Skip to main content

Organic Acid and Solvent Production: Propionic and Butyric Acids and Ethanol

  • Reference work entry
The Prokaryotes

Abstract

Both propionic acid and butyric acid together with their acid salts are incorporated into a large number of commercial products. These include food additives and flavors, preservatives, cellulose-based plastics, drug formulations, and fragrances. In the future, production of these short-chain organic acids by low-cost efficient fermentation processes also may make them attractive as feedstocks for conversion into various industrial chemicals. Ethanol is the key ingredient of alcoholic beverages, and the commercial value of the alcoholic beverages alone would make ethanolic fermentation one of the most important applications of microbial activities. Ethanol is used as an industrial chemical and as a component of healthcare and consumer products, and it is increasingly used in automobile fuel. Yeasts are commonly used in a fermentation to convert sugars into ethanol. Bacterial ethanolic fermentation is gaining importance in the development of processes to convert lignocellulosic biomass into fuel ethanol. As economic conditions and ecological considerations favor the growth of a bio-based chemical industry in the twenty-first century, fermentation-derived organic acids and ethanol will play an increasingly important role as chemical feedstocks and fuel supplement.

āˆ—Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbad-Andaloussi S, Durr C, Raval G, Petitdemange H (1996) Carbon and electron flow in Clostridum butyricum grown in chemostat culture on glycerol and glucose. Microbiol 142:1149ā€“1158

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Abrini J, Naveau H, Nyns E-J (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 16:345ā€“351

    ArticleĀ  Google ScholarĀ 

  • Alam S, Stevens D, Bajpai R (1988) Production of butyric acid by batch fermentation of cheese whey with Clostridium beijerinckii. J Ind Microbiol 2:359ā€“364

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Aldrich HC, McDowell L, Barbosa MF, Yomano LP, Scopes RK, Ingram LO (1992) Immunocytochemical localization of glycolytic and fermentative enzymes in Zymomonas mobilis. J Bacteriol 174:4504ā€“4508

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Anonymous (1979) Facts and figures for the U.S. chemical industryā€”production of organic chemicals. Chem Eng News 11:37

    Google ScholarĀ 

  • Anonymous (2001a) Chemical prices. Chem Mark Rep 160(17):23ā€“26

    Google ScholarĀ 

  • Anonymous (2001b) Glycerol, propionic acid, butyric acid. Chem Mark Rep 259(13):30ā€“33

    Google ScholarĀ 

  • Bahl H, MĆ¼ller H, Behrens S, Joseph H, Naberhaus F (1995) Expression of heat shock genes in Clostridium acetobutylicum. FEMS Microbiol Rev 17:341ā€“348

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Baker RC, Kramer RE (1999) Cytotoxicity of short-chain alcohols. Annu Rev Pharmocol Toxicol 39:127ā€“150

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ballerini D, Desmarquest JP, Pourquie J, Nativel F, Rebeller M (1994) Ethanol production from lignocellulosics: Large scale experimentation and economics. Bioresource Technol 50:17ā€“23

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Barbirato F, Chedaille D, Bories A (1997a) Propionic acid fermentation from glycerol: comparison with conventional substrates. Appl Microbiol Biotechnol 47:441ā€“446

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Barbirato F, Astruc S, Soucaille P, Camarasa C, Salmon JM, Bories A (1997b) Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: limitations and regulations. Microbiology 143:2423ā€“2432

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Barbirato F, Larguier A, Conte T, Astruc S, Bories A (1997c) Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210. Arch Microbiol 168:160ā€“163

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Barbosa MF, Ingram LO (1994) Expression of the Zymomonas mobilis alcohol dehydrogenase II (adhB) and pyruvate decarboxylase (pdc) genes in Bacillus. Curr Microbiol 28:279ā€“282

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Barik S, Prieto S, Harrison SB, Clausen EC, Gaddy JL (1988) Biological production of alcohols from coal through indirect liquefaction: scientific note. Appl Biochem Biotechnol 18:363ā€“378

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Barker HA (1972) Co-enzyme B12-dependent mutases causing carbon chain rearrangements. In: Boyer PD (ed) The enzymes, vol 6. Academic, New York, pp 509ā€“537

    Google ScholarĀ 

  • Beall DS, Ingram LO (1993) Genetic engineering of soft-rot bacteria for ethanol production from lignocellulose. J Ind Microbiol 11:151ā€“155

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Benda I (1982) Wine and brandy. In: Reed G (ed) Prescott & Dunnā€™s industrial microbiology, 4th edn. AVI Publishing, Westport, pp 293ā€“402

    Google ScholarĀ 

  • Billig E, Bryant DR (1991) Oxoprocess encyclopedia of chemical technology, vol 17, 4th edn. Wiley, New York, pp 903ā€“919

    Google ScholarĀ 

  • Boyaval P, Seta J, Gavach C (1993) Concentrated propionic acid production by electrodialysis. Enzyme Microb Technol 15:683ā€“686

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Boyaval P, Corre C, Madec MN (1994) Propionic acid production in a membrane bioreactor. Enzyme Microb Technol 16:883ā€“886

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Boyaval P, Corre C (1995) Production of propionic acid. Lait 75:453ā€“461

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Brandt DA (1982) Distilled beverage alcohol. In: Reed G (ed) Prescott & Dunnā€™s industrial microbiology, 4th edn. AVI Publishing, Westport, pp 468ā€“491

    Google ScholarĀ 

  • Brau B, Sahm H (1986) Cloning and expression of the structural gene for pyruvate decarboxylase of Zymomonas mobilis in Escherichia coli. Arch Microbiol 144:296ā€“301

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bringer-Meyer S, Schmiz K-L, Sahm H (1986) Pyruvate decarboxylase from Zymomonas mobilis: isolation and partial characterization. Arch Microbiol 146:105ā€“110

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Brown DP, Ganova-Raevn L, Green BD, Wilkinson SR, Young M, Youngman P (1994) Characterization of spoOA homologues in diverse Bacillus and Clostridium species identifies a probable DNA-binding domain. Molec Microbiol 14:411ā€“426

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bryant FO, Wiegel J, Ljungdahl LG (1988) Purification and properties of primary and secondary alcohol dehydrogenases from Thermoanaerobacter ethanolicus. Appl Environ Microbiol 54:460ā€“465

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Buchholz SE, Dooley MM, Eveleigh DE (1987) Zymomonasā€”an alcoholic enigma. Trends Biotechnol 5:199ā€“204

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Burdette D, Zeikus JG (1994) Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2Ā°dh) as a bifunctional alcohol dehydrogenase-acetyl-CoA reductive thioesterase. Biochem J 302:163ā€“170

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Burdette DS, Vieille C, Zeikus JG (1996) Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochem J 316:115ā€“122

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Buschhorn H, DĆ¼ P, Gottschalk G (1989) Production and utilization of ethanol by homoacetogen Acetobacterium woodii. Appl Environ Microbiol 55:1835ā€“1840

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cann IKO, Stroot PG, Mackie KR, White BA, Mackie RI (2001) Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int J Syst Evol Microbiol 51:293ā€“302

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cayol J-L, Ollivier B, Patel BKC, Ravot G, Magot M, Ageron E, Grimont PAD, Garcia J-L (1995) Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface french oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter brockii. Int J Syst Bacteriol 45:783ā€“789

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chen J-S (1987) Electron transport in anaerobes. In: Montville TJ (ed) Concepts in physiology and metabolism, vol 1. CRC Press, Boca Raton, pp 61ā€“101

    Google ScholarĀ 

  • Chen J-S (1993) Properties of acid-and solvent-forming enzymes of clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, Stoneham, pp 51ā€“76

    Google ScholarĀ 

  • Chen JS (1995) Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiol Rev 17:263ā€“273

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223ā€“234

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Clausen EC, Gaddy JL (1996) Ethanol from biomass by gasification/fermentation. In: Khan MR (ed) Conversion and utilization of waste materials. Taylor & Francis, Washington DC, pp 157ā€“167

    Google ScholarĀ 

  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812ā€“826

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Colomban A, Roger L, Boyaval P (1993) Production of propionic acid from whey permeate by sequential fermentation, ultrafiltration, and cell recycling. Biotechnol Bioeng 42:1091ā€“1098

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Conway T, Osman YA, Konnan JI, Hoffmann EM, Ingram LO (1987) Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase. J Bacteriol 169:949ā€“954

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Conway T, Ingram LO (1989) Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae. J Bacteriol 171:3754ā€“3759

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cook GM, Rainey FA, Patel BKC, Morgan HW (1996) Characterization of a new obligately anaerobic thermophile, Thermanaerobacter wiegelii sp. nov. Int J Syst Bacteriol 46:123ā€“127

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Cummins CS, Johnson JL (1986) The genus Propionibacterium. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergeyā€™s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1346ā€“1353

    Google ScholarĀ 

  • Demain AL, Rickes EL, Hendlin D, Barnes EC (1961) Nutritional studies on Lactobacillus heterohiochi. J Bacteriol 81:147ā€“153

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Depasse E (1945) Vue d'ensemble d'une production industrielle de cĆ©tones. Bull Assoc Chim Sucr Distill Fr 62:317ā€“339

    CASĀ  Google ScholarĀ 

  • Doran JB, Ingram LO (1993) Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes. Biotechnol Progr 9:533ā€“538

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Doran JB, Aldrich HC, Ingram LO (1994) Saccharification and fermentation of sugar cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway. Biotechnol Bioeng 44:240ā€“247

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Dumsday GJ, Zhou B, Yaqin W, Stanley GA, Pamment NB (1999) Comparative stability of ethanol production by Escherichia coli KO11 in batch and chemostat culture. J Ind Microbiol Biotechnol 23:701ā€“708

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • DĆ¼rre P, Fischer RJ, Kuhn A, Lorenz K, Schreiber W, StĆ¼rzenhofecker B, Ullmann S, Winzer K, Sauer U (1995) Solventogenic enzymes of Clostridium acetobutylicum, catalytic properties, genetic organization and transcriptional regulation. FEMS Microbiol Rev 17:251ā€“262

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Evans PJ, Wang HY (1990) Effects of extractive fermentation on butyric acid production by Clostridium acetobutylicum. Appl Microbiol Biotechnol 32:393ā€“397

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fayolle F, Marchal R, Ballerini D (1990) Effect of controlled substrate feeding on butyric acid production by Clostridium tyrobutyricum. J Indust Microbiol 6:179ā€“183

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Feldmann S, Sprenger GA, Sahm H (1989) Ethanol production from xylose with a pyruvate-formate-lyase mutant of Klebsiella planticola carrying a pyruvate-decarboxylase gene from Zymomonas mobilis. Appl Microbiol Biotechnol 31:152ā€“157

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fischer RJ, Helms J, DĆ¼ P (1993) Cloning, sequencing and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis. J Bacteriol 175:6959ā€“6969

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Fitz A (1878) Ɯber spaltpilzgƤrungen, IV Bericht der Deutsch. Chem Ges 11:1890

    ArticleĀ  Google ScholarĀ 

  • Gauss WF, Suzuki S, Takagi M (1976) US Patent 3,990,944

    Google ScholarĀ 

  • Girbal L, Croux C, Vasconcelos I, Soucaille P (1995a) Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Rev 17:287ā€“297

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Girbal L, Vasoncelos I, Saint-Amans S, Soucaille P (1995b) How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol Rev 16:151ā€“162

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Goodlove PE, Cunningham PR, Parker J, Clark DP (1989) Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. Gene 85:209ā€“214

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, New York, pp 97ā€“98

    BookĀ  Google ScholarĀ 

  • Grethlein AJ, Worden RM, Jain MK, Datta R (1990) Continuous production of mixed alcohols and acids from carbon monoxide. Appl Biochem Biotechnol 24ā€“25:875ā€“884

    ArticleĀ  Google ScholarĀ 

  • Gu Z, Glatz BA, Glatz CE (1998) Propionic acid production by extractive fermentation. I: solvent consideration. Biotechnol Bioeng 57:454ā€“461

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gu Z, Rickert DA, Glatz BA, Glatz CE (1999) Feasibility of propionic acid production by extractive fermentation. Lait 79:137ā€“148

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Helbert JR (1982) Beer. In: Reed G (ed) Prescott & Dunnā€™s industrial microbiology, 4th edn. AVI Publishing, Westport, pp 403ā€“467

    Google ScholarĀ 

  • Himmel ME, Adney WS, Grohmann K, Tucker MP (1994) US Patent 5,275,944

    Google ScholarĀ 

  • Himmel ME, Adney WS, Baker JO, Elander R, McMillan JD, Nieves RA, Sheehan JJ, Thomas SR, Vinzant TB, Zhang M (1997) Advanced bioethanol production technologies: a perspective. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, DC, pp 2ā€“45, ACS Symposium Series 666

    ChapterĀ  Google ScholarĀ 

  • Himmi EH, Bories A, Boussaid A, Hassani L (2000) Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. Appl Microbiol Biotechnol 53:435ā€“440

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hippe H, Andresen JR, Gottschalk G (1991) The genus Clostridium, non-medical. In: Balows HG, Truper M, Dworkin WH, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 1799ā€“1866

    Google ScholarĀ 

  • Holland-Staley CA, Lee K, Clark DP, Cunningham PR (2000) Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid. J Bacteriol 18(2):6049ā€“6054

    ArticleĀ  Google ScholarĀ 

  • Hoppner TC, Doelle HW (1983) Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production. Eur J Appl Microbiol Biotechnol 17:152ā€“157

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Houge C (2000) Getting the MTBE out. Chem Eng News, p. 6

    Google ScholarĀ 

  • Hsu ST, Yang ST (1991) Propionic acid fermentation of lactose by Propionibacterium acidipropioniciā€”effects of pH. Biotechnol Bioeng 38:571ā€“578

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Huff GF, Yata N (1976) US Patent 3,990,945

    Google ScholarĀ 

  • Ingram LO, Buttke TM (1984) Effects of alcohols on micro-organisms. Adv Microb Physiol 25:253ā€“300

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ingram LO (1986) Microbial tolerance to alcohols: role of the cell membrane. Trends Biotechnol 4:40ā€“44

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420ā€“2425

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ingram LO, Conway T (1988) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol 54:397ā€“404

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ingram LO, Dombek KM (1989) Effects of ethanol on Escherichia coli. In: van Uden N (ed) Alcohol toxicity in yeasts and bacteria. CRC Press, Boca Raton, pp 227ā€“237

    Google ScholarĀ 

  • Ingram LO (1990) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9:305ā€“319

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ingram LO, Alterthum F, Conway T (1991) US Patent 5,000,000

    Google ScholarĀ 

  • Ingram LO, Clark DC (1992) US Patent 5,028,539

    Google ScholarĀ 

  • Ingram LO, Doran JB (1995) Conversion of cellulosic materials to ethanol. FEMS Microbiol Rev 16:235ā€“241

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ingram LO, Beall DS, Burchhardt GFH, Guimaraes WV, Ohta K, Wood BE, Shanmugam KT, Fowler DE, Ben-Bassat A (1995) US Patent 5,424,202

    Google ScholarĀ 

  • Ingram LO, Barbosa-Alleyne MDF (1996) US Patent 5,482,846

    Google ScholarĀ 

  • Ingram LO, Ohta KW, B. E. (1998) US Patent 5821093

    Google ScholarĀ 

  • Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yamano LP, York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204ā€“214

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Progr 15:855ā€“866

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jackson MD, Moyer CB (1991) Alcohol fuels. In: Kroschwitz JI, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 1, 4th edn. Wiley, New York, pp 826ā€“864

    Google ScholarĀ 

  • Jan G, Rouault A, Maubois JL (2000) Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp. shermanii. Lait 80:325ā€“336

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jan G, Leverrier P, Pichereau V, Boyaval P (2001) Changes in protein synthesis and morphology during acid adaptation of Propionibacterium freudenreichii. Appl Environ Microbiol 67:2029ā€“2036

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Jin ZW, Yang ST (1998) Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici. Biotechnol Prog 14:457ā€“465

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Joachimsthal E, Haggett KD, Jang J-H, Rogers PL (1998) A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnol Lett 20:137ā€“142

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jones DT (1993) Mutagenesis and its application to biotechnology. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 77ā€“98

    Google ScholarĀ 

  • Keshav KF, Yomano LP, An H, Ingram LO (1990) Cloning of the Zymomonas mobilis structural gene encoding alcohol dehydrogenase I (adhA): Sequence comparison and expression in Escherichia coli. J Bacteriol 172:2491ā€“2497

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kessler D, Leibrecht I, Knappe J (1991) Pyruvate-formate-lyase-deactivase and acetyl-Co reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE. FEBS Lett 281:59ā€“63

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kessler D, Herth W, Knappe J (1992) Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymic AdhE protein of Escherichia coli. J Biol Chem 267:18073ā€“18079

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kiatpapan P, Hashimoto Y, Nakamura H, Piao Y-Z, Ono H, Yamashita M, Murooka Y (2000) Characterization of pRG01, a plasmid from Propionibacterium acidipropionici, and its use for development of a host-vector system in propionibacteria. Appl Environ Microbiol 66:4688ā€“4695

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kinoshita S, Kakizono T, Kadota K, Das K, Taguchi H (1985) Purification of two alcohol dehydrogenases from Zymomonas mobilis and their properties. Appl Microbiol Biotechnol 22:249ā€“254

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kitahara K, Kaneko T, Goto O (1957) Taxonomic studies on the hiochi-bacteria specific saprophytes of sake. I: isolation and grouping of bacterial strains. J Gen Appl Microbiol (Japan) 3:102ā€“110

    ArticleĀ  Google ScholarĀ 

  • Klapatch RR, Guerinot ML, Lynd LR (1996) Electrotransformation of Clostridium thermosaccharolyticum. J Ind Microbiol 16:342ā€“347

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1992) Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme Microb Technol 14:602ā€“608

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Korkhin Y, Kalb(Gilboa) AJ, Peretz M, Bogin O, Burstein Y, Frolow F (1998) NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J Mol Biol 278:967ā€“981

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kosaric N (1996) Ethanol-potential source of energy and chemical products. In: Rehm H-J, Reed G (eds) Biotechnology. VCH, New York, pp 123ā€“203

    Google ScholarĀ 

  • Kusano K, Yamada H, Niwa M, Yamasoto K (1997) Propionibacterium cyclohexanicum sp. nov., a new acid-tolerant omega-cyclohexy/fatty acid-containing propionibacterium isolated from spoiled orange juice. Int J Syst Bacteriol 47:825ā€“831

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lamed RJ, Zeikus JG (1981) Novel NADP-linked alcohol-aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria. Biochem J 195:183ā€“190

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114ā€“119

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lee Y-E, Jain MK, Lee C, Lowe SE, Zeikus JG (1993) Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., and Thermoanaerobacter thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43:41ā€“51

    ArticleĀ  Google ScholarĀ 

  • Lefranc L et Cie (1923) A process for the manufacture of butyric acid and other fatty acids with recovery of the gases of fermentation. British Patent 186ā€“572. Chem Abstr 17:324

    Google ScholarĀ 

  • Lewis VP, Yang ST (1992) Continuous propionic acid fermentation by immobilized Propionibacterium acidipropionici in a novel packed bed bioreactor. Biotechnol Bioeng 40:465ā€“474

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Linden JC, Kuhn RH (1989) Biochemistry of alcohol effects on clostridia. In: van Uden N (ed) Alcohol toxicity in yeasts and bacteria. CRC Press, Boca Raton, pp 271ā€“291

    Google ScholarĀ 

  • Lindsay SE, Bothast RJ, Ingram LO (1995) Improved strains of recombinant Escherichia coli for ethanol production from sugar mixture. Appl Microbiol Biotechnol 43:70ā€“75

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Liu S-Y, Rainey FA, Morgan HW, Mayer F, Wiegel J (1996) Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. Int J Syst Bacteriol 46:388ā€“396

    ArticleĀ  Google ScholarĀ 

  • Logsdon JE (1994) Ethanol. In: Kroschwitz JI, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 9, 4th edn. Wiley, New York, pp 812ā€“860

    Google ScholarĀ 

  • Lowe SE, Jain MK, Zeikus JG (1993) Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 57:451ā€“509

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Lowenheim FA, Moran MK (1975) Industrial chemicals, 4th edn. Wiley, New York

    Google ScholarĀ 

  • Lugar RG, Woolsey RJ (1999) The new petroleum. Foreign Aff 78:88ā€“102

    ArticleĀ  Google ScholarĀ 

  • Lynd LR (1989) Ethanol production from lignocellulosic substrates using thermophilic bacteria. Adv Biochem Eng Biotechnol 38:1ā€“52

    CASĀ  Google ScholarĀ 

  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318ā€“1323

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lynd LR, Baskaran S, Casten S (2001) Salt accumulation resulting from base added for pH control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Biotechnol Prog 17:118ā€“125

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lyon WJ, Glatz BA (1995) Propionibacteria. In: Hui YH, Khachatourians GG (eds) Food biotechnology, microorganisms. VCH, New York, pp 703ā€“719

    Google ScholarĀ 

  • Mackenzie KF, Eddy CK, Ingram LO (1989) Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc. J Bacteriol 171:1063ā€“1067

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Mai V, Wiegel J (2000) Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into chromosome. Appl Environ Microbiol 66:4817ā€“4821

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mai V, Lorenz WW, Wiegel J (1997) Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol Lett 148:163ā€“167

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Martin ME, Wayman M, Graf G (1961) Fermentation of sulfite waste liquor to produce organic acids. Can J Microbiol 7:341ā€“346

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • McCoy M (1998) Biomass ethanol inches forward. Chem Eng News 76:29ā€“32

    Google ScholarĀ 

  • McLellan PJ, Daugulis AJ, Li J (1999) The incidence of oscillatory behavior in the continuous fermentation of Zymomonas mobilis. Biotechnol Prog 15:667ā€“680

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mermelstein LD, Welker NE, Petersen DJ, Bennett GN, Papoutsakis ET (1994) Genetic and metabolic engineering of Clostridum acetobutylicom. ATCC 824. Ann NY Acad Sci 721:54ā€“68

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Michel-Savin D, Marchal R, Vandecasteele JP (1990a) Control of the selectivity of butyric acid production and improvement of fermentation performance with Clostridium tyrobutyricum. Appl Microbiol Biotechnol 32:387ā€“392

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Michel-Savin D, Marchal R, Vandecasteele JP (1990b) Butyrate production in continuous culture of Clostridum tyrobutyricum. Appl Microbiol Biotechnol 33:127ā€“131

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Michel-Savin D, Marchal R, Vandecasteele JP (1990c) Butyric fermentation: metabolic behavior and production performance of Clostridium tryobutyricum in a continuous culture with cell recycle. Appl Microbiol Biotechnol 34:172ā€“177

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Minton NP, Brehm JK, Swinfield TJ, Whelan SW, Mauchline ML, Bodsworth N, Oultrum JD (1993) Clostridial cloning vectors. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 120ā€“150

    Google ScholarĀ 

  • Mishra P, Kaur S (1991) Lipids as modulators of ethanol tolerance in yeast. Appl Microbiol Biotechnol 34:697ā€“702

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Morris JG (1993) History and future potential of the clostridia in biotechnology. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 1ā€“23

    Google ScholarĀ 

  • Nair RV, Bennett GN, Papoutsakis ET (1994) Molecular characterization of an alcohol/aldehyde dehydrogenase gene of Clostridium acetobutylicum ATCC 824. J Bacteriol 176:871ā€“885

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Nakano MM, Dailly YP, Zuber P, Clark DP (1997) Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. J Bacteriol 179:6749ā€“6755

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Neale AD, Scopes RK, Kelly JM, Wettenhall REH (1986) The two alcohol dehyrogenases of Zymomonas mobilis: purification by differential dye ligand chromatography, molecular characterisation and physiological roles. Eur J Biochem 154:119ā€“124

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Neale AD, Scopes RK, Wettenhall REH, Hoogenraad NJ (1987) Nucleotide sequence of the pyruvate decarboxylase gene from Zymomonas mobilis. Nucleic Acids Res 15:1753ā€“1761

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Neale AD, Scopes RK, Kelly JM (1988) Alcohol production from glucose and xylose using Escherichia coli containing Zymomonas mobilis genes. Appl Microbiol Biotechnol 29:162ā€“167

    CASĀ  Google ScholarĀ 

  • Nishikawa M, Brancon RMR, Pinder KL, Strasdine GA (1970) Fermentation of spent sulfite liquor to produce acetic acid, propionic acid and vitamin B12. Pulp and Paper Magazine of Canada 71(3):T59ā€“T64

    CASĀ  Google ScholarĀ 

  • Nƶlling J, Breton G, Omelchenko MV, Markarova KS, Zeng Q, Gibson R, Lee HM, DuBois J, Qiu D, Hitti J, GTC Sequencing Center Production, Finishing, and Bioinformatics Teams, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823ā€“4838

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991a) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase I. Appl Environ Microbiol 57:893ā€“900

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991b) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810ā€“2815

    PubMedĀ  CASĀ  Google ScholarĀ 

  • O'Mullan PJ, Buchholz SE, Chase T Jr, Eveleigh DE (1995) Roles of alcohol dehydrogenases of Zymomonas mobilis (ZADH): characterization of a ZADH-2-negative mutant. Appl Microbiol Biotechnol 43:675ā€“678

    ArticleĀ  Google ScholarĀ 

  • Paik HD, Glatz BA (1994) Propionic acid production by immobilized cells of a propionate-tolerant strain of Propionibacterium acidipropionici. Appl Microbiol Biotechnol 42:22ā€“27

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Palosaari NR, Rogers P (1988) Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum. J Bacteriol 170:2971ā€“2976

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191ā€“208

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Papoutsakis ET, Bennett GN (1993) Cloning, structure, and expression of acid and solvent pathway genes of Clostridium acetobutylicum. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 157ā€“200

    Google ScholarĀ 

  • Papoutsakis ET, Bennett GN (1999) Molecular regulation and metabolic engineering of solvent production by Clostridium acetobutylicum. In: Papoutsakis ET, Lee SY (eds) Bioprocess technology, vol 24. Marcel Dekker, New York, pp 253ā€“279

    Google ScholarĀ 

  • Pasteur L (1861a) Animalcules infusoires vivant sans gaz oxygĆØne libre et dĆ©terminant des fermentations. Comp Rend 52:344ā€“347

    Google ScholarĀ 

  • Pasteur L (1861b) MĆ©moire sur les corpuscles organisĆ©s qui Ć©xistent dans lā€™atmosphere: Esamen de la doctrine des gĆ©nĆ©rations spontanĆ©es. Ann Sci Nat 16:5ā€“98, 4th series

    Google ScholarĀ 

  • Pasteur L (1879) Studies on fermentation. Macmillan, London

    Google ScholarĀ 

  • Peretz M, Bogin O, Tel-Or S, Cohen A, Li G, Chen J-S, Burstein Y (1997) Molecular cloning, nucleotide sequencing, and expression of genes encoding alcohol dehydrogenase from the thermophile Thermoanaerobacter brockii and the mesophile Clostridium beijerinckii. Anaerobe 3:259ā€“270

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Perozich J, Nicholas H, Wang BC, Lindahl R, Hempel J (1999) Relationships within the aldehyde dehydrogenase extended family. Protein Sci 8:137ā€“146

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Petitdemange H, Cherrier C, Raval G, Gay R (1976) Regulation of NADH and NADPH ferredoxin oxidoreductases in clostridia of the butyric group. Biochem Biophys Acta 421:334ā€“347

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Philips JR, Clausen EC, Gaddy JL (1994) Synthesis gas as substrate for the biological production of fuels and chemicals. Appl Biochem Biotechnol 45ā€“46:145ā€“157

    ArticleĀ  Google ScholarĀ 

  • Piveteau P (1999) Metabolism of lactate and sugars by dairy propionibacteria: a review. Lait 79:23ā€“41

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Playne MJ (1985) Propionic acid and butyric acid. In: Moo-Young M (ed) Comprehensive biotechnology. Pergamon, New York, pp 731ā€“755

    Google ScholarĀ 

  • Prescott SC, Dunn CG (1949) Industrial microbiology, 2nd edn. McGraw-Hill, New York, pp 477ā€“486

    Google ScholarĀ 

  • Quesada-Chanto A, Afschar AS, Wagner F (1994a) Microbial production of propionic acid and vitamin B-12 using molasses or sugar. Appl Microbiol Biotechnol 41:378ā€“383

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Quesada-Chanto A, Afschar AS, Wagner F (1994b) Optimization of a Propionibacterium acidipropionici continuous culture utilization of sucrose. Appl Microbiol Biotechnol 42:16ā€“21

    ArticleĀ  Google ScholarĀ 

  • Quesada-Chanto A, da Costa JPCL, Silveira MM, Schroeder AG, Schmidt-Meyer AC, Jona R (1998a) Influence of different vitamin-nitrogen sources on cell growth and propionic acid production from sucrose by Propionibacterium shermanii. Acta Biotechnologia 18:267ā€“274

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Quesada-Chanto A, Silveira MM, Schmidt-Meyer AC, Schroeder AG, da Costa JPCL, Lopez J, Carvalho-Jonas MF, Artolozaga MJ, Jona R (1998b) Effect of oxygen supply on pattern of growth and corrinoid and organic acid production of Propionibacterium shermanii. Appl Microbiol Biotechnol 49:732ā€“736

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ragsdale SW, Riordan CG (1996) The role of nickel in acetyl-CoA synthesis by the bifunctional enzyme CO dehydrogenase/acetyl-CoA synthase: enzymology and model chemistry. J Biol Inorg Chem 1:489ā€“493

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rani KS, Seenayya G (1999) High ethanol tolerance of new isolates of Clostridium thermocellum strains SS21 and SS22. World J Microbiol Biotechnol 15:173ā€“178

    ArticleĀ  Google ScholarĀ 

  • Reed G (1982) Production of fermentation alcohol as a fuel source. In: Reed G (ed) Prescott & Dunnā€™s industrial microbiology, 4th edn. AVI Publishing, Westport, pp 835ā€“859

    Google ScholarĀ 

  • Rehberger JL, Glatz BA (1998) Response of cultures of Propionibacterium to acid and low pH tolerance and inhibition. J Food Protect 61:211ā€“216

    CASĀ  Google ScholarĀ 

  • Reid MF, Fewson CA (1994) Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20:13ā€“56

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Reynen M, Sahm H (1988) Comparison of the structural genes for pyruvate decarboxylase in different Zymomonas mobilis strains. J Bacteriol 170:3310ā€“3313

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Reysset G, Sebald M (1993) Transformation/electrotransformation of clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 151ā€“158

    Google ScholarĀ 

  • Rickert DA, Glatz CE, Glatz BA (1998) Improved organic acid production by calcium alginate-immobilized propionibacteria. Enzyme Microb Technol 22:409ā€“414

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rogers P (1999) Clostridia: solvent formation. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation, vol 2. Wiley, New York, pp 670ā€“687

    Google ScholarĀ 

  • Rogers P, Gottschalk G (1993) Biochemistry and regulation of acid and solvent production in clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, Stoneham, pp 25ā€“50

    Google ScholarĀ 

  • Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. Adv Biochem Eng 23:37ā€“84

    Google ScholarĀ 

  • Rogers PL, Lee KJ, Smith GM, Barrow KD (1989) Ethanol tolerance of Zymomonas mobilis. In: van Uden N (ed) Alcohol toxicity in yeasts and bacteria. CRC Press, Boca Raton, pp 239ā€“256

    Google ScholarĀ 

  • Rudolph FB, Purich DL, Fromm HJ (1968) Coenzyme A-linked aldehyde dehydrogenase from Escherichia coli. I: partial purification, properties, and kinetic studies of the enzyme. J Biol Chem 243:5539ā€“5545

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P (2001) Regulation of carbon and electron flow in Clostridium butyricum VP 13266 g grown on glucose-glycerol mixtures. Bacteriol 183:1748ā€“1754

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sauer ET (1991) Carboxylic acids (economic aspects). In: Encyclopedia of chemical technology, vol 5, 4th edn. Wiley, New York, pp 179ā€“187

    Google ScholarĀ 

  • Sauer U, Santangelo JD, Trever A, Bucholz M, DĆ¼rre P (1995) Sigma factor and sporulation genes in Clostridium. FEMS Microbiol Rev 17:331ā€“340

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Scopes RK (1983) An iron-activated alcohol dehydrogenase. FEBS Lett 156:303ā€“306

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sheehan J (2000) The road to bioethanol: a strategic perspective of the U.S. Department of Energyā€™s national ethanol program. In: HM E, Baker JO, Saddler JN (eds) Glycosyl hydrolases for biomass conversion, vol 769. American Chemical Society, Washington, DC, pp 2ā€“25, ACS Symposium Series

    ChapterĀ  Google ScholarĀ 

  • Shen GJ, Annons BA, Lovitt RW, Jain MK, Zeikus JG (1996) Biochemical route and control if butyrate synthesis in Butyribacterium methylotropicum. Appl Microbiol Biotechnol 45:355ā€“362

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sherman JM, Shaw RH (1923) Process for the production of propionates and propionic acid. US Patent 1,470,885 Chem Abstr 18:146

    Google ScholarĀ 

  • Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7:275ā€“281

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Shone CC, Fromm HJ (1981) Steady-state and pre-steady-state kinetics of coenzyme A linked aldehyde dehydrogenase from Escherichia coli. Biochemistry 20:7494ā€“7501

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Silveira MM, Wisbeck E, Hoch I, Jonas R (2001) Production of glucose-fructose oxidoreductase and ethanol by Zymomonas mobilis ATCC 29191 in medium containing corn steep liquor as a source of vitamins. Appl Microbiol Biotechnol 55:442ā€“445

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sinskey AJ, Akedo M, Cooney CL (1981) Acrylate fermentations. In: Hollaender A (ed) Trends in the biology of fermentations. Plenum Press, New York, pp 473ā€“492

    ChapterĀ  Google ScholarĀ 

  • Slapack GE, Russell I, Stewart GG (1987) Thermophilic microbes in ethanol production. CRC Press, Boca Raton

    Google ScholarĀ 

  • SociĆ©tĆ© Lefranc et Cie. (1925) An improved process for the manufacture of dipropylketone. British Patent 216ā€“120. Chem Abstr 19:77

    Google ScholarĀ 

  • Solichien MS, O'Brien D, Hammond EG, Glatz CE (1995) Membrane-based extractive fermentation to produce propionic and acetic acids: toxicity and mass transfer considerations. Enzyme Microb Technol 17:23ā€“31

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Strecker A (1854) Ɯber eine eigentĆ¼mliche Bildungsweise der PropionsaĆ¼re und einige Salze derselben. Ann Chem 92:80

    ArticleĀ  Google ScholarĀ 

  • Swick RW, Wood HG (1960) The role of transcarboxylation in propionic acid fermentation. Proc Natl Acad Sci USA 46:28ā€“41

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Swings J, De Ley J (1977) The biology of Zymomonas. Bacteriol Rev 41:1ā€“46

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Swings J, De Ley J (1984) Genus Zymomonas. In: Krieg NR, Holt JG (eds) [{http://www.cme.msu.edu/bergeys} Bergeyā€™s Manual of Systematic Bacteriology]. Williams and Wilkins, Baltimore 1:576ā€“580

  • Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43:232ā€“236

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Thauer RK, Jungerman K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100ā€“180

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Thayer A (2000) Challenges of a biobased economy. C & EN 29:40

    Google ScholarĀ 

  • Thomas SR, Adney WS, Baker JO, Chou Y-C, Himmel ME (1997) US Patent 5,712,142

    Google ScholarĀ 

  • Tolan JS, Finn RK (1987) Fermentation of d-xylose and l-arabinose to ethanol by Erwinia chrysanthemi. Appl Environ Microbiol 53:2033ā€“2044

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Toth J, Ismaiel AA, Chen J-S (1999) Purification of a coenzyme A-acylating aldehyde dehydrogenase and cloning of the structural gene from Clostridium beijerinckii NRRL B593. Appl Environ Microbiol 65:4973ā€“4980

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Uchida K (1974) Lipids of alcoholophilic lactobacilli. II: occurrence of polar lipids with unusually long acyl chains in Lactobacillus heterochiochii. Biochim Biophys Acta 369:146ā€“155

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Uchida K (1975a) Alteration of the unsaturated to saturated ratio of fatty acids in bacterial lipids by alcohols. Agric Biol Chem 39:1515ā€“1516

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Uchida K (1975b) Effects of cultural conditions on the cellular fatty acid composition of Lactobacillus heterohiochii, an alcoholophilic bacterium. Agric Biol Chem 39:837ā€“842

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Van Andel JG, Zoutberg GR, Crabbendam PM, Breure AM (1985) Glucose fermentation by Clostridium butyricum grown under a self-generated gas atmosphere in chemostat culture. Appl Microbiol Biotechnol 23:21ā€“26

    ArticleĀ  Google ScholarĀ 

  • Van Niel CB (1928) The propionic acid bacteria (thesis) Laboratorium voor Microbiologie der Techische Hoogeschool Delft, N.V. Uitgeversaak, J. W. Boissevain & Co Haarlem, The Netherlands

    Google ScholarĀ 

  • Vandak D, Telgarsky M, Sturkik E (1995a) Influence of growth factor components on butyrate production form sucrose by Clostridium butyricum. Folia Microbiol 40:32ā€“42

    ArticleĀ  Google ScholarĀ 

  • Vandak D, Zigova TM, Sturdik E (1995b) Effect of growth supplements and whey pretreatment on butyric acid production by Clostridium butyricum. World J Microbiol Biotechnol 11:363

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Vandak D, Zigova J, Sturdik E, Schlosser S (1997) Evaluation of solvent and pH for extractive fermentation of butyric acid. Process Biochem 32:245ā€“251

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Varadarajan S, Miller DJ (1999) Catalytic upgrading of fermentation-derived organic acids. Biotechnol Prog 15:845ā€“854

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Vega JL, Prieto S, Elmore BB, Clausen EC, Gaddy JL (1989) The biological production of ethanol from synthesis gas. Appl Biochem Biotechnol 20/21:781ā€“797

    ArticleĀ  Google ScholarĀ 

  • Vollbrecht D, El Nawawy MA (1980) Restricted oxygen supply and excretion of metabolites. Euro J Appl Microbiol Biotechnol 9:1ā€“8

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Von Freudenreich E, Jensen O (1906) Ɯber die im Emmentaler KƤse stattfindende PropionsauregƤrung Zentralblatt fĆ¼r Bacteriologie. Parasiten Kunde Infectious Krankheiten und Hygiene Abt II 17:529ā€“546

    Google ScholarĀ 

  • Wayman M, Martin ME, Graf G (1962) Propionic acid fermentation. US Patent 3,067,107. Chem Abstr 58:7337

    Google ScholarĀ 

  • Weber GH, Broich WA (1986) Shelf life extension of cultured dairy foods. Cult Dairy Prod J 21(4):19ā€“23

    Google ScholarĀ 

  • Weiss N, Schillinger U, Kandler O (1983) Lactobacillus trichodes and Lactobacillus heterochiochii, subjective synonym of Lactobacillus fructivorans. Syst Appl Microbiol 4:507ā€“511

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wiegel J (1980) Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experientia 36:1434ā€“1446

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wiegel J (1992) The obligately anaerobic thermophilic bacteria. In: Kristjansson JK (ed) Thermophilic bacteria. CRC Press, Boca Raton, pp 105ā€“184

    Google ScholarĀ 

  • Wiegel J, Ljungdahl LG (1986) The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol 3:39ā€“108

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wilkinson SR, Young DI, Morris JG, Young M (1995) Molecular genetics and the initiation of solventogenesis in Clostridium beijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052. FEMS Microbiol Rev 17:275ā€“285

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wills C, Kratofil P, Londo D, Martin T (1981) Characterization of the two alcohol dehydrogenases of Zymomonas mobilis. Arch Biochem Biophys 210:775ā€“785

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Winston SJ, Solar Energy Information Data Bank (1981) Ethanol fuels: use, production & economics, 1st edn. US Government Printing Office, Golden

    Google ScholarĀ 

  • Wood BE, Ingram LO (1992) Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl Environ Microbiol 58:2103ā€“2110

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Worden RM, Grethlein AJ, Zeikus JG, Datta R (1989) Butyrate production from carbon monoxide by Butyribacterium methylotrophicum. App Biochem Biotechnol 20/21:687ā€“698

    ArticleĀ  Google ScholarĀ 

  • Worden RM, Grethlein AJ, Jain MK, Datta R (1991) Production of butanol and ethanol from synthesis gas via fermentation. Fuel 70:615ā€“619

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Worden RM, Bredwell MD, Grethlein AJ (1997) Engineering issues in synthesis-gas fermentations. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass, vol 666. American Chemical Society, Washington, DC, pp 320ā€“335, ACS Symposium Series

    ChapterĀ  Google ScholarĀ 

  • Woskow SA, Glatz BA (1991) Propionic acid production by a propionic acid tolerant strain of Propionibacterium acidipropionici in batch and semicontinuous fermentation. Appl Environ Microbiol 57:2821ā€“2828

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresource Technol 50:3ā€“16

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wyman CE (ed) (1996) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, DC

    Google ScholarĀ 

  • Wyman CE (2001) Twenty years of trials, tribulations and research progress in bioethanol technology. Appl Biochem Biotechnol 91ā€“93:5ā€“21

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Xue Y, Xu Y, Liu Y, Ma Y, Zhou P (2001) Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tongcong, China. Int J Syst Evol Microbiol 51:1335ā€“1341

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Yan R-T, Chen J-S (1990) Coenzyme A-acylating adlehyde dehydrogenase from Clostridium beijerinckii NRRL B592. Appl Environ Microbiol 56:2591ā€“2599

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Yang ST, Zhu H, Li Y, Hong G (1994) Continuous propionate production from whey permeate using a novel fibrous bed bioreactor. Biotechnol Bioeng 43:1124ā€“1130

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20:132ā€“138

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yoon K-H, Pack MY (1990) Nucleotide sequence of the Zymomonas mobilis alcohol dehydrogenase II gene. Nucleic Acids Res 18:187

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Young M (1993) Development and exploitation of conjugative gene transfer in clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 99ā€“118

    Google ScholarĀ 

  • Zakpaa HD, Ishizaki A, Shimizu K (1997) Computer-mediated addition of fresh medium in continuous culture of Zymomonas mobilis by monitoring weight changes. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass, vol 666. American Chemical Society, Washington, DC, pp 143ā€“154, ACS Symposium Series

    ChapterĀ  Google ScholarĀ 

  • Zanin GM, Santana CC, Bon EPS, Giordano RCL, de Moraes FF, Andrietta SR, de Carvalho Neto CC, Macedo IC, Fo DL, Ramos LP, Fontana JD (2000) Brazilian bioethanol program. Appl Biochem Biotechnol 84ā€“86:1147ā€“1161

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240ā€“243

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zigova J, Sturdik E (2000) Advances in biotechnological production of butyric acid. J Ind Microb Biotechnol 24:153ā€“160

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zigova J, Sturdik E, Vandak D, Schlosser S (1999) Butyric acid production by Clostridium butyricum with integrated extraction and pertraction. Process Biochem 34:835ā€“843

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Zidwick, M.J., Chen, JS., Rogersāˆ—, P. (2013). Organic Acid and Solvent Production: Propionic and Butyric Acids and Ethanol. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31331-8_385

Download citation

Publish with us

Policies and ethics