Skip to main content

The Family Sphingomonadaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Besides the Erythrobacteraceae, the family Sphingomonadaceae represents the order Sphingomonadales, which currently includes the genera Sphingomonas, Sandaracinobacter, Blastomonas, Novosphingobium, Sphingobium, Sphingopyxis, Sandarakinorhabdus, Sphingosinicella, Stakelama, Sphingomicrobium, Sphingorhabdus, Parasphingopyxis, and Zymomonas. The genus Sphingomonas is the type genus. The family was proposed based on the 16S rRNA gene sequence phylogeny and the presence of 2′hydroxymyristol dihydrosphingosine 1-glucuronic acid (SGL-1) as major sphingoglycolipid in the cellular lipids (Kosako et al. 2000). Originally the family embraced six genera, Sphingomonas, Erythrobacter, Erythromicrobium, Prophyrobacter, Zymomonas, and Sandaracinobacter. Because the genera Erythrobacter, Erythromicrobium, and Prophyrobacter formed a distinct monophyletic 16S rRNA gene sequence cluster, they were transferred to the family Erythrobacteraceae, supported by differences in the sphingoglycolipid composition. The genera Blastomonas (Sly and Cahill 1997) and Erythromonas (Yurkov et al. 1997) were first transferred to the genus Sphingomonas, then both to the genus Blastomonas. The type genus Sphingomonas was dissected into four genera based on clustering in the 16S rRNA gene sequence phylogeny and differences in the major polyamine and the 2-hydroxy fatty acid patterns; the genus Sphingomonassensu stricto and the three new genera Novosphingobium, Sphingobium, and Sphingopyxis. The genus Sphingopyxis was further dissected by the proposal of the genus Parasphingopyxis.

Members of the family are defined by the presence of SGL-1 in their cellular lipids, ubiquinone-Q10 as the major respiratory quinone system, and the octadecenoic fatty acid (C18:1) as the major fatty acid in total extractable lipids. The presence of 2-OH fatty acids of different chain length (C14 to C16) and the absence of 3-OH fatty acids are characteristic. Either sym-homospermidine or spermidine are the predominant polyamines. Most of the Sphingomonadaceae are chemoorganotrophic. The genera Blastomonas, Sandaracinobacter,and Sandarakinorhabdus are facultative photoheterotrophic due to the bacteriochlorophyll a (BChl a) content. One species of the genus Sphingomonas, Sphingomonas kaistensis, also contains BChl a. Sphingomonadaceae are commonly isolated from soils, freshwater and marine habitats, activated sludge, or the plant phyllosphere or rhizosphere. Only a few Sphingomonadaceae are known to cause human infections (Sphingomonas paucimobilis) or to be plant pathogens (S. suberifaciens); some are antagonistic against plant pathogens and induce plant growth promotion. Several species can degrade xenobiotic and recalcitrant (poly)aromatic compounds of natural or anthropogenic origin. Sphingomonads are very interesting with respect to their applications for bioremediation. Sphingomonas species can produce exopolysaccharides (sphingans), which are gelling agents that are used for food, pharmaceutical, or industrial applications. The genus Zymomonas differs from other members of the Sphingomonadaceae because of its fermentative, obligate, or facultative anaerobic metabolism. Zymomonas, which can produce biofuels, is used in natural fermentation processes of cider or plan fruits but is also the causative agent of the secondary fermentation products in biotechnological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WR, Estrela AB, Rohde M, Smit J, Vancanneyt M (2013) Prosthecate Sphingomonads: Proposal of Sphingomonas canadensis sp. nov. Int J Syst Evol Microbiol [Epub ahead of print]

    Google Scholar 

  • Addison SL, Foote SM, Reid NM, Lloyd-Jones G (2007) Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. Int J Syst Evol Microbiol 57:2467–2471

    Article  CAS  PubMed  Google Scholar 

  • Adhikari TB, Joseph CM, Yang G, Phillips DA, Nelson LM (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol 47:916–924

    Article  CAS  PubMed  Google Scholar 

  • Allgaier M, Grossart H-P (2006) Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat Microb Ecol 45:115–128

    Article  Google Scholar 

  • Alvarez A, Benimeli CS, Saez JM, Fuentes MS, Cuozzo SA, Polti MA, Amoroso MJ (2012) Bacterial bio-resources for remediation of hexachlorocyclohexane. Int J Mol Sci 13:15086–15106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ammendolia MG, Bertuccini L, Minelli F, Meschini S, Baldassarri L (2004) A Sphingomonas bacterium interacting with epithelial cells. Res Microbiol 155:636–646

    Article  CAS  PubMed  Google Scholar 

  • An DS, Liu QM, Lee HG, Jung MS, Kim SC, Lee ST, Im WT (2013) Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov. Int J Syst Evol Microbiol 63:496–501

    Article  CAS  PubMed  Google Scholar 

  • An H, Xu M, Dai J, Wang Y, Cai F, Qi H, Peng F, Fang C (2011) Sphingomonas xinjiangensis sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 61:1865–1869

    Article  CAS  PubMed  Google Scholar 

  • Anand S, Sangwan N, Lata P, Kaur J, Dua A, Singh AK, Verma M, Kaur J, Khurana JP, Khurana P, Mathur S, Lal R (2012) Genome sequence of Sphingobium indicum B90A, a hexachlorocyclohexane-degrading bacterium. J Bacteriol 194:4471–4472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson GR (1955) Nitrogen fixation by Pseudomonas-like soil bacteria. J Bacteriol 70:129–133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Angelakis E, Roux V, Raoult D (2009) Sphingomonas mucosissima bacteremia in patient with sickle cell disease. Emerg Infect Dis 15:133–134

    Article  PubMed Central  PubMed  Google Scholar 

  • Asker D, Beppu T, Ueda K (2007a) Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol 57:1435–1441

    Article  CAS  PubMed  Google Scholar 

  • Asker D, Beppu T, Ueda K (2007b) Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol Lett 273:140–148

    Article  CAS  PubMed  Google Scholar 

  • Asker D, Amano S, Morita K, Tamura K, Sakuda S, Kikuchi N, Furihata K, Matsufuji H, Beppu T, Ueda K (2009) Astaxanthin dirhamnoside, a new astaxanthin derivative produced by a radio-tolerant bacterium, Sphingomonas astaxanthinifaciens. J Antibiot (Tokyo) 62:397–399

    Article  CAS  Google Scholar 

  • Baek SH, Lim JH, Lee ST (2010) Sphingobium vulgare sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 60:2473–2477

    Article  CAS  PubMed  Google Scholar 

  • Baek SH, Lim JH, Jin L, Lee HG, Lee ST (2011) Novosphingobium sediminicola sp. nov. isolated from freshwater sediment. Int J Syst Evol Microbiol 61:2464–2468

    Article  CAS  PubMed  Google Scholar 

  • Baik KS, Choe HN, Park SC, Hwang YM, Kim EM, Park C, Seong CN (2013) Sphingopyxis rigui sp. nov. and Sphingopyxis wooponensis sp. nov., isolated from wetland freshwater, and emended description of the genus Sphingopyxis. Int J Syst Evol Microbiol 63:1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Bala K, Sharma P, Lal R (2010) Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil. Int J Syst Evol Microbiol 60:429–433

    Article  CAS  PubMed  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: re-evaluation of a unique biological group. Microbiol Rev 43:260–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balkwill DL, Ghiorse WC (1985) Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl Environ Microbiol 50:580–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balkwill DL, Drake GR, Reeves RH, Fredrickson JK, White DC, Ringelberg DB, Chandler DP, Romine MF, Kennedy DW, Spadoni CW (1997) Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranean sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47:191–201

    Article  CAS  PubMed  Google Scholar 

  • Bartscht K, Cypionka H, Overmann J (1999) Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol Ecol 28:249–259

    Article  CAS  Google Scholar 

  • Basta T, Keck A, Klein J, Stolz A (2004) Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains. J Bacteriol 186:3862–3872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basta T, Buerger S, Stolz A (2005) Structural and replicative diversity of large plasmids from sphingomonads that degrade polycyclic aromatic compounds and xenobiotics. Microbiology 151:2025–2037

    Article  CAS  PubMed  Google Scholar 

  • Bending GD, Lincoln SD, Sørensen SR, Morgan JA, Aamand J, Walker A (2003) In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interaction between degradative Sphingomonas spp. and soil pH. Appl Environ Microbiol 69:827–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Böltner D, Moreno-Morillas S, Ramos JL (2005) 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 7:1329–1338

    Article  PubMed  Google Scholar 

  • Bramucci M, Singh M, Nagarajan V (2002) Biotransformation of p-xylene and 2,6-dimethylnaphthalene by xylene monooxygenase cloned from a Sphingomonas isolate. Appl Microbiol Biotechnol 59:679–684

    Article  CAS  PubMed  Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75:4801–4805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:3978–3987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruns A, Hoffelner H, Overmann J (2003) A novel approach for high throughput cultivation assays and the isolation of planktonic bacteria. FEMS Microbiol Ecol 45:161–171

    Article  CAS  PubMed  Google Scholar 

  • Buchholz SE, Dooley MM, Eveleigh DE (1987) Zymomonas – an alcoholic enigma. Trends Biotechnol 5:199–204

    Article  CAS  Google Scholar 

  • Buchholz SE, O’Mullan P, Eveleigh DE (1988) Growth of Zymomonas mobilis CP4 on mannitol. Appl Microbiol Biotechnol 29:275–281

    CAS  Google Scholar 

  • Buell CR (2002) Interactions between Xanthomonas species and Arabidopsis thaliana. Arabidopsis Book 1:e0031

    Article  PubMed Central  PubMed  Google Scholar 

  • Bünz PV, Schmidt S (1997) The microbial degradation of halogenated diaryl ethers. Biotechnol Adv 15:621–632

    Article  PubMed  Google Scholar 

  • Buonaurio R, Stravato VM, Kosako Y, Fujiwara N, Naka T, Kobayashi K, Cappelli C, Yabuuchi E (2002) Sphingomonas melonis sp. nov., a novel pathogen that causes brown spots on yellow Spanish melon fruits. Int J Syst Evol Microbiol 52:2081–2087

    CAS  PubMed  Google Scholar 

  • Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S (2011) Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J 5:590–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burkert U, Warnecke F, Babenzien D, Zwirnmann E, Pernthaler J (2003) Members of a readily enriched betaproteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol 69:6550–6559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Busse HJ, Kämpfer P, Denner EB (1999) Chemotaxonomic characterisation of Sphingomonas. Int J Microbiol Biotechnol 23:242–251

    Article  CAS  Google Scholar 

  • Busse HJ, Kainz A, Tsitko IV, Salkinoja-Salonen M (2000) Riboprints as a tool for rapid preliminary identification of sphingomonads. Syst Appl Microbiol 23:115–123

    Article  CAS  PubMed  Google Scholar 

  • Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A, Kämpfer P (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53:1253–12560

    Article  CAS  PubMed  Google Scholar 

  • Busse HJ, Hauser E, Kämpfer P (2005) Description of two novel species Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 55:2565–2569

    Article  CAS  PubMed  Google Scholar 

  • Button DK (1993) Nutrient-limited microbial growth kinetics: overview and recent advances. Antonie Van Leeuwenhoek 63:225–235

    Article  CAS  PubMed  Google Scholar 

  • Cai M, Xun L (2002) Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184:4672–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT, Zablotowicz RB (1999) Chlorophenol and nitrophenol metabolism by Sphingomonas sp. UG30. J Ind Microbiol Biotechnol 23:232–241

    Article  CAS  PubMed  Google Scholar 

  • Chadhain SM, Moritz EM, Kim E, Zylstra GJ (2007) Identification, cloning, and characterization of a multicomponent biphenyl dioxygenase from Sphingobium yanoikuyae B1. J Ind Microbiol Biotechnol 34:605–613

    Article  CAS  PubMed  Google Scholar 

  • Chanama M, Chanama S (2011) Expression of pentachlorophenol-degradative genes of Sphingobium chlorophenolica ATCC 39723 in Escherichia coli. Asia J Public Health 2:78–83

    Google Scholar 

  • Chen C, Zheng Q, Wang YN, Yan XJ, Hao LK, Du X, Jiao N (2010) Stakelama pacifica gen. nov., sp. nov., a new member of the family Sphingomonadaceae isolated from the Pacific Ocean. Int J Syst Evol Microbiol 60:2857–2861

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ, Tindall BJ, Spröer C, Overmann J (2012a) Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 62:2835–2843

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Jogler M, Tindall BJ, Klenk HP, Rohde M, Busse HJ, Overmann J (2012b) Sphingomonas starnbergensis sp. nov., isolated from a prealpine freshwater lake. Int J Syst Evol Microbiol 63:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ, Tindall BJ, Spröer C, Overmann J (2013) Sphingobium limneticum sp. nov. and Sphingobium boeckii sp. nov., two freshwater planktonic members of the family Sphingomonadaceae, and reclassification of Sphingomonas suberifaciens as Sphingobium suberifaciens comb. nov. Int J Syst Evol Microbiol 63:735–743

    Article  CAS  PubMed  Google Scholar 

  • Choi TE, Liu QM, Yang JE, Sun S, Kim SY, Yi TH, Im WT (2010a) Sphingomonas ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 48:760–766

    Article  PubMed  Google Scholar 

  • Choi JH, Kim MS, Jung MJ, Roh SW, Shin KS, Bae JW (2010b) Sphingopyxis soli sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol 60:1682–1686

    Article  CAS  PubMed  Google Scholar 

  • Chung EJ, Jo EJ, Yoon HS, Song GC, Jeon CO, Chung YR (2011) Sphingomonas oryziterrae sp. nov. and Sphingomonas jinjuensis sp. nov. isolated from rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Microbiol 61:2389–2394

    Article  PubMed  Google Scholar 

  • Coleman RJ, Patel YN, Harding NE (2008) Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. J Ind Microbiol Biotechnol 35:263–274

    Article  CAS  PubMed  Google Scholar 

  • Conway T (1992) The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 9:1–27

    Article  CAS  PubMed  Google Scholar 

  • Conway T, Byun MO, Ingram LO (1987) Expression vector for Zymomonas mobilis. Appl Environ Microbiol 53:235–241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Copley SD, Rokicki J, Turner P, Daligault H, Nolan M, Land M (2012) The whole genome sequence of Sphingobium chlorophenolicum L-1: insights into the evolution of the pentachlorophenol degradation pathway. Genome Biol Evol 4:184–198

    Article  PubMed Central  PubMed  Google Scholar 

  • Coton E, Coton M (2003) Microbiological origin of ‘framboisé’ in French ciders. J Inst Brew 109:299–304

    Article  CAS  Google Scholar 

  • Coton M, Laplace JM, Auffray Y, Coton E (2006) Polyphasic study of Zymomonas mobilis strains revealing the existence of a novel subspecies Z. mobilis subsp. francensis subsp. nov., isolated from French cider. Int J Syst Evol Microbiol 56:121–125

    Article  CAS  PubMed  Google Scholar 

  • Dadds MJS, Martin PA, Carr JG (1973) The doubtful status of the species Zymomonas anaerobia and Z. mobilis. J Appl Bacteriol 36:531–539

    Article  Google Scholar 

  • Dadhwal M, Jit S, Kumari H, Lal R (2009) Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 59:3140–3144

    Article  CAS  PubMed  Google Scholar 

  • Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62:4465–4470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delaporte B, Daste P (1956) Une bacte´rie du sol capable de de´composer la fraction fixe de certaines ole´ore´sines Flavobacterium resinovorum n. sp. C R Acad Sci 242:831–834 (in French)

    Google Scholar 

  • De Ley J, Swings J (1976) Phenotypic description, numerical analysis, and proposal for an improved taxonomy and nomenclature of the genus Zymomonas Kluyver and van Niel 1936. Int J Syst Bacteriol 26:146–157

    Article  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Desiniotis A, Kouvelis VN, Davenport K, Bruce D, Detter C, Tapia R, Han C, Goodwin LA, Woyke T, Kyrpides NC, Typas MA, Pappas KM (2012) Complete genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis centrotype ATCC 29191. J Bacteriol 194:5966–5967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dutta TK, Selifonov SA, Gunsalus IC (1998) Oxidation of methylsubstituted naphthalenes: pathways in a versatile Sphingomonas paucimobilis strain. Appl Environ Microbiol 64:1884–1889

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eigemann F, Hilt S, Salka I, Grossart H-P (2013) Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community. FEMS Microbiol Ecol 83:650–663

    Article  CAS  PubMed  Google Scholar 

  • Endo R, Kamakura M, Miyauchi K, Fukuda M, Ohtsubo Y, Tsuda M, Nagata Y (2005) Identification and characterization of genes involved in the downstream degradation pathway of γ-hexachlorocyclohexane in Sphingomonas paucimobilis UT26. J Bacteriol 187:847–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141

    Article  CAS  PubMed  Google Scholar 

  • Enya J, Shinohara H, Yoshida S, Tsukiboshi T, Negishi H, Suyama K, Tsushima S (2007) Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microb Ecol 53:524–536

    Article  CAS  PubMed  Google Scholar 

  • Falcao de Morais JO, Rios EM, Calazans GM, Lopes CE (1993) Zymomonas mobilis research in the Pernambuco Federal University. J Biotechnol 31:75–91

    Article  Google Scholar 

  • Fass RJ, Barnishan J (1980) In vitro susceptibility of nonfermentative gram-negative bacilli other than Pseudomonas aeruginosa to 32 antimicrobial agents. Rev Infect Dis 2:841–853

    Article  CAS  PubMed  Google Scholar 

  • Feldmann S, Sahm H, Sprenger GA (1992) Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Appl Microbiol Biotechnol 38:354–361

    CAS  Google Scholar 

  • Feng X, Ou L-T, Ogram A (1997a) Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. CF-06. Appl Environ Microbiol 63:1332–1337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng X, Ou L-T, Ogram A (1997b) Cloning and sequence analysis of a novel insertion element from plasmids harbored by the carbofurandegrading bacterium, Sphingomonas sp. CF-06. Plasmid 37:169–179

    Article  CAS  PubMed  Google Scholar 

  • Fialho AM, Moreira LM, Granja AT et al (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 79:889–900

    Article  CAS  PubMed  Google Scholar 

  • Fuchu G, Ohtsubo Y, Ito M, Miyazaki R, Ono A, Nagata Y, Tsuda M (2008) Insertion sequence-based cassette PCR: cultivation-independent isolation of gamma-hexachlorocyclohexane-degrading genes from soil DNA. Appl Microbiol Biotechnol 79:627–632

    Article  CAS  PubMed  Google Scholar 

  • Fuerst JA, Hawkins JA, Holmes A, Sly LI, Moore CJ, Stackebrandt E (1993) Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int J Syst Bacteriol 43:125–134

    Article  CAS  PubMed  Google Scholar 

  • Fujii K, Urano N, Ushio H, Satomi M, Kimura S (2001) Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. Int J Syst Evol Microbiol 51:603–610

    Article  CAS  PubMed  Google Scholar 

  • Fujii K, Satomi M, Morita N, Motomura T, Tanaka T, Kikuchi S (2003a) Novosphingobium tardaugens sp. nov., an oestradioldegrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. Int J Syst Evol Microbiol 53:47–52

    Article  CAS  PubMed  Google Scholar 

  • Fujii K, Yamamoto R, Tanaka T, Hirakawa T, Kikuchi S (2003b) Potential of biotreatment: Sphingomonas cloacae S-3T degrades nonylphenol in industrial wastewater. J Ind Microbiol Biotechnol 30:531–535

    Article  CAS  PubMed  Google Scholar 

  • Fulthorpe RR, McGowan C, Maltseva OV, Holben WE, Tiedje JM (1995) 2,4-dichlorophenoxyacetic acid-degrading bacteria contain mosaic of catabolic genes. Appl Environ Microbiol 61:3274–3281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Simon JR, Chakrabarty AM (1983) Common induction and regulation of biphenyl, xylene/toluene, and salicylate catabolism in Pseudomonas paucimobilis. J Bacteriol 154:1356–1362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Futamata H, Uchida T, Yoshida N, Yonemitsu Y, Hiraishi A (2004) Distribution of dibenzofuran-degrading bacteria in soils polluted with different levels of polychlorinated dioxins. Microbes Environ 19:172–177

    Article  Google Scholar 

  • Gabriel FL, Giger W, Guenther K, Kohler NDH-P (2005) Differential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram. Appl Environ Microbiol 71:1123–1129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gai Z, Wang X, Zhang X, Su F, Wang X, Tang H, Tai C, Tao F, Ma C, Xu P (2011) Genome sequence of Sphingomonas elodea ATCC 31461, a highly productive industrial strain of gellan gum. J Bacteriol 193:7015–7016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garg N, Bala K, Lal R (2012) Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 62:618–623

    Article  CAS  PubMed  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Order V Caulobacterales Henrici and Johnson 1935b. In: Garrity GM, Brenner DJ, Krieg NR, Staley JR (eds) Bergey’s manual of systematic bacteriology (The Proteobacteria), vol 2, 2nd edn. Springer, New York, pp 287–323

    Google Scholar 

  • Geueke B, Namoto K, Seebach D, Kohler HP (2005) A novel beta-peptidyl aminopeptidase (BapA) from strain 3-2W4 cleaves peptide bonds of synthetic beta-tri- and beta-dipeptides. J Bacteriol 187:5910–5917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geueke B, Busse H-J, Fleischmann T, Kämpfer P, Kohler H-P (2007) Description of Sphingosinicella xenopeptidilytica sp. nov., a beta-peptide-degrading species, and emended descriptions of the genus Sphingosinicella and the species Sphingosinicella microcystinivorans. Int J Syst Evol Microbiol 57:107–113

    Article  CAS  PubMed  Google Scholar 

  • Giavasis I, Harvey LM, McNeil B (2000) Gellan gum. Crit Rev Biotechnol 20:177–211

    Article  CAS  PubMed  Google Scholar 

  • Gich F, Overmann J (2006) Sandarakinorhabdus limnophila gen. nov., sp. nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. Int J Syst Evol Microbiol 56:847–854

    Article  CAS  PubMed  Google Scholar 

  • Gich F, Schubert K, Bruns A, Hoffelner H, Overmann J (2005) Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Appl Environ Microbiol 71:5908–5919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glaeser SP, Kämpfer P, Busse HJ, Langer S, Glaeser J (2009) Novosphingobium acidiphilum sp. nov., an acidophilic salt-sensitive bacterium isolated from the humic acid-rich Lake Grosse Fuchskuhle. Int J Syst Evol Microbiol 59:323–330

    Article  CAS  PubMed  Google Scholar 

  • Glaeser SP, Grossart HP, Glaeser J (2010) Singlet oxygen, a neglected but important environmental factor: short-term and long-term effects on bacterioplankton composition in a humic lake. Environ Microbiol 12:3124–3136

    Article  CAS  PubMed  Google Scholar 

  • Glaeser SP, Bolte K, Martin K, Busse HJ, Grossart HP, Kämpfer P, Glaeser J (2013) Novosphingobium fuchskuhlense sp. nov., isolated from the north-east basin of Lake Grosse Fuchskuhle. Int J Syst Evol Microbiol 63:586–592

    Article  CAS  PubMed  Google Scholar 

  • Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66:5053–5065

    Article  PubMed Central  PubMed  Google Scholar 

  • Godoy F, Zenteno P, Cerda F, Gonzalez B, Martine M (1999) Tolerance to trichlorophenols in microorganisms from a polluted and a pristine site of a river. Chemosphere 38:655–662

    Article  CAS  PubMed  Google Scholar 

  • Godoy F, Vancanneyt M, Martínez M, Steinbüchel A, Swings J, Rehm BH (2003) Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int J Syst Evol Microbiol 53:473–477

    Article  CAS  PubMed  Google Scholar 

  • Gogotov IN, Gorlenko VM (1995) Influence of cultivation conditions on the composition of chinones in purpel bacteria of freshwater erythrobacteria. Microbiology 64:654–656

    Google Scholar 

  • Guo P, Wang BZ, Hang BJ, Li L, Li SP, He J (2010) Sphingobium faniae sp. nov., a pyrethroid-degrading bacterium isolated from activated sludge treating wastewater from pyrethroid manufacture. Int J Syst Evol Microbiol 60:408–412

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Lal D, Lal R (2009) Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 59:156–161

    Article  CAS  PubMed  Google Scholar 

  • Habe H, Ashikawa Y, Saiki Y, Yoshida T, Nojiri H, Omori T (2002) Sphingomonas sp. strain KA1, carrying a carbazole dioxygenasegene homologue, degrades chlorinated dibenzo-p-dioxins in soil. FEMS Microbiol Lett 211:43–49

    Article  CAS  PubMed  Google Scholar 

  • Harding NE, Patel YN, Coleman RJ (2004) Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461. J Ind Microbiol Biotechnol 31:70–82

    Article  CAS  PubMed  Google Scholar 

  • Harms H, Wilkes H, Wittich R-M, Fortnagel P (1995) Metabolism of hydroxy dibenzofurans, methoxy benzofurans, acetoxy dibenzofurans, and nitro dibenzofurans by Sphingomonas sp. HH69. Appl Environ Microbiol 61:2499–2505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hebbar KP, Gueniot B, Heyraud A, Colin-Morel P, Heulin T, Balandreau J, Rinaudo M (1992) Characterization of exopolysaccharides produced by rhizobacteria. Appl Microbiol Biot 38:248–253

    Article  CAS  Google Scholar 

  • Hernáez MJ, Reineke W, Santero E (1999) Genetic analysis of biodegradation of tetralin by Sphingomonas strain. Appl Environ Microbiol 65:1806–1810

    PubMed Central  PubMed  Google Scholar 

  • Hill S, Postgate JR (1969) Failure of putative nitrogen-fixing bacteria to fix nitrogen. J Gen Microbiol 58:277–285

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A, Kuraishi H, Kawahara K (2000) Emendation of the description of Blastomonas natatoria (Sly 1985) Sly and Cahill 1997 as an aerobic photosynthetic bacterium and reclassification of Erythromonas ursincola Yurkov et al. 1997 as Blastomonas ursincola comb. nov. Int J Syst Evol Microbiol 50:1113–1118

    Article  CAS  PubMed  Google Scholar 

  • Ho L, Hoefel D, Saint CP, Newcombe G (2007) Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Res 41:4685–4695

    Article  CAS  PubMed  Google Scholar 

  • Ho L, Tang T, Hoefel D, Vigneswaran B (2012) Determination of rate constants and half-lives for the simultaneous biodegradation of several cyanobacterial metabolites in Australian source waters. Water Res 46:5735–5746

    Article  CAS  PubMed  Google Scholar 

  • Holmes B, Owen RJ, Evans A, Malnick H, Willcox WR (1977) Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int J Syst Bacteriol 27:133–146

    Article  Google Scholar 

  • Hong HB, Chang YS, Nam IH, Fortnagel P, Schmidt S (2002) Biotransformation of 2,7-dichloro- and 1,2,3,4-tetrachlorodibenzo-p-dioxin by Sphingomonas wittichii RW1. Appl Environ Microbiol 68:2584–2588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hotta Y, Sato H, Hosoda A, Tamura H (2012) MALDI-TOF MS analysis of ribosomal proteins coded in S10 and spc operons rapidly classified the Sphingomonadaceae as alkylphenol polyethoxylate-degrading bacteria from the environment. FEMS Microbiol Lett 33:23–29

    Article  CAS  Google Scholar 

  • Hsueh P-R, Teng L-J, Yang P-C, Chen Y-C, Pan H-J, Ho S-W, Luh K-T (1998) Nosocomial infections caused by Sphingomonas paucimobilis: clinical features and microbiological characteristics. Clin Infect Dis 26:676–681

    Article  CAS  PubMed  Google Scholar 

  • Huang HD, Wang W, Ma T et al (2009a) Sphingomonas sanxanigenens sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:719–723

    Article  CAS  PubMed  Google Scholar 

  • Huang HD, Wang W, Ma T et al (2009b) Analysis of molecular composition and properties of a novel biopolymer. Chem J Chinese Univ 30:324–327

    CAS  Google Scholar 

  • Huang HY, Li J, Zhao GZ, Zhu WY, Yang LL, Tang HY, Xu LH, Li WJ (2012) Sphingomonas endophytica sp. nov., isolated from Artemisia annua L. Int J Syst Evol Microbiol 62:1576–1580

    Article  CAS  PubMed  Google Scholar 

  • Huo YY, Xu XW, Liu SP, Cui HL, Li X, Wu M (2011) Sphingomonas rubra sp. nov., isolated from bioreactor wastewater. Int J Syst Evol Microbiol 61:1028–1032

    Article  CAS  PubMed  Google Scholar 

  • Hutalle-Schmelzer KML, Zwirnmann E, Kruger A, Grossart H-P (2010) Enrichment and cultivation of pelagic bacteria from a humic lake using phenol and humic matter additions. FEMS Microbiol Ecol 72:58–73

    Article  CAS  PubMed  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imai R, Nagata Y, Fukuda M, Takagi M, Yano K (1991) Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HCl molecules from γ-hexachlorocyclohexane. J Bacteriol 173:6811–6819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jansson P-E, Lindberg B, Sandford PA (1983) Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohyd Res 124:135–139

    Article  CAS  Google Scholar 

  • Jaspers E, Nauhaus K, Cypionka H, Overmann J (2001) Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol Ecol 36:153–164

    Article  CAS  PubMed  Google Scholar 

  • Jenkins CL, Andrewes AG, McQuade TJ, Starr MP (1979) The pigment of Pseudomonas paucimobilis is a carotenoid (Nostoxanthin), rather than a brominated aryl-polyene (xanthomonadin). Current Microbiol 3:1–4

    Article  CAS  Google Scholar 

  • Jeon YJ, Xun Z, Su P, Rogers PL (2012) Genome-wide transcriptomic analysis of a flocculent strain of Zymomonas mobilis. Appl Microbiol Biotechnol 93:2513–2518

    Article  CAS  PubMed  Google Scholar 

  • Jiao N, Sieracki ME, Zhang Y, Du H (2003) Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems. Chin Sci Bull 48:1064–1068 (in Chinese with English summary)

    Article  Google Scholar 

  • Jochimsen EM, Carmichael WW, An JS, 9 other authors (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338:873–878

    Google Scholar 

  • Jogler M, Siemens H, Chen H, Bunk B, Sikorski J, Overmann J (2011) Identification and targeted cultivation of abundant novel freshwater sphingomonads and analysis of their population substructure. Appl Environ Microbiol 77:7355–7364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jogler M, Chen H, Simon J, Rohde M, Busse HJ, Klenk HP, Tindall BJ, Overmann J (2013) Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov. Int J Syst Evol Microbiol 63:1342–1349

    Article  PubMed  Google Scholar 

  • Johnson DR, Coronado E, Moreno-Forero SK, Heipieper HJ, van der Meer JR (2011) Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii. BMC Microbiol 11:250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamoda S, Terada T, Saburi Y (2003) A common structure shared by lignostilbene dioxygenase isoenzymes from Sphingomonas paucimobilis TMY1009. Biosci Biotech Biochem 67:1394–1396

    Article  CAS  Google Scholar 

  • Kämpfer P, Denner EB, Meyer S, Moore ER, Busse HJ (1997) Classification of “Pseudomonas azotocolligans” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 47:577–583

    Article  PubMed  Google Scholar 

  • Kämpfer P, Witzenberger R, Denner EB, Busse HJ, Neef A (2002a) Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond. Syst Appl Microbiol 25:37–45

    Article  PubMed  Google Scholar 

  • Kämpfer P, Witzenberger R, Denner EB, Busse H-J, Neef A (2002b) Sphingopyxis witflariensis sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 52:2029–2034

    PubMed  Google Scholar 

  • Kämpfer P, Meurer U, Esser M, Hirsch T, Busse HJ (2007) Sphingomonas pseudosanguinis sp. nov., isolated from the water reservoir of an air humidifier. Int J Syst Evol Microbiol 57:1342–1345

    Article  PubMed  CAS  Google Scholar 

  • Kämpfer P, Arun AB, Young CC, Busse HJ, Kassmannhuber J, Rosselló-Móra R, Geueke B, Rekha PD, Chen WM (2012) Sphingomicrobium lutaoense gen. nov., sp. nov., isolated from a coastal hot spring. Int J Syst Evol Microbiol 62:1326–1330

    Article  PubMed  CAS  Google Scholar 

  • Kang KS, Veeder GT (1981) Polysaccharide S-53 and bacterial fermentation process for its preparation. US Patent 4,291,156 22 Sept 1981

    Google Scholar 

  • Kang KS, Veeder GT, Mirrasoul PJ, Kaneko T, Cottrell IW (1982) Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl Environ Microbiol 43:1086–1091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang SH, Cho HS, Cheong H, Ryu CM, Kim JF, Park SH (2007) Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). J Microbiol Biotechnol 17:96–103

    CAS  PubMed  Google Scholar 

  • Kaur J, Niharika N, Lal R (2012) Sphingomonas laterariae sp. nov., isolated from a hexachlorocyclohexane-contaminated dump site. Int J Syst Evol Microbiol 62:2891–2896

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Moskalikova H, Niharika N, Sedlackova M, Hampl A, Damborsky J, Prokop Z, Lal R (2013) Sphingobium baderi sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 63:673–678

    Article  CAS  PubMed  Google Scholar 

  • Kawahara K, Seydel U, Matsuura M, Danbara H, Rietschel ET, Zähringer U (1991) Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett 292:107–110

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki S, Moriguchi R, Sekiya K, Nakai T, Ono E, Kume K, Kawahara K (1994) The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. J Bacteriol 176:284–290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kent 1880: 221, 224 in Kent WS (1881 ‘1880–1881’) A manual of the Infusoria; including a description of all known flagellate, ciliate and tentaculiferous Protozoa, British and foreign, and an account of the organisation and affinities of the sponges, vol. I. David Bogue, London, pp 1–193, 3 St. Martin’s Place, Trafalgar Square, London, WC

    Google Scholar 

  • Keum YS, Lee YJ, Kim JH (2008) Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1. Agric Food Chem 56:9146–9151

    Article  CAS  Google Scholar 

  • Khan AA, Wang RF, Cao WW, Franklin W, Cerniglia CE (1996) Reclassification of a polycyclic aromatic hydrocarbon-metabolising bacterium, Beijerinckia sp. strain B1, as Sphingomonas yannoikuyae by fatty acid analysis, protein pattern analysis, DNA-DNA hybridization, and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46:466–469

    Article  CAS  PubMed  Google Scholar 

  • Kilbane JJ II, Daram A, Abbasian J, Kayser KJ (2002) Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem Biophys Res Comm 297:242–248

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Chun J, Bae KS, Kim YC (2000) Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov. Int J Syst Evol Microbiol 50:1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Zylstra GJ, Freeman JP, Heinze TM, Deck J, Cerniglia CE (1997) Evidence for the role of 2-hydroxychromene-2-carboxylate isomerase in the degradation of anthracene by Sphingomonas yanoikuyae B1. FEMS Microbiol Lett 153:479–484

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Nishiyama M, Kunito T, Senoo K, Kawahara K, Murakami K, Oyaizu H (1998) High population of Sphingomonas species on plant surface. J Appl Microbiol 85:731–736

    Article  Google Scholar 

  • Kim IS, Ryu JY, Hur HG, Gu MB, Kim SD, Shim JM (2004) Sphingomonas sp. strain SB5 degrades carbofuran to a new metabolite by hydrolysis of the furanyl ring. J Agric Food Chem 52:2309–2314

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Schubert K, Im WT, Kim KH, Lee ST, Overmann J (2007) Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. Int J Syst Evol Microbiol 57:1527–1534

    Article  CAS  PubMed  Google Scholar 

  • Kim BS, Lim YW, Chun J (2008) Sphingopyxis marina sp. nov. and Sphingopyxis litoris sp. nov., isolated from seawater. Int J Syst Evol Microbiol 58:2415–2419

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Im WT, Ohta H, Lee M, Lee ST (2005) Sphingopyxis granuli sp. nov., a beta-glucosidase-producing bacterium in the family Sphingomonadaceae in alpha-4 subclass of the Proteobacteria. J Microbiol 43:152–157

    CAS  PubMed  Google Scholar 

  • Kluyver AJ, Van Niel CB (1936) Prospects for a natural system of classification of bacteria. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Abteilung II 94:369–403

    Google Scholar 

  • Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblízek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495

    Article  CAS  PubMed  Google Scholar 

  • Kolvenbach BA, Corvini PF (2012) The degradation of alkylphenols by Sphingomonas sp. strain TTNP3 - a review on seven years of research. N Biotechnol 30:88–95

    Article  CAS  PubMed  Google Scholar 

  • Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K (2000) Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 44:563–575

    Article  CAS  PubMed  Google Scholar 

  • Koskinen R, Ali-Vehmas T, Kämpfer P, Laurikkala M, Tsitko I, Kostyal E, Atroshi F, Salkinoja-Salonen M (2000) Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems. J Appl Microbiol 89:687–696

    Article  CAS  PubMed  Google Scholar 

  • Kouzuma A, Pinyakong O, Nojiri H, Omori T, Yamane H, Habe H (2006) Functional and transcriptional analysis of the initial oxygenase genes for acenaphthene degradation from Sphingomonas sp. strain A4. Microbiology 152:2455–2467

    Article  CAS  PubMed  Google Scholar 

  • Krziwon C, Zähringer U, Kawahara K, Weidemann B, Kusumoto S, Rietschel ET, Flad HD, Ulmer AJ (1995) Glycosphingolipids from Sphingomonas paucimobilis induce monokine production in human mononuclear cells. Infect Immun 63:2899–2905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kubota M, Kawahara K, Sekiya K, Uchida T, Hattori Y, Futamata H, Hiraishi A (2005) Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading bacterium isolated from dioxin-polluted environments. Syst Appl Microbiol 28:165–174

    Article  CAS  PubMed  Google Scholar 

  • Kuiper-Goldman T, Falconer I, Fitzgerald J (1999) Human health aspects. In: Chorus I, Bartram J (eds) Toxic cyanobacteria. E. & F. N. Spon, London, pp 113–152

    Google Scholar 

  • Kumari R, Subudhi S, Suar M, Dhingra G, Raina V, Dogra C, Lal S, van der Meer JR, Holliger C, Lal R (2002) Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68:6021–6028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumari H, Gupta SK, Jindal S, Katoch P, Lal R (2009) Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 59:2291–2296

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Dogra C, Malhotra S, Sharma P, Pal P (2006) Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends Biotechnol 24:121–130

    Article  CAS  PubMed  Google Scholar 

  • Lanoix JP, Hamdad F, Borel A, Thomas D, Salle V, Smail A, El Samad Y, Schmit JL (2012) Sphingomonas paucimobilis bacteremia related to intravenous human immunoglobulin injections. Med Mal Infect 42:37–39

    Article  PubMed  Google Scholar 

  • Laplace SP, Sneath PHA, Lesser EF, Skerman VBD, Seeiger HPR, Clark WA (1992) International code of nomenclature of bacteria (1990 revision). American Society for Microbiology, Washington, D.C., p 92

    Google Scholar 

  • Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk AC, Detter C, Han CS, Brown MV, Robb FT, Kjelleberg S, Cavicchioli R (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci U S A 106:15527–15533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KJ, Tribe DE, Rogers PI (1979) Ethanol production by Zymomonas mobilis in continuous culture at high glucose concentrations. Biotechnol Lett 1:421–426

    Article  CAS  Google Scholar 

  • Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR, Park YH (2001) Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51:1491–1498

    Article  CAS  PubMed  Google Scholar 

  • Lee KB, Liu CT, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Ten LN, Lee HW, Oh HW, Im WT, Lee ST (2008) Sphingopyxis ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 58:2342–2347

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre D, Elaichouni A, Hundhausen M, Claeys G, Vanhaesebrouck P, Vaneechoutte M, Verschraegen G (1996) Tracheal colonization with Sphingomonas paucimobilis in mechanically ventilated neonates due to contaminated ventilator temperature probes. J Hosp Infect 32:199–206

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, Kobayashi K, Ezaki T (2004) Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. Int J Syst Evol Microbiol 54:819–825

    Article  CAS  PubMed  Google Scholar 

  • Li X, He J, Li S (2007) Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol 158:143–149

    Article  CAS  PubMed  Google Scholar 

  • Li L, Liu H, Shi Z, Wang G (2013) Sphingobium cupriresistens sp. nov., a copper-resistant bacterium isolated from copper mine soil, and emended description of the genus Sphingobium. Int J Syst Evol Microbiol 63:604–609

    Article  CAS  PubMed  Google Scholar 

  • Lim YW, Moon EY, Chun J (2007) Reclassification of Flavobacterium resinovorum Delaporte and Daste 1956 as Novosphingobium resinovorum comb. nov., with Novosphingobium subarcticum (Nohynek et al. 1996) Takeuchi et al. 2001 as a later heterotypic synonym. Int J Syst Evol Microbiol 57:1906–1908

    Article  PubMed  Google Scholar 

  • Lin CC, Casida LE (1984) GELRITE as a gelling agent in media for the growth of thermophilic microorganisms. Appl Environ Microbiol 47:427–429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin JN, Lai CH, Chen YH, Lin HL, Huang CK, Chen WF, Wang JL, Chung HC, Liang SH, Lin HH (2010) Sphingomonas paucimobilis bacteremia in humans: 16 case reports and a literature review. J Microbiol Immunol Infect 43:35–42

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Shen FT, Lai WA, Zhu ZL, Chen WM, Chou JH, Lin ZY, Young CC (2012) Sphingomonas formosensis sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 62:1581–1586

    Article  CAS  PubMed  Google Scholar 

  • Lindner P (1928a) Atlas der mikroskopischen Grundlagen der Gärungskunde, 3rd edn. Tafel 68, Berlin

    Google Scholar 

  • Lindner P (1928b) Gärungsstudien über pulque in Mexiko. Ber Westpreuss Bot Zool Ver 50:253–255

    Google Scholar 

  • Lindner P (1929) Allgemeine Betrachtung über Gärung und Fäulnis und die Anwendung von Gärungsmikroben in der Milchwirtschaft. Süddeutsche Molk 50:889–891

    Google Scholar 

  • Lindner P (1931) Termobcterium mobile, ein mexikanisches Bakterium als neues Einsäuerungsbakterium für Rübenschnitzel. Z Ver Dsch Zuckerind 81:25–36

    CAS  Google Scholar 

  • Liu Z, Blaschek H (2010) Biomass conversion inhibitors and in situ detoxification. In: Vertes A, Qureshi N, Yukawa H, Blaschek H (eds) Biomass to biofuels: strategies for global industries. Wiley, West Sussex, p 27

    Google Scholar 

  • Liu Y, Zhang J, Zhang Z (2004) Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5. Biodegradation 15:205–212

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Nikolausz M, Wang XC (2009) Biodegradation and detoxication of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:130–136

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Gai Z, Tao F, Tang H, Xu P (2012) Carotenoids play a positive role in the degradation of heterocycles by Sphingobium yanoikuyae. PLoS One 7:e39522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ (1994) Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60:2286–2295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovell CR, Friez MJ, Longshore JW, Bagwell CE (2001) Recovery and phylogenetic analysis of nifH sequences from diazotrophic bacteria associated with dead aboveground biomass of Spartina alterniflora. Appl Environ Microbiol 67:5308–5314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo YR, Kang SG, Kim SJ, Kim MR, Li N, Lee JH, Kwon KK (2012) Genome sequence of benzo(a)pyrene-degrading bacterium Novosphingobium pentaromativorans US6-1. J Bacteriol 194:907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magony M, Kákonyi I, Gara A, Rapali P, Perei K, Kovács KL, Rákhely G (2007) Overlaps between the various biodegradation pathways in Sphingomonas subarctica SA1. Acta Biol Hungarica (Supp) 58:37–49

    Article  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Männistö MK, Tiirola MA, Salkinoja-Salonen MS, Kulomas MS, Puhakka JA (1999) Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol 171:189–197

    Article  PubMed  Google Scholar 

  • Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S, Morisaki M (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 21:86–100

    Article  Google Scholar 

  • Maragakis LL, Chaiwarith R, Srinivasan A, Torriani FJ, Avdic E, Lee A, Ross TR, Carroll KC, Perl TM (2009) Sphingomonas paucimobilis bloodstream infections associated with contaminated intravenous fentanyl. Emerg Infect Dis 15:12–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Margesin R, Zhang DC, Busse H-J (2012) Sphingomonas alpina sp. nov., a psychrophilic bacterium isolated from alpine soil. Int J Syst Evol Microbiol 62:1558–1563

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T, Hamana K, Hiraishi A, Kato K (2006) Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89

    Article  CAS  PubMed  Google Scholar 

  • Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15

    Article  CAS  PubMed  Google Scholar 

  • Matallana-Surget S, Joux F, Raftery MJ, Cavicchioli R (2009) The response of the marine bacterium Sphingopyxis alaskensis to solar radiation assessed by quantitative proteomics. Environ Microbiol 11:2660–2675

    Article  CAS  PubMed  Google Scholar 

  • Matallana-Surget S, Douki T, Meador JA, Cavicchioli R, Joux F (2010) Influence of growth temperature and starvation state on survival and DNA damage induction in the marine bacterium Sphingopyxis alaskensis exposed to UV radiation. J Photochem Photobiol B 100:51–56

    Article  CAS  PubMed  Google Scholar 

  • Miller TR, Delcher AL, Salzberg SL, Saunders E, Detter JC, Halden RU (2010) Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J Bacteriol 192:6101–6102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Millis NF (1951) Some bacterial fermentations of cider. University of Bristol, Bristol, U.K, Thesis

    Google Scholar 

  • Misawa N, Yamano S, Ikenaga H (1991) Production of beta-carotene in Zymomonas mobilis and Agrobacterium tumefaciens by introduction of the biosynthesis genes from Erwinia uredovora. Appl Environ Microbiol 57:1847–1849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyauchi K, Suh SK, Nagata Y, Takagi M (1998) Cloning and sequencing of a 2,5-dichlorohydroquinone reductive dehalogenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane by Sphingomonas paucimobilis. J Bacteriol 180:1354–1359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyauchi K, Adachi Y, Nagata Y, Takagi M (1999) Cloning and sequencing of a novel type of meta-cleavage dioxygenase gene whose product is involved in the degradation of γ-hexachlorocyclohexane in Sphingomonas paucimobilis. J Bacteriol 181:6712–6719

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyauchi K, Lee HS, Fukuda M, Takagi M, Nagata Y (2002) Cloning and characterization of linR, involved in regulation of the downstream pathway for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. Appl Environ Microbiol 68:1803–1807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyazaki M, Nogi Y, Ohta Y, Hatada Y, Fujiwara Y, Ito S, Horikoshi K (2008) Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 58:1128–1133

    Article  CAS  PubMed  Google Scholar 

  • Mohagheghi A, Evans K, Finkelstein M, Zhang M (1998) Cofermentation of glucose, xylose, and arabinose by mixed cultures of two genetically engineered Zymomonas mobilis strains. Appl Biochem Biotechnol 70–72:285–299

    Article  PubMed  Google Scholar 

  • Mohn WW, Mertens B, Neufeld JD, Verstraete W, de Lorenzo V (2006) Distribution and phylogeny of hexachlorocyclohexane-degrading bacteria in soils from Spain. Environ Microbiol 8:60–68

    Article  CAS  PubMed  Google Scholar 

  • Morrison AJ, Shulman JA (1986) Community-acquired bloodstream infection caused by Pseudomonas paucimobilis: case report and review of literature. J Clin Microbiol 24:853–855

    PubMed Central  PubMed  Google Scholar 

  • Moslemy P, Neufeld RJ, Millette D, Guiot SR (2003) Transport of gellan gum microbeads through sand: an experimental evaluation for encapsulated cell bioaugmentation. J Environ Manage 69:249–259

    Article  PubMed  Google Scholar 

  • Moslemy P, Guiot SR, Neufeld RJ (2004) Activated sludge encapsulation in gellan gum microbeads for gasoline biodegradation. Bioprocess Biosyst Eng 26:197–204

    Article  CAS  PubMed  Google Scholar 

  • Mueller JG, Devereux R, Santavy DL, Lantz SE, Willis SG, Pritchard PH (1997) Phylogenetic and physiological comparison of PAH degrading bacteria from geographically diverse soils. Antonie Van Leeuwenhoek 71:329–343

    Article  CAS  PubMed  Google Scholar 

  • Mutlu M, Bayramoglu G, Yilmaz G, Saygin B, Aslan Y (2011) Outbreak of Sphingomonas paucimobilis septicemia in a neonatal intensive care unit. Indian Pediatr 48:723–725

    Article  PubMed  Google Scholar 

  • Nagata Y, Hatta T, Imai R, Kimbara K, Fukuda M, Yano K, Takagi M (1993a) Purification and characterization of g-hexachlorocyclohexane (g-HCH) dehydrochlorinase (LinA) from Pseudomonas paucimobilis. Biosci Biotechnol Biochem 57:1582–1583

    Article  CAS  Google Scholar 

  • Nagata Y, Nariya T, Ohtomo R, Fukuda M, Yano K, Takagi M (1993b) Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of hexachlorocyclohexane in Pseudomonas paucimobilis. J Bacteriol 175:6403–6410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagata Y, Ohtomo R, Miyauchi K, Fukuda M, Yano K, Takagi M (1994) Cloning and sequencing of a 2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase gene involved in the degradation of hexachlorocyclohexane in Pseudomonas paucimobilis. J Bacteriol 1994(176):3117–3125

    Google Scholar 

  • Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M (2007) Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76:741–752

    Article  CAS  PubMed  Google Scholar 

  • Nagata Y, Ohtsubo Y, Endo R, Ichikawa N, Ankai A, Oguchi A, Fukui S, Fujita N, Tsuda M (2010) Complete genome sequence of the representative γ-hexachlorocyclohexane-degrading bacterium Sphingobium japonicum UT26. J Bacteriol 192:5852–5853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagata Y, Natsui S, Endo R, Ohtsubo Y, Ichikawa N, Ankai A, Oguchi A, Fukui S, Fujita N, Tsuda M (2011) Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26, an archetypal γ-hexachlorocyclohexane-degrading bacterium. Enzyme Microb Technol 49:499–508

    Article  CAS  PubMed  Google Scholar 

  • Naka T, Fujiwara N, Yabuuchi E, Doe M, Kobayashi K, Kato Y, Yano I (2000) A novel sphingoglycolipid containing galacturonic acid and 2-hydroxy fatty acid in cellular lipids of Sphingomonas yanoikuyae. J Bacteriol 182:2660–2663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nam IH, Hong HB, Kim YM, Kim BH, Murugesan K, Chang YS (2005) Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by Sphingomonas wittichii RW1. Water Res 39:4651–4660

    Article  CAS  PubMed  Google Scholar 

  • Neef A, Witzenberger R, Kämpfer P (1999) Detection of sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. J Ind Microbiol Biotechnol 23:261–267

    Article  CAS  PubMed  Google Scholar 

  • Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nigam A, Jit S, Lal R (2010) Sphingomonas histidinilytica sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 60:1038–1043

    Article  CAS  PubMed  Google Scholar 

  • Niharika N, Jindal S, Kaur J, Lal R (2012) Sphingomonas indica sp. nov., isolated from hexachlorocyclohexane (HCH)-contaminated soil. Int J Syst Evol Microbiol 62:2997–3002

    Google Scholar 

  • Niharika N, Moskalikova H, Kaur J, Khan F, Sedlackova M, Hampl A, Damborsky J, Prokop Z, Lal R (2013a) Sphingobium czechense sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 63:723–728

    Article  CAS  PubMed  Google Scholar 

  • Niharika N, Moskalikova H, Kaur J, Sedlackova M, Hampl A, Damborsky J, Prokop Z, Lal R (2013b) Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 63:667–672

    Article  CAS  PubMed  Google Scholar 

  • Nohynek LJ, Suhonen EL, Nurmiaho-Lassila E-L, Hantula J, Salkinoja-Salonen M (1995) Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Syst Appl Microbiol 18:527–538

    Article  Google Scholar 

  • Nohynek LJ, Nurmiaho-Lassila E-L, Suhonen EL, Busse HJ, Mohammadi M, Hantula J, Rainey F, Salkinoja-Salonen M (1996) Description of chlorophenol-degrading Pseudomonas sp. strains KF1, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int J Syst Bacteriol 46:1042–1055

    Article  CAS  PubMed  Google Scholar 

  • Notomista E, Pennacchio F, Cafaro V, Smaldone G, Izzo V, Troncone L, Varcamonti M, Di Donato A (2011) The marine isolate Novosphingobium sp. PP1Y shows specific adaptation to use the aromatic fraction of fuels as the sole carbon and energy source. Microb Ecol. 61:582–594

    Article  CAS  PubMed  Google Scholar 

  • Ochou M, Saito M, Kurusu Y (2008) Characterization of two compatible small plasmids from Sphingobium yanoikuyae. Biosci Biotechnol Biochem 72:1130–1133

    Article  CAS  PubMed  Google Scholar 

  • Ohta H, Hattori R, Ushiba Y, Mitsui H, Ito M, Watanabe H, Tonosaki A, Hattori T (2004) Sphingomonas oligophenolica sp. nov., a halo- and organo-sensitive oligotrophic bacterium from paddy acids at low concentrations. Int J Syst Evol Microbiol 54:2185–2190

    Article  CAS  PubMed  Google Scholar 

  • Orser CS, Lange CC (1994) Molecular analysis of pentachlorophenol degradation. Biodegradation 5:277–288

    Article  CAS  PubMed  Google Scholar 

  • Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G, Prakash O, Prabagaran SR, Shivaji S, Cullum J, Holliger C, Lal R (2005) Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukensis comb. nov. Int J Syst Evol Microbiol 55:1965–1972

    Article  CAS  PubMed  Google Scholar 

  • Pal R, Bhasin VK, Lal R (2006) Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 55:667–670

    Article  CAS  Google Scholar 

  • Park HD, Sasaki Y, Maruyama T, Yanagisawa E, Hiraishi A, Kato K (2001) Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ Toxicol 16:337–343

    Article  CAS  PubMed  Google Scholar 

  • Park S, Yokota A, Itoh T, Park JS (2011) Sphingomonas jejuensis sp. nov., isolated from marine sponge Hymeniacidon flavia. Microbiology 49:238–242

    Google Scholar 

  • Perei K, Rákhely G, Kiss I, Polyák B, Kovács KL (2001) Biodegradation of sulfanilic acid by Pseudomonas paucimobilis. Appl Microbiol Biotechnol 55:101–107

    Article  CAS  PubMed  Google Scholar 

  • Pfaller SL, Sutton SD, Kinkle BK (1999) Sphingomonas sp. strain Lep1: an aerobic degrader of 4-methylquinoline. Can J Microbiol 45:623–626

    Article  CAS  PubMed  Google Scholar 

  • Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T, Furihata K, Nojiri H, Yamane H, Omori T (2000) Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett 191:115–121

    Article  CAS  PubMed  Google Scholar 

  • Pinyakong O, Habe H, Omori T (2003) The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49:1–19

    Article  CAS  PubMed  Google Scholar 

  • Pinyakong O, Habe H, Kouzuma A, Nojiri H, Yamane H, Omori T (2004) Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4. FEMS Microbiol Lett 238:297–305

    CAS  PubMed  Google Scholar 

  • Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pollock TJ (1993) Gellan-related polysaccharides and the genus Sphingomonas. J Gen Microbiol 139:1939–1945

    Article  CAS  Google Scholar 

  • Prajapati VD, Jani GK, Zala BS, Khutliwala TA (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym 93:670–678

    Article  CAS  PubMed  Google Scholar 

  • Prakash O, Lal R (2006) Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 56:2147–2152

    Article  CAS  PubMed  Google Scholar 

  • Preziosi L, Michel GPF, Baratti J (1991) Sucrose metabolism in Zymomonas mobilis: production and localization sucrase and levansucrase activities. Can J Microbiol 36:159–163

    Article  Google Scholar 

  • Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna. China Appl Environ Microbiol 75:6176–6186

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Zhou J, Wang J, Song Z, Xing L, Fu X (2006) Bioaugmentation of bromoamine acid degradation with Sphingomonas xenophaga QYY and DNA fingerprint analysis of augmented systems. Biodegradation 17:83–91

    Article  CAS  PubMed  Google Scholar 

  • Rademaker JLW, Louws FJ, de Bruijn FJ (1998) Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual, supplement 3, chapter 3.4.3. Kluwer, Dordrecht, pp 1–26

    Google Scholar 

  • Rajashekara G, Koeuth T, Nevile S, Back A, Nagaraja KV, Lupski JR, Kapur V (1998) SERE, a widely dispersed bacterial repetitive DNA element. J Med Microbiol 47:489–497

    Article  CAS  PubMed  Google Scholar 

  • Reddy GS, Garcia-Pichel F (2007) Sphingomonas mucosissima sp. nov. and Sphingomonas desiccabilis sp. nov., from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 57:1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Reina J, Bassa A, Llompart I, Portela D, Borrell N (1991) Infections with Pseudomonas paucimobilis: report of four cases and review. Rev Infect Dis 13:1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Rinaudo M, Milas M (2000) Gellan gum, a bacterial gelling polymer. In: Doxastakis G, Kiosseoglou V (eds) Novel macromolecules in food systems. Elsevier, Amsterdam, pp 239–263

    Chapter  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rivas R, Abril A, Trujillo ME, Velázquez E (2004) Sphingomonas phyllosphaerae sp. nov., from the phyllosphere of Acacia caven in Argentina. Int J Syst Evol Microbiol 54:2147–2150

    Article  CAS  PubMed  Google Scholar 

  • Rogers PL, Jeon YJ, Lee KJ, Lawford HG (2007) Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 108:263–288

    CAS  PubMed  Google Scholar 

  • Rogers PI, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobils. Adv Biochem Eng Biotechnol 23:27–84

    Google Scholar 

  • Roh SW, Kim KH, Nam YD, Chang HW, Kim MS, Oh HM, Bae JW (2009) Sphingomonas aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 59:1359–1363

    Article  CAS  PubMed  Google Scholar 

  • Romanenko LA, Uchino M, Frolova GM, Tanaka N, Kalinovskaya NI, Latyshev N, Mikhailov VV (2007) Sphingomonas molluscorum sp. nov., a novel marine isolate with antimicrobial activity. Int J Syst Evol Microbiol 57:358–363

    Article  PubMed  Google Scholar 

  • Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV (2009) Sphingomonas japonica sp. nov., isolated from the marine crustacean Paralithodes camtschatica. Int J Syst Evol Microbiol 59:1179–1182

    Article  CAS  PubMed  Google Scholar 

  • Romine MF, Fredrickson JK, Li SM (1999) Induction of aromatic catabolic activity in Sphingomonas aromaticivorans strain F199. J Ind Microbiol Biotechnol 23:303–313

    Article  CAS  PubMed  Google Scholar 

  • Ryan MP, Adley CC (2010) Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism. J Hosp Infect 75(3):153–157

    Article  CAS  PubMed  Google Scholar 

  • Sabaté J, Grifoll M, Viñas M, Solanas AM (1999) Isolation and characterization of a 2-methylphenanthrene utilizing bacterium: identification of ring cleavage metabolites. Appl Microbiol Biotechnol 52:704–712

    Article  Google Scholar 

  • Sabaté J, Viñas M, Bayona JM, Solanas AM (2003) Isolation and taxonomic and catabolic characterization of a 3,6-dimethylphenanthrene-utilizing strain of Sphingomonas sp. Can J Microbiol 49:120–129

    Article  PubMed  Google Scholar 

  • Saber D, Crawford RL (1985) Isolation and characterization of pentachlorophenol-degrading Flavobacterium strains. Appl Environ Microbiol 50:1512–1518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sader HS, Jones RN (2005) Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int J Antimicrob Agents 25:95–109

    Article  CAS  PubMed  Google Scholar 

  • Sahm H, Rohmer M, Bringer-Meyer S, Sprenger GA, Welle R (1993) Biochemistry and physiology of hopanoids in bacteria. Adv Microb Physiol 35:247–273

    Article  CAS  PubMed  Google Scholar 

  • Salka I, Cuperová Z, Mašín M, Koblížek M, Grossart H-P (2011) Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes. Environ Microbiol 13:2865–2875

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Okano K, Park HD, Itayama T, Inamori Y, Neilan BA (2003) Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes. Microbiol Lett 229:271–276

    Google Scholar 

  • Santos Jde F, Vasconcelos J, de Souza JR, Coutinho Ede M, Montenegro SM, Azevedo-Ximenes E (2004) The effect of Zymomonas mobilis culture on experimental Schistosoma mansoni infection. Rev Soc Bras Med Trop 37:502–504

    Article  PubMed  Google Scholar 

  • Sawada H, Leki H, Oyaizu H, Matsumoto S (1993) Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol 43:694–702

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Anand S, Dua A, Sangwan N, Khan F, Lal R (2013) Novosphingobium lindaniclasticum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 63:2160–2167

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Wittich R-M, Erdmann D, Wilkes H, Francke W, Fortnagel P (1992a) Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl Environ Microbiol 58:2744–2750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt S, Wittich R-M, Fortnagel P, Erdmann D, Francke W (1992b) Metabolism of 3-methyldiphenyl ether by Sphingomonas sp. SS31. FEMS Microbiol Lett 75:253–258

    Article  CAS  PubMed  Google Scholar 

  • Schreiber JV, Frackenpohl J, Moser F, Fleischmann T, Kohler H-PE, Seebach D (2002) On the biodegradation of b-peptides. Chembiochem 3:424–432

    Article  CAS  PubMed  Google Scholar 

  • Schut F, de Vries EJ, Gottschal JC, Robertson BR, Harder W, Prins RA, Button DK (1993) Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl Environ Microbiol 59:2150–2160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schut F, Jansen M, Gomes TM, Gottschal JC, Harder W, Prins RA (1995) Substrate uptake and utilization by a marine ultramicrobacterium. Microbiology 141:351–361

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Kil JI, Park CJ, Oh HM, Lee JS, Jin SJ, Um HW, Lee HJ, Oh SJ, Kim JY, Kang HL, Lee SY, Lee KJ, Kang HS (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23:63–68

    Article  CAS  PubMed  Google Scholar 

  • Shahina M, Hameed A, Lin SY, Hsu YH, Liu YC, Cheng IC, Lee MR, Lai WA, Lee RJ, Young CC (2013a) Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium. Int J Syst Evol Microbiol 63:3415–3422

    Article  CAS  PubMed  Google Scholar 

  • Shahina M, Hameed A, Lin SY, Hsu YH, Liu YC, Huang YM, Lin JC, Young CC (2013b) Sphingomicrobium marinum sp. nov. and Sphingomicrobium flavum sp. nov., isolated from surface seawater, and emended description of the genus Sphingomicrobium. Int J Syst Evol Microbiol 63:4469–4476

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Raina V, Kumari R, Malhotra S, Dogra C, Kumari H et al (2006) Haloalkane dehalogenase LinB is responsible for beta- and delta-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl Environ Microbiol 72:5720–5727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma P, Verma M, Bala K, Nigam A, Lal R (2010) Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 60:780–784

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, Sun L, Huang Z, He L, Zhang W, Chen Z (2012) Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. J Environ Manage 103:58–64

    Article  CAS  PubMed  Google Scholar 

  • Shepherd JM, Lloyd-Jones G (1998) Novel carbazole degradation genes of Sphingomonas CB3: sequence analysis, transcription, and molecular ecology. Biochem Biophys Res Comm 247:129–135

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Fredrickson JK, Balkwill DL (2001) Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from terrestrial subsurface. J Ind Microbiol Biotechnol 26:283–289

    Article  CAS  PubMed  Google Scholar 

  • Shiba T, Simidu U (1982) Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32:211–217

    Article  Google Scholar 

  • Shimwell JL (1950) Saccharomonas, a proposed new genus for bacteria producing a quantitative alcoholic fermentation of glucose. J Inst Brew London 56:179–182

    Article  Google Scholar 

  • Shin SC, Kim SJ, Ahn d H, Lee JK, Park H (2012) Draft genome sequence of Sphingomonas echinoides ATCC 14820. Bacteriology 194:1843

    Article  CAS  Google Scholar 

  • Singh A, Lal R (2009) Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59:162–166

    Article  CAS  PubMed  Google Scholar 

  • Sly LI (1985) Emendation of the genus Blastobacter Zavarzin 1961 and description of Blastobacter natatorius sp. nov. Int J Syst Bacteriol 35:40–45

    Google Scholar 

  • Sly LI, Cahill MM (1997) Transfer of Blastobacter natatorius (Sly 1985) to the genus Blastomonas gen. nov. as Blastomonas natatoria comb. nov. Int J Syst Bacteriol 47:566–568

    Article  CAS  PubMed  Google Scholar 

  • Sly LI, Hargreaves MH (1984) Two unusual budding bacteria isolated from a swimming pool. J Appl Bacteriol 56:479–486

    Article  CAS  PubMed  Google Scholar 

  • Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ (2004) Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54:1483–1487

    Article  CAS  PubMed  Google Scholar 

  • Solem C, Dehli T, Jensen PR (2013) Rewiring Lactococcus lactis for ethanol production. Appl Environ Microbiol 79:2512–2518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sørensen SR, Ronen Z, Aamand J (2001) Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon. Appl Environ Microbiol 67:5403–5409

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Souto A, Guinda M, Mera A, Pardo F (2012) Septic arthritis caused by Sphingomonas paucimobilis in an immunocompetent patient. Reumatol Clin 8:378–379

    Article  PubMed  Google Scholar 

  • Sprenger GA (1993) Approaches to broaden the substrate and product range of the ethanologenic bacterium Zymomonas mobils by genetic engineering. J Biotechnol 27:225–237

    Article  CAS  Google Scholar 

  • Sprenger GA (1996) Carbohydrate metabolism in Zymomonas mobils: a catabolic highway with some scenic routes. FEMS Microbiol Lett 145:301,307

    Article  CAS  Google Scholar 

  • Sprenger GA (1993) Approaches to broaden the substrates and product range of the ethanologenic bacterium Zymomonas mobilis by genetic engeneering. J Biotechnol 27:225–237

    Article  CAS  Google Scholar 

  • Srinivasan S, Kim MK, Sathiyaraj G, Veena V, Mahalakshmi M, Kalaiselvi S, Kim YJ, Yang DC (2010) Sphingopyxis panaciterrulae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:2358–2363

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Murray RGE, Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the "purple bacteria and their relatives". Int J Syst Bacteriol 38:321–325

    Article  Google Scholar 

  • Stahl DA, Key R, Flesher B, Smit J (1992) The phylogeny of marine and freshwater caulobacters reflects their habitat. J Bacteriol 174:2193–2198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stolz A (2009) Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 81:793–811

    Article  CAS  PubMed  Google Scholar 

  • Stolz A, Schmidt-Maag C, Denner EBM, Busse HJ, Egli T, Kämpfer P (2000) Description of Sphingomonas xenophaga sp. nov. for strains BN6T and N, N which degrade xenobiotic aromatic compounds. Int J Syst Bacteriol 50:35–41

    Article  CAS  Google Scholar 

  • Strabala TJ, Macdonald L, Liu V, Smit AM (2012) Draft genome sequence of Novosphingobium nitrogenifigens Y88(T). J Bacteriol 194:201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strohdeicher M, Schmitz B, Bringer-Meyer S, Sahm H (1988) Formation and degradation of gluconate by Zymomonas mobils. Appl Microbiol Biotechnol 27:378–382

    CAS  Google Scholar 

  • Sun LN, Zhang LN, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101:501–509

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW (2001) Microbial polysaccharides from gram-negative bacteria. Int Dairy J 11:663–674

    Article  CAS  Google Scholar 

  • Swings J, De Ley J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swings J, Kersters K, De Ley J (1977) Taxonomic position of additional Zymomonas mobils strains. Int J Syst Bacteriol 27:271–273

    Article  Google Scholar 

  • Tabata M, Ohtsubo Y, Ohhata S, Tsuda M, Nagata Y (2013) Complete genome sequence of the γ-hexachlorocyclohexane-degrading bacterium Sphingomonas sp. Strain MM-1. Genome Announc 16:1–3

    Google Scholar 

  • Tahara Y, Kawazu M (1994) Isolation of glucuronic acid-containing glycosphingolipid from Zymomonas mobilis. Biosci Biotechnol Biochem 58:586–587

    Article  CAS  Google Scholar 

  • Takeuchi M, Kawai F, Shimada Y, Yokota A (1993) Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Bacteriol 16:2227–2238

    Google Scholar 

  • Takeuchi M, Sawada H, Oyaizu H, Yokota A (1994) Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria. Int J Syst Bacteriol 44:308–314

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Sakane T, Yanagi M, Yamasato K, Hamana K, Yokota A (1995) Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45:334–341

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonassensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    Article  CAS  PubMed  Google Scholar 

  • Talà A, Lenucci M, Gaballo A, Durante M, Tredici SM, Debowles DA, Pizzolante G, Marcuccio C, Carata E, Piro G, Carpita NC, Mita G, Alifano P (2013) Sphingomonas cynarae sp. nov., a proteobacterium that produces an unusual type of sphingan. Int J Syst Evol Microbiol 63:72–79

    Article  PubMed  CAS  Google Scholar 

  • Tanghe T, Dhooge W, Verstraete W (1999) Isolation of a bacterial strain able to degrade branched nonylphenol. Appl Environ Microbiol 65:746–751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tani A, Tanaka A, Minami T, Kimbara K, Kawai F (2011) Characterization of a cryptic plasmid, pSM103mini, from polyethylene-glycol degrading Sphingopyxis macrogoltabida strain 103. Biosci Biotechnol Biochem 75(2):295–298

    Article  CAS  PubMed  Google Scholar 

  • Thawng CN, Park SJ, Cha JH, Cha CJ (2013) Stakelama sediminis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 63:560–654

    Article  CAS  PubMed  Google Scholar 

  • Tiirola MA, Mannisto MK, Puhakka JA, Kulomaa MS (2002a) Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ Microbiol 68:173–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiirola MA, Wang H, Paulin L, Kulomaa MS (2002b) Evidence for natural horizontal transfer of the pcpB gene in the evolution of polychlorophenol-degrading sphingomonads. Appl Environ Microbiol 68:4495–4501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    Article  CAS  PubMed  Google Scholar 

  • Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol 12:2658–2676

    CAS  PubMed  Google Scholar 

  • Toh HS, Tay HT, Kuar WK, Weng TC, Tang HJ, Tan CK (2011) Risk factors associated with Sphingomonas paucimobilis infection. J Microbiol Immunol Infect 44:289–295

    Article  PubMed  Google Scholar 

  • Trantirek L, Hynkova K, Nagata Y, Murzin A, Ansorgova A, Sklenar V, Damborsky J (2001) Reaction mechanism and stereochemistry of g-hexachlorocyclohexane dehydrochlorinase LinA. J Biol Chem 276:7734–7740

    Article  CAS  PubMed  Google Scholar 

  • Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167

    Article  CAS  Google Scholar 

  • Uchida H, Hamana K, Miyazaki M, Yoshida T, Nogi Y (2012) Parasphingopyxis lamellibrachiae gen. nov., sp. nov., isolated from a marine annelid worm. Int J Syst Evol Microbiol 62:2224–2228

    Article  PubMed  Google Scholar 

  • Uhlenbusch I, Sahm H, Sprenger GA (1991) Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine. Appl Environ Microbiol 57:1360–1366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ushiba Y, Takahara Y, Ohta H (2003) Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53:2045–2048

    Article  CAS  PubMed  Google Scholar 

  • van Bruggen AHC, Grogan RG, Bogdanoff CP, Waters CM (1988) Corky root of lettuce in California caused by a gram-negative bacterium. Phytopathology 78:1139–1145

    Article  Google Scholar 

  • van Bruggen AHC, Brown PR, Jochimsen KN (1989) Corky root of lettuce caused by strains of a gram-negative bacterium from muck soils of Florida, New York, and Wiscon-sin. Appl Environ Microbiol 55:2635–2640

    PubMed Central  PubMed  Google Scholar 

  • van Bruggen AH, Jochimsen KN, Brown PR (1990) Rhizomonas suberifaciens gen. nov., sp. nov., the causal agent of corky root of lettuce. Int J Syst Bacteriol 40:175–188

    Article  Google Scholar 

  • Van Pee W, Vanlaar M, Swings J (1974) The nutrition of Zymomonas. Acad R Sci Outre Mer (Brussels) Bull Seances 2:206–211

    Google Scholar 

  • Vanbroekhoven K, Ryngaert A, Bastiaens L, Wattiau P, Vancanneyt M, Swings J, De Mot R, Springael D (2004) Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. Environ Microbiol 6:1123–1136

    Article  CAS  PubMed  Google Scholar 

  • Vancanneyt M, Schut F, Snauwaert C, Goris J, Swings J, Gottschal JC (2001) Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51:73–79

    Article  CAS  PubMed  Google Scholar 

  • Vaz-Moreira I, Nunes OC, Manaia CM (2011) Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl Environ Microbiol 77:5697–5706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Versalovic J, Schneider M, de Brujin FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Videira SS, de Araujo JL, Rodrigues LS, Baldani VL, Baldani JI (2009) Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol Lett 293:11–19

    Article  CAS  PubMed  Google Scholar 

  • Wang BZ, Guo P, Zheng JW, Hang BJ, Li L, He J, Li SP (2011) Sphingobium wenxiniae sp. nov., a synthetic pyrethroid (SP)-degrading bacterium isolated from activated sludge in an SP-manufacturing wastewater treatment facility. Int J Syst Evol Microbiol 61:1776–1780

    Article  CAS  PubMed  Google Scholar 

  • Wattiau P, Bastiaens L, van Herwijnen R, Daal L, Parsons JR, Renard M-E, Springael D, Cornelis GR (2001) Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol 152:861–872

    Article  CAS  PubMed  Google Scholar 

  • Weisser P, Kramer R, Sprenger GA (1996) Expression of the Escherichia coli pmi gene, encoding phosphomannose isomerase in Zymomonas mobils, leads to utilization of mannose as a novel growth substrate, which can be used as a selective marker. Appl Environ Microbiol 62:4155–4161

    CAS  PubMed Central  PubMed  Google Scholar 

  • White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7:301–306

    Article  CAS  PubMed  Google Scholar 

  • Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207

    Article  CAS  Google Scholar 

  • Williams TJ, Ertan H, Ting L, Cavicchioli R (2009) Carbon and nitrogen substrate utilization in the marine bacterium Sphingopyxis alaskensis strain RB2256. ISME J 3:1036–1052

    Article  CAS  PubMed  Google Scholar 

  • Willison JC (2004) Isolation and characterization of a novel sphingomonad capable of growth with chrysene as sole carbon and energy source. FEMS Microbiol Lett 241:143–150

    Article  CAS  PubMed  Google Scholar 

  • Wittich RM (1998) Degradation of dioxin-like compounds by microorganisms. Appl Microbiol Biotechnol 49:489–499

    Article  CAS  PubMed  Google Scholar 

  • Wittich RM, Wilkes H, Sinnwell V, Francke W, Fortnagel P (1992) Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol 58:1005–1010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittich RM, Busse HJ, Kämpfer P, Macedo AJ, Tiirola M, Wieser M, Abraham WR (2007) Sphingomonas fennica sp. nov. and Sphingomonas haloaromaticamans sp. nov., outliers of the genus Sphingomonas. Int J Syst Evol Microbiol 57:1740–1746

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Hong Q, Han P, He J, Li S (2007) A gene linB2 responsible for the conversion of b-HCH and 2,3,4,5,6-pentachlorocyclohexanol in Sphingomonas sp. BHC-A. Appl Microbiol Biotechnol 73:1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN et al (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu X, Li O, Chen Y, Zhu L, Qian C et al (2011) A carotenoid-free mutant strain of Sphingomonas paucimobilis ATCC 31461 for the commercial production of gellan. Carbohydr Polym 84:1201–1207

    Article  CAS  Google Scholar 

  • Xie CH, Yokota A (2006) Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int J Syst Evol Microbiol 56:889–893

    Article  CAS  PubMed  Google Scholar 

  • Yabuuchi E, Kosako Y (2005) Order IV. Sphingomonadales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). Springer, New York, pp 230–233, ISBN 0-387-24145-0

    Google Scholar 

  • Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119

    Article  CAS  PubMed  Google Scholar 

  • Yabuuchi E, Kosako Y, Naka T, Suzuki S, Yano I (1999) Proposal of Sphingomonas suberifaciens (van Brueggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol Immunol 43:339–349

    Article  CAS  PubMed  Google Scholar 

  • Yabuuchi E, Yamamoto H, Terakubo S, Okamura N, Naka T, Fujiwara N, Kobayashi K, Kosako Y, Hiraishi A (2001) Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. Int J Syst Evol Microbiol 51:281–292

    Article  CAS  PubMed  Google Scholar 

  • Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I, Ogura H, Kobayashi K (2002) Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 52:1485–1496

    CAS  PubMed  Google Scholar 

  • Yamamoto A, Yano I, Masui M, Yabuuchi E (1978) Isolation of a novel sphingoglycolipid containing glucuronic acid and 2-hydroxy fatty acid from Flavobacterium devorans ATCC 10829. J Biochem (Tokyo) 83:1213–1216

    CAS  Google Scholar 

  • Yamazaki M, Thorne L, Mikolajczak M, Armentrout RW, Pollock TJ (1996) Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol 178:2676–2687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan Q-X, Hong Q, Han P, Dong X-J, Shen Y-J, Li S-P (2007) Isolation and characterization of a carbofuran-degrading strain Novosphingobium sp. FND-3. FEMS Microbiol Lett 271:207–213

    Article  CAS  PubMed  Google Scholar 

  • Yan QX, Wang YX, Li SP, Li WJ, Hong Q (2010) Sphingobium qiguonii sp. nov., a carbaryl-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 60:2724–2728

    Article  CAS  PubMed  Google Scholar 

  • Yanase H, Miyawaki H, Sakurai M, Kawakami A, Matsumoto M, Haga K, Kojima M, Okamoto K (2012) Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Appl Microbiol Biotechnol 94:1667–1678

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, Davison BH, Palumbo AV, Rodriguez M Jr, Brown SD (2009) Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 20:10–34

    Google Scholar 

  • Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rossello-Mora R (2008) The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  CAS  PubMed  Google Scholar 

  • Yarza P, Spröer C, Swiderski J, Mrotzek N, Spring S, Tindall BJ, Gronow S, Pukall R, Klenk HP, Lang E, Verbarg S, Crouch A, Lilburn T, Beck B, Unosson C, Cardew S, Moore ER, Gomila M, Nakagawa Y, Janssens D, De Vos P, Peiren J, Suttels T, Clermont D, Bizet C, Sakamoto M, Iida T, Kudo T, Kosako Y, Oshida Y, Ohkuma MR, Arahal D, Spieck E, Pommerening RA, Figge M, Park D, Buchanan P, Cifuentes A, Munoz R, Euzéby JP, Schleifer KH, Ludwig W, Amann R, Glöckner FO, Rosselló-Móra R (2013) Sequencing orphan species initiative (SOS): Filling the gaps in the 16S rRNA gene sequence database for all species with validly published names. Syst Appl Microbiol 36:69–73

    Article  CAS  PubMed  Google Scholar 

  • Yasir M, Aslam Z, Song GC, Jeon CO, Chung YR (2010) Sphingosinicella vermicomposti sp. nov., isolated from vermicompost, and emended description of the genus Sphingosinicella. Int J Syst Evol Microbiol 60:580–584

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Oh TK (2005) Sphingopyxis flavimaris sp. nov., isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:369–373

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Lee CH, Yeo SH, Oh TK (2000) Sphingopyxis baekryungensis sp. nov., an orange-pigmented bacterium isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:1223–1227

    Article  CAS  Google Scholar 

  • Yoon JH, Lee MH, Kang SJ, Lee SY, Oh TK (2006) Sphingomonas dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:2165–2169

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Kang SJ, Lee JS, Nam SW, Kim W, Oh TK (2008) Sphingosinicella soli sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 58:173–177

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Park S, Kang SJ, Kim W, Oh TK (2009) Sphingomonas hankookensis sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 59:2788–2793

    Article  CAS  PubMed  Google Scholar 

  • Young CC, Arun AB, Kämpfer P, Busse HJ, Lai WA, Chen WM, Shen FT, Rekha PD (2008) Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. Int J Syst Evol Microbiol 58:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Young CC, Ho MJ, Arun AB, Chen WM, Lai WA, Shen FT, Rekha PD, Yassin AF (2007) Sphingobium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 57:2613–2617

    Article  CAS  PubMed  Google Scholar 

  • Yrjälä K, Suomalainen S, Suhonen EL, Kilpi S, Paulin L, Romantschuk M (1998) Characterization and reclassification of an aromaticand chloroaromatic-degrading Pseudomonas sp., strain HV3, as Sphingomonas sp. HV3. Int J Syst Bacteriol 48:1057–1062

    Article  PubMed  Google Scholar 

  • Yuan J, Lai Q, Zheng T, Shao Z (2009) Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol 59:2084–2088

    Article  CAS  PubMed  Google Scholar 

  • Yun NR, Shin YK, Hwang SY, Kuraishi H, Sugiyama J (2000) Chemotaxonomic and phylogenetic analyses of Sphingomonas strains isolated from ears of plants in the family Gramineae and a proposal of Sphingomonas roseoflava sp. nov. J Gen Appl Microbiol 46:9–18

    Article  CAS  PubMed  Google Scholar 

  • Yurkov B, Gorlenko VM (1990) Erythrobacter sibiricus sp. nov., a new freshwater aerobic bacterial species containing bacteriochlorophyll a. Microbiology (New York) 59:85–89

    Google Scholar 

  • Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, Gadón N, Gorlenko VM, Kompantseva EI, Drews G (1994) Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434

    Article  CAS  PubMed  Google Scholar 

  • Yurkov V, Stackebrandt E, Busse O, Vermeglio A, Gorlenko V, Beatty JT (1997) Reorganization of the genus Erythromicrobium: description of “Erythromicrobium sibiricum” as Sandaracinobacter sibiricus gen. nov., sp. nov., and of “Erythromicrobium ursincola” as Erythromonas ursincola gen. nov., sp. nov. Int J Syst Bacteriol 47:1172–1178

    Article  CAS  PubMed  Google Scholar 

  • Yurkov VV, Krieger S, Stackebrandt E, Beatty JT (1999) Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes. J Bacteriol 181:4517–4525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng Y, Feng F, Liu Y, Li Y, Koblížek M (2013a) Genome Sequences and Photosynthesis Gene Cluster Composition of a Freshwater Aerobic Anoxygenic Phototroph, Sandarakinorhabdus sp. Strain AAP62, Isolated from the Shahu Lake in Ningxia, China. Genome Announc 1 pii:e00034-13

    Google Scholar 

  • Zeng Y, Koblízek M, Feng F, Liu Y, Wu Z, Jian J (2013b) Whole-Genome Sequences of an Aerobic Anoxygenic Phototroph, Blastomonas sp. strain AAP53, Isolated from a Freshwater Desert Lake in Inner Mongolia, China. Genome Announc 1:e0007113

    PubMed  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic Engineering of a Pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  CAS  PubMed  Google Scholar 

  • Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F, Margesin R (2010a) Sphingopyxis bauzanensis sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60:2618–2622

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Liu XY, Liu SJ (2010b) Sphingomonas changbaiensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60:790–795

    Article  CAS  PubMed  Google Scholar 

  • Zhang DC, Busse HJ, Liu HC, Zhou YG, Schinner F, Margesin R (2011) Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 61:587–591

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lang ZF, Zheng JW, Hang BJ, Duan XQ, He J, Li SP (2012) Sphingobium jiangsuense sp. nov., a 3-phenoxybenzoic acid-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 62:800–805

    Article  CAS  PubMed  Google Scholar 

  • Zhao N, Bai Y, Zhao XQ, Yang ZY, Bai FW (2012) Draft genome sequence of the flocculating Zymomonas mobilis strain ZM401 (ATCC 31822). J Bacteriol 194:7008–7009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ziemke F, Höfle MG, Lalucat J, Rossello-Mora (1998) Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186

    Article  CAS  PubMed  Google Scholar 

  • Zipper C, Nickel K, Angst W, Kohler H-P (1996) Complete microbial degradation of both enantiomers of the chiral herbicide Mecoprop [(R, S)-2-(4-Chloro-2-methylphenoxy)propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. nov. Appl Environ Microbiol 62:4318–4322

    CAS  PubMed Central  PubMed  Google Scholar 

  • ZoBell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10:1–49

    CAS  PubMed Central  Google Scholar 

  • Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han S-K (2002) Typical freshwater bacteria: ananalysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie P. Glaeser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Glaeser, S.P., Kämpfer, P. (2014). The Family Sphingomonadaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_302

Download citation

Publish with us

Policies and ethics