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hinz, S., Schmidt, F. (2015). Personentracking in Luftbildsequenzen. In: Freeden, W., Rummel, R. (eds) Handbuch der Geodäsie. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46900-2_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Online ISBN: 978-3-662-46900-2

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics