Skip to main content

Life at High Temperatures

  • Reference work entry

Abstract

In contrast to the simplistic definition of life as the quality that distinguishes a vital and functional being from a dead body, present-day biological sciences are mechanistically oriented, that is, cells and their inventory are functionally determined by the nonvitalist principle that living matter is composed of chemical substances obeying the fundamental laws of physics. Any biological function, including ecological adaptation, differentiation, and behavior, can be described in terms of the structures of those substances and the reactions that they undergo. However, one apparent difference between the life sciences, on the one hand, and physics or chemistry, on the other, deserves mentioning: Physics and chemistry study the unchanging properties of matter and energy, while the subject matter of biology (presently known organisms) is evolving, that is, includes only a subset that has managed to produce descendents under the changing physical conditions of the biosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albers S-J, van de Vossenberg JL, Driessen AJ, Konings WN (2000) Adaptations of the archaeal cell membrane to heat stress. Front Biosci 5:D813–D820

    PubMed  CAS  Google Scholar 

  • Alexandrov VY (1969) Conformational flexibility of proteins, their resistance to proteinases and temperature conditions of life. Curr Med Biol 3:9–19

    CAS  Google Scholar 

  • Andrä S, Frey G, Jaenicke R, Stetter KO (1998) The thermosome from Methanopyrus kandleri possesses a unique NH4-dependent ATPase activity. Eur J Biochem 255:93–99

    PubMed  Google Scholar 

  • Archibald JM, Logsdon JM Jr, Doolittle W (1999) Recurrent paralogy in the evolution of archaeal chaperonins. Curr Biol 9:1053–1056

    PubMed  CAS  Google Scholar 

  • Arnold FH (2001) Evolutionary protein design. Adv Protein Chem 55:1–225

    Google Scholar 

  • Arnold FH, Wintrode PL, Miyazaki K, Gershenson A (2001) How enzymes adapt: lessons from directed evolution. Trends Biochem Sci 26:100–106

    PubMed  CAS  Google Scholar 

  • Auerbach G, Ostendorp R, Prade L, Korndörfer I, Dams T, Huber R, Jaenicke R (1998) Lactate de-hydrogenase from the hyperthermophilic bacterium Thermotoga maritima: the crystal structure at 2.1 Å resolution reveals strategies for intrinsic protein stabilization. Structure 6:769–781

    PubMed  CAS  Google Scholar 

  • Auffinger P, Westhof E (2002) Melting of the solvent structure around an RNA duplex: a molecular dynamics simulation study. Biophys Chem 95:203–210

    PubMed  CAS  Google Scholar 

  • Baldwin RL (1986) Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci USA 83:8069–8072

    PubMed  CAS  Google Scholar 

  • Baldwin RL (1996) How Hofmeister ion interactions affect protein stability. Biophys J 71:2056–2063

    PubMed  CAS  Google Scholar 

  • Barrett GC (1985) Reactions of amino acids. In: Chemistry and biochemistry of amino acids. Chapman and Hall, New York, pp 354–375

    Google Scholar 

  • Beissinger M, Buchner J (1998) How chaperones fold proteins. Biol Chem 379:245–259

    PubMed  CAS  Google Scholar 

  • Bell GS, Russell RJM, Connaris H, Hough DW, Danson MJ, Taylor GL (2002) Stepwise adaptations of citrate synthase to survival at life’s extremes. From psychrophile to hyperthermophile. Eur J Biochem 269:6250–6260

    PubMed  CAS  Google Scholar 

  • Benedek GB (1997) Cataract and protein condensation. Invest Ophthalmo Vis Sci 38:1911–1921

    CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    PubMed  CAS  Google Scholar 

  • Bernal JD (1939) Structure of proteins. Nature (London) 143:663–667

    Google Scholar 

  • Bernal JD (1958) Structure arrangements of macromolecules. DiscussFaraday Soc 25:7–18

    Google Scholar 

  • Bernhardt T, Lüdemann H-D, Jaenicke R, König H, Stetter KO (1984) Biomolecules are unstable under “Black smoker” conditions. Naturwissenschaften 71:583–586

    CAS  Google Scholar 

  • Bieri A, Kiefhaber T (2000) Kinetic models in protein folding. In: Pain RH (ed) Mechanisms of protein folding, vol 32, 2nd edn, Frontiers in molecular biology. Oxford University Press, Oxford, pp 34–64

    Google Scholar 

  • Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1:14–21

    PubMed  Google Scholar 

  • Blokzijl W, Engberts JBFN (1993) Hydrophobe Effekte—Ansichten und Tatsachen. Angew Chem 105:1610–1648

    CAS  Google Scholar 

  • Böhm G, Jaenicke R (1994) On the relevance of sequence statistics for the properties of extremophilic proteins. Int J Pept Protein Res 43:97–106

    PubMed  Google Scholar 

  • Bosch G, Baumeister W, Essen L-O (2000) Crystal structure of the β-apical domain of the thermosome reveals structural plasticity in the protrusion region. J Mol Biol 301:19–25

    PubMed  CAS  Google Scholar 

  • Branden C, Tooze J (1998) Introduction to protein structure, 2nd edn. Garland, New York, NY, pp 354–356

    Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperature. Springer, New York

    Google Scholar 

  • Brock TD (ed) (1986) Thermophiles: general molecular and applied microbiology. Wiley, New York

    Google Scholar 

  • Brock TD (2000) Biology of microorganisms, 9th edn. Prentice-Hall International, London

    Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archaean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    PubMed  CAS  Google Scholar 

  • Bukau B (ed) (1999) Molecular chaperones and folding catalysts. Harwood Academic Publishers, Amsterdam, The Netherlands

    Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    PubMed  CAS  Google Scholar 

  • Burston SG, Saibil HR (1999) The relationship between chaperonin structure and function. In: Bukau B (ed) Molecular chaperones and folding catalysts. Harwood Academic, Amsterdam, The Netherlands, pp 523–553

    Google Scholar 

  • Cambillau C, Claverie J-M (2000) Structural and genomic correlates of hyperthermostability. J Biol Chem 275:32383–32386

    PubMed  CAS  Google Scholar 

  • Careri G, Gratton E, Yang PH, Rupley JA (1980) Correlation of IR spectroscopic, heat capacity, diamagnetic susceptibility and enzymatic measurements on lysozyme powder. Nature (London) 284:572–573

    CAS  Google Scholar 

  • Carpenter JF, Clegg JS, Crowe JH, Somero GN (eds) (1993) Compatible solutes and macromolecular stability. Cryobiology 30: 201–241

    Google Scholar 

  • Cavicchioli R, Thomas T, Curmi PM (2000) Cold stress response in archaea. Extremophiles 4:321–331

    PubMed  CAS  Google Scholar 

  • Cecil R (1963) Intermolecular bonds in proteins. I: the role of sulfur in proteins. In: Neurath H (ed) The proteins: composition, structure, and function, vol 1, 2nd edn. Academic, New York, pp 380–476

    Google Scholar 

  • Cecil R, McPhee JR (1963) The sulfur chemistry of proteins. Adv Protein Chem 14:255–389

    Google Scholar 

  • Chakravarty S, Varadarajan R (2000) Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett 470:65–69

    PubMed  CAS  Google Scholar 

  • Chang EL (1994) Unusual thermal stability of liposomes made from bipolar tetraether lipids. Biochem Biophys Res Commun 202:673–679

    PubMed  CAS  Google Scholar 

  • Chen J, Walter S, Horwich AL, Smith DL (2001) Folding of malate dehydrogenase inside the GroEL-GroES cavity. Nat Struct Biol 8:721–728

    PubMed  CAS  Google Scholar 

  • Chiu HJ, Johnson E, Schroder I, Rees DC (2001) Crystal structure of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+. Structure 9:311–319

    PubMed  CAS  Google Scholar 

  • Choquet CG, Patel GB, Beveridge TJ, Sprott GD (1994) Stability of pressure extruded liposomes made from archaeobacterial ether lipids. Appl Microbiol Biotechnol 42:375–384

    PubMed  CAS  Google Scholar 

  • Ciulla RA, Burggraf S, Stetter KO, Roberts MF (1994) Occurrence and role of di-myo-inositol-1,1′-phosphate in Methanococcus igneus. Appl Environ Microbiol 60:3660–3664

    PubMed  CAS  Google Scholar 

  • Clantin B, Tricot C, Lonhienne T, Stalon V, Villeret V (2001) Probing the role of oligomerization in the high thermal stability of Pyrococcus furiosus ornithine carbamoyl-transferase by site-specific mutants. Eur J Biochem 268:3937–3942

    PubMed  CAS  Google Scholar 

  • Clegg JS (2001) Cryptobiosis—a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol 128:613–624

    PubMed  CAS  Google Scholar 

  • Collins KD, Washabaugh MW (1985) The Hofmeister series and the behavior of water at interfaces. Q Rev Biophys 18:323–422

    PubMed  CAS  Google Scholar 

  • Conte MR, Conn GL, Brown T, Lane AN (1996) Hydration of the RNA duplex r(CGCAAAUUUGCG)2 determined by NMR. Nucleic Acids Res 24:3693–3699

    PubMed  CAS  Google Scholar 

  • Covan DA (2004) The upper temperature for life—where do we draw the line? Trends Microbiol 12:58–60

    Google Scholar 

  • Creighton TE (1994) Proteins: structures and molecular properties. W. H. Freeman, New York

    Google Scholar 

  • Crothers DM, Zimm BH (1965) Viscosity and sedimentation of the DNA from bacteriophages T2 and T7 and the relation to molecular weight. J Mol Biol 12:525–536

    PubMed  CAS  Google Scholar 

  • Crow JH, Clegg JS (eds) (1978) Dry biological systems. Academic, New York

    Google Scholar 

  • Cummins LL, Owens SR, Risen LM, Lesnik EA, Freier SM, McGee D, Guinosso CJ, Cook PD (1995) Characterization of fully 2’-modified oligoribonucleotide hetero-and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res 23:2019–2024

    PubMed  CAS  Google Scholar 

  • da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. In: Antranikian G (ed) Biotechnology of extremophiles. Springer, New York, pp 118–153

    Google Scholar 

  • Dahlhoff EP, Somero GN (1993) Kinetic and structural adaptation of cytosolic MDHs of eastern Pacific abalones (genus Haliotis) from different thermal habitats: biochemical correlates of biogeographical patterning. J Exp Biol 185:137–150

    CAS  Google Scholar 

  • Dalluge JJ, Hamamoto T, Horikoshi K, Morita RY, Stetter KO, McCloskey JA (1997) Posttranscriptional modification of tRNA in psychrophilic bacteria. J Bacteriol 179:1918–1923

    PubMed  CAS  Google Scholar 

  • Dams T, Jaenicke R (1999) Stability and folding of DHFR from the hyperthermophilic bacterium Thermotoga maritima. Biochemistry 38:9169–9178

    PubMed  CAS  Google Scholar 

  • Daniel RM, Cowan DA (2000) Biomolecular stability and life at high temperatures. Cell Mol Life Sci 57:250–264

    PubMed  CAS  Google Scholar 

  • Daniel RM, Dines M, Petach HH (1996) The denaturation and degradation of stable enzymes at high temperatures. Biochem J 317:1–11

    PubMed  CAS  Google Scholar 

  • Daniel RM, Smith JC, Farrand M, Hery S, Finney JL (1998) Enzyme activity below the dynamical transition at 200 K. Biophys J 75:2504–2507

    PubMed  CAS  Google Scholar 

  • Daniel RM, Finney JL, Reat V, Dunn R, Ferrand M, Smith JC (1999) Enzyme dynamics and activity: time scale dependence of dynamical transitions in glutamate dehydrogenase solution. Biophys J 77:2184–2190

    PubMed  CAS  Google Scholar 

  • Danson MJ (1988) Archaebacteria: the comparative enzymology of their central metabolic pathways. Adv Microb Physiol 29:165–231

    PubMed  CAS  Google Scholar 

  • De Bakker PI, Hunenberger PH, McCammon JA (1999) Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability. J Mol Biol 285:1811–1830

    PubMed  Google Scholar 

  • De Decker BS, O´Brien R, Fleming PJ, Geiger JH, Jackson SP, Sigler PB (1996) The crystal structure of a hyperthermophilic archaeal TATA-box binding protein. J Mol Biol 264:1072–1084

    Google Scholar 

  • de Grado WF (1988) Design of peptides and proteins. Adv Protein Chem 39:51–124

    Google Scholar 

  • de Rosa M, Gambacorta A (1988) The lipids of archaebacteria. Prog Lipid Res 27:153–175

    PubMed  Google Scholar 

  • de Rosa M, Trincone A, Nicolaus B, Gambacorta A (1991) Archaebacteria: lipids, membrane structures and adaptations to environmental stress. In: di Presco G (ed) Life under extreme conditions. Springer, New York, pp 61–87

    Google Scholar 

  • de Vrij W, Bulthuis RA, Konings WN (1988) Comparative study of energy-transducing properties of cytoplasmic membranes from mesophilic and thermophilic Bacillus species. J Bacteriol 170:2359–2366

    PubMed  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen CJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature (London) 392:353–358

    CAS  Google Scholar 

  • di Ruggiero J, Santangelo N, Nackerdien Z, Ravel J, Robb FT (1997) Repair of extensive ionizing-radiation damage at 95 °C in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 179:4643–4645

    Google Scholar 

  • di Ruggiero J, Brown JR, Bogert AP, Robb FT (1999) DNA repair systems in archaea: mementos from the last universal common ancestor? J Mol Evol 49:474–484

    Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155

    PubMed  CAS  Google Scholar 

  • Doolittle RF (1998) Microbial genomes opened up. Nature (London) 392:339–342

    CAS  Google Scholar 

  • Edmonds CG, Crain PF, Gupta R, Hashizume T, Hocart CH, Kowalak JA, Pomerantz SC, Stetter KO, McCloskey JA (1991) Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J Bacteriol 173:3138–3148

    PubMed  CAS  Google Scholar 

  • Edsall JT, Wyman J (1958) Water and its biological significance biophysical chemistry. In: Thermodynamics, electrostatics, and the biological significance of the properties of matter, vol 1. Academic, New York, pp 27–46

    Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 17:549–560

    CAS  Google Scholar 

  • Einstein A (1906) Zur Theorie der Brownschen Bewegung. Ann Phys 19:371–381

    CAS  Google Scholar 

  • Eisenberg H (1976) Biological macromolecules and polyelectrolyte solutions. Clarendon, Oxford

    Google Scholar 

  • Elcock AH (1998) The stability of salt bridges at high temperature: implications for hyperthermophilic proteins. J Mol Biol 284:489–502

    PubMed  CAS  Google Scholar 

  • Elcock AH, McCammon JA (1997) Continuum solvation model for studying protein hydration thermodynamics at high temperatures. J Phys Chem 101:9624–9634

    CAS  Google Scholar 

  • Emmerhoff OJ, Klenk HP, Birkeland NK (1998) Characterization and sequence comparison of temperature-regulated chaperonins from the hyperthermophilic archaeon Archaeoglobus fulgidus. Gene 215:431–438

    PubMed  CAS  Google Scholar 

  • Fabry S, Hensel R (1987) Purification and characterization of GAPDH from the thermophilic archaebacterium Methanothermus fervidus. Eur J Biochem 165:147–155

    PubMed  CAS  Google Scholar 

  • Facchiano AM, Colonna G, Ragone R (1998) Helix stabilizing factors and stabilisation of thermophilic proteins: an X-ray based study. Protein Eng 11:753–760

    PubMed  CAS  Google Scholar 

  • Fersht AR (1987) The hydrogen bond in molecular recognition. Trends Biochem Sci 12:321–325

    Google Scholar 

  • Fersht A (1998a) Protein stability, disulfide crosslinks. In: Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W. H. Freeman, New York, pp 534–535

    Google Scholar 

  • Fersht A (1998b) Forces between molecules, and binding energies. In: Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W. H. Freeman, New York, pp 324–348

    Google Scholar 

  • Figueiredo L, Klunker D, Ang D, Naylor DJ, Kerner MJ, Georgopoulos C, Hartl FU, Hayer-Hartl M (2004) Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation. J Biol Chem 279:1090–1099

    PubMed  CAS  Google Scholar 

  • Finegold L (1986) Molecular aspects of adaptation to extreme cold environments. Adv Space Res 6:257–264

    PubMed  CAS  Google Scholar 

  • Finegold L (1998) In: Fink AL, Goto Y (eds) Molecular chaperones in the life cycles of proteins: structure, function and mode of action. Marcel and Dekker, New York, p 626

    Google Scholar 

  • Forterre P, Bergerat A, López-Garcia P (1996) The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea. FEMS Microbiol Rev 18:237–248

    PubMed  CAS  Google Scholar 

  • Franks F (ed) (1975–1982) Water: a comprehensive treatise. Plenum, New York, pp 1–7

    Google Scholar 

  • Franks F (1985a) Biophysics and biochemistry at low temperature. Cambridge University Press, New York

    Google Scholar 

  • Franks F (ed) (1985–1990) Water science reviews. Cambridge University Press, New York 1 ff

    Google Scholar 

  • Franks F, Eagland D (1975) The role of solvent interactions in protein conformation CRC. Crit Rev Biochem 3:165–219

    CAS  Google Scholar 

  • Franks F, Grigera JR (1990) Solution properties of low molecular weight polyhydroxy compounds. In: Franks F (ed) Water science reviews, vol 5. Cambridge University Press, New York, pp 187–289

    Google Scholar 

  • Franks F, Gent M, Johnson HH (1963) The solubility of benzene in water. J Chem Soc 8:2716–2723

    Google Scholar 

  • Franks F, Mathias SF, Hatley RHM (1990) Water, temperature and life. Phil Trans R Soc Lond B 326:517–533

    CAS  Google Scholar 

  • Freier SM, Sugimoto N, Sinclair A, Alkema D, Neilson T, Kierzek A, Caruthers MH, Turner DH (1986) Stability of XGCGCp and XGCGCYp helices: an empirical Estimate of the energetics of H-bonds in nucleic acids. Biochemistry 25:3214–3219

    PubMed  CAS  Google Scholar 

  • Frey AH (1993) Electromagnetic field interactions with biological systems. FASEB J 7:272–281

    PubMed  CAS  Google Scholar 

  • Friedman M (1973) The chemistry and biochemistry of the sulfhydryl group in amino acids peptides and proteins. Pergamon, New York

    Google Scholar 

  • Galtier N, Lobry JR (1997) Relationships between genomic G + C content, RNA secondary structure, and optimal growth temperatures in prokaryotes. J Mol Evol 44:632–636

    PubMed  CAS  Google Scholar 

  • Gliozzi A, Rolandi R, de Rosa M, Gambacorta A (1983) Monolayer black membranes from bipolar lipids of archaebacteria and their temperature-induced structural changes. J Membr Biol 75:45–56

    PubMed  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70 and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    PubMed  CAS  Google Scholar 

  • Goloubinoff P, Mogk A, Peres A, Ben Z, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA 96:13732–13737

    PubMed  CAS  Google Scholar 

  • Goodfellow JM, Cruzeiro-Hansson L, Norberto de Souza O, Parker K, Sayle T, Umrania Y (1994) DNA structure, hydration and dynamics. Int J Radiat Biol 66:471–478

    PubMed  CAS  Google Scholar 

  • Gottschalk A (1972) Glycoproteins: composition, structure, and function, 2nd edn. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Grantcharova V, Alm EJ, Baker D, Horwich AL (2001) Mechanisms of protein folding. Curr Opin Struct Biol 11:70–82

    PubMed  CAS  Google Scholar 

  • Graumann P, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166:293–300

    PubMed  CAS  Google Scholar 

  • Greenstein JP, Winitz M (1961) Chemistry of the amino acids. Wiley, New York

    Google Scholar 

  • Gribaldo S, Lumia V, Creti R, de Macario EC, Sanangelantoni A, Cammarano P (1999) Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenics. J Bacteriol 181:434–443

    PubMed  CAS  Google Scholar 

  • Grimsley GR, Shaw KL, Fee LR, Alston RW, Huyghues-Despointes BM, Thurlkill RL, Scholtz JM, Pace CN (1999) Increasing protein stability by altering long-range coulombic interactions. Protein Sci 8:1843–1849

    PubMed  CAS  Google Scholar 

  • Grogan DW (1998) Hyperthermophiles and the problem of DNA stability. Mol Microbiol 28:1043–1049

    PubMed  CAS  Google Scholar 

  • Groß M, Jaenicke R (1994) Proteins under pressure: the influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem 221:617–630

    PubMed  Google Scholar 

  • Guipaud O, Marguet E, Knoll KM, Boutier-de la Tour C, Forterre P (1997) Both DNA gyrase and reverse gyrase are present in the hyperthermophilic bacterium Thermotoga maritima. Proc Natl Acad Sci USA 94:10606–10611

    PubMed  CAS  Google Scholar 

  • Gutsche I, Essen L-O, Baumeister W (1999) Group II chaperonins: new TriC(k)s and turns of a protein folding machine. J Mol Biol 293:295–312

    PubMed  CAS  Google Scholar 

  • Gyi JI, Lane AN, Conn GL, Brown T (1998) The orientation and dynamics of the C2’-OH and hydration of RNA and DNA.RNA hybrids. Nucleic Acids Res 26:3104–3110

    PubMed  CAS  Google Scholar 

  • Hafenbradl D, Keller M, Stetter KO (1993) Lipid analysis of Methanopyrus kandleri. FEMS Microbiol Lett 136:199–202

    Google Scholar 

  • Haney PJ, Badger JH, Buldak GL, Reich CL, Woese CR, Olsen GJ (1999) Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci USA 96:3578–3583

    PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Protein folding—Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    PubMed  CAS  Google Scholar 

  • Heller M, John M, Coles M, Bosch G, Baumeister W, Kessler H (2004) NMR studies on the substrate-binding domains of the thermosome: structural plasticity in the protrusion region. J Mol Biol 336:717–729

    PubMed  CAS  Google Scholar 

  • Hennig M, Darimont B, Sterner R, Kirschner K, Jansonius JN (1995) 2.0 Å Structure of indole-3-glycerol phosphate synthase from the hyperthermophile Sulfolobus solfataricus: possible determinants of protein stability. Structure 3:1295–1306

    PubMed  CAS  Google Scholar 

  • Hennig M, Sterner R, Kirschner K, Jansonius JN (1997) Crystal structure at 2.0 Å resolution of phosphoribosylanthranilate isomerase from the hyperthermophile Thermotoga maritima: possible determinants of protein stability. Biochemistry 36:6009–6016

    PubMed  CAS  Google Scholar 

  • Hensel R, König H (1988) Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMS Microbiol Lett 49:75–79

    CAS  Google Scholar 

  • Hensel R, Jakob I, Scheer H, Lottspeich R (1992) Proteins from hyperthermophilic archaea: stability towards covalent modification of the polypeptide chain. Biochem Soc Symp 58:127–133

    PubMed  CAS  Google Scholar 

  • Hernández G, Jenney FE Jr, Adams MWW, LeMaster DM (2000) Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature. Proc Natl Acad Sci USA 97:3166–3170

    PubMed  Google Scholar 

  • Hinz H-J, Schmid FX (1977) Thermodynamics of the LDH reaction. In: Sund H (ed) Pyridine nucleotide-dependent dehydrogenases. W de Gruyter, New York, pp 292–306

    Google Scholar 

  • Hochachka PW, Somero GN (1973) Strategies in biochemical adaptation. W.B. Saunders, Philadelphia

    Google Scholar 

  • Hochachka PW, Somero GN (1984) Temperature adaptation biochemical adaptation. Princeton University Press, Princeton, pp 355–449

    Google Scholar 

  • Höcker B, Jürgens C, Wilmanns M, Sterner R (2001) Stability, catalytic versatility and evolution of the (βα)8-barrel fold. Curr Opin Biotechnol 12:376–381

    PubMed  Google Scholar 

  • Hofmeister F (1888) Zur Lehre von der Wirkung der Salze: 2. Mittheilung. Arch Exp Pathol Pharmakol 24:247–260

    Google Scholar 

  • Horst J-P, Fritz H-J (1996) Counteracting the mutagenic effect of hydrolytic deamination of DNA 5-methylcytosine residues at high temperature: DNA mismatch N-glycosylase Mig.Mth of the thermophilic archaeon Methanobacterium thermoautotrophicum THF. EMBO J 15:5459–5469

    PubMed  CAS  Google Scholar 

  • Horwich AL, Weber-Ban EU, Finley D (1999) Chaperone rings in protein folding and degradation. Proc Natl Acad Sci USA 96:11033–11040

    PubMed  CAS  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbion. Nature 417:63–67

    PubMed  CAS  Google Scholar 

  • Huber H, Hohn MJ, Stetter KO, Rachel R (2003) The phylum Nanoarchaeota: present knowledge and future perspectives of a unique form of life. Res Microbiol 154:165–171

    PubMed  CAS  Google Scholar 

  • Ichikawa JK, Clarke S (1998) A highly active protein repair enzyme from an extreme thermophile: the isoaspartyl methyltransferase from Thermotoga maritima. Arch Biophys Biochem 358:222–231

    CAS  Google Scholar 

  • Inoue H, Hayase Y, Imura A, Iwai S, Miura K, Ohtsuka E (1987) Synthesis and hybridization studies on two complementary nona(2’-O-methyl)ribonucleotides. Nucleic Acids Res 15:6131–6148

    PubMed  CAS  Google Scholar 

  • Isabelle V, Franchet-Beuzit J, Sabattier R, Laine B, Spotheim-Maurizot M, Charlier M (1993) Radioprotection of DNA by a DNA-binding protein: MC1 chromosomal protein from the archaeon Methanosarcina CHTI55. Int J Radiat Biol 63:2232–2236

    Google Scholar 

  • Jacob U, Gaestel M, Katrin E, Buchner J (1993) sHSPs are molecular chaperones. J Biol Chem 268:1517–1520

    Google Scholar 

  • Jaenicke R (1971) Volume changes in the isoelectric heat aggregation of serum albumin. Eur J Biochem 21:110–115

    PubMed  CAS  Google Scholar 

  • Jaenicke R (1981) Enzymes under extremes of physical conditions. Annu Rev Biophys Bioeng 10:1–67

    PubMed  CAS  Google Scholar 

  • Jaenicke R (1987) Folding and association of proteins. Progr Biophys Mol Biol 49:117–237

    CAS  Google Scholar 

  • Jaenicke R (1990) Protein structure and function at low temperature. Proc Natl Acad Sci USA 326:535–553

    CAS  Google Scholar 

  • Jaenicke R (1991a) Protein folding: local structures, domains, subunits and association. Biochemistry 30:3147–3161

    PubMed  CAS  Google Scholar 

  • Jaenicke R (1991b) Protein stability and molecular adaptation to extreme conditions. Eur J Biochem 202:715–728

    PubMed  CAS  Google Scholar 

  • Jaenicke R (1999) Stability and folding of domain proteins. Progr Biophys Mol Biol 71:155–241

    CAS  Google Scholar 

  • Jaenicke R (2000a) Stability and stabilization of globular proteins in solution. J Biotechnol 79:193–203

    PubMed  CAS  Google Scholar 

  • Jaenicke R (2000b) Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity? Proc Natl Acad Sci USA 97:2962–2964

    PubMed  CAS  Google Scholar 

  • Jaenicke R, Böhm G (1998) The stability opf proteins in extreme environments. Curr Opin Struct Biol 8:738–748

    PubMed  CAS  Google Scholar 

  • Jaenicke R, Böhm G (2001) Thermostability of proteins from Thermotoga maritima. Meth Enzymol 334:438–469

    PubMed  CAS  Google Scholar 

  • Jaenicke R, Creighton TE (1993) Junior chaperones: α-Crystallins of the vertebrate eye lens are members of the family of small heat shock proteins sharing with other family members the ability to “chaperone” protein folding. Curr Biol 3:234–235

    PubMed  CAS  Google Scholar 

  • Jaenicke R, Lilie H (2000) Folding and association of oligomeric and multimeric proteins. Adv Protein Chem 53:329–401

    PubMed  CAS  Google Scholar 

  • Jaenicke R, Seckler R (1997) Protein misassembly in vitro. Adv Protein Chem 50:1–59

    PubMed  CAS  Google Scholar 

  • Jaenicke R, Slingsby C (2001) Lens crystallins and their microbial homologs: structure, stability and function. Crit Rev Biochem Mol Biol 36:435–499

    PubMed  CAS  Google Scholar 

  • Jaenicke R, Schurig H, Beaucamp N, Ostendorp R (1996) Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. Adv Protein Chem 48:181–269

    PubMed  CAS  Google Scholar 

  • Jiang Y, Nock S, Nesper M, Sprinzl M, Sigler PB (1996) Structure and importance of the dimerization domain in elongation factor Ts from Thermus thermophilus. Biochemistry 35:10269–10278

    PubMed  CAS  Google Scholar 

  • Jung A, Bamann C, Kremer W, Kalbitzer HR, Brunner E (2004) High-temperature solution NMR structure of TmCsp. Protein Sci 13:342–350

    PubMed  CAS  Google Scholar 

  • Kagawa HK, Osipiuk J, Maltsev N, Overbeek R, Quaite-Randall E, Joachimiak A, Trent JD (1995) The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. J Mol Biol 253:712–725

    PubMed  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934

    PubMed  CAS  Google Scholar 

  • Kates M (1995) Adventures with membrane lipids. Biochem Soc Trans 23:697–709

    PubMed  CAS  Google Scholar 

  • Kates M, Moldoveanu N, Stewart LC (1993) On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim Biophys Acta 1169:46–53

    PubMed  CAS  Google Scholar 

  • Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    PubMed  CAS  Google Scholar 

  • Kawai G, Yamamoto Y, Kamimura T, Masegi T, Sekine M, Hata T, Iimori T, Watanabe T, Miyazawa T, Yokoyama S (1992) Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2’-hydroxyl group. Biochemistry 31:1040–1046

    PubMed  CAS  Google Scholar 

  • Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P, the AT3–60 Party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature (London) 412:145–149

    CAS  Google Scholar 

  • Kern G (2005) In: Kiefhaber T, Buchner J (eds) Protein folding handbook, vol 2. Wiley-VCH, New York, NY, p 2560

    Google Scholar 

  • Kern G, Schülke N, Schmid FX, Jaenicke R (1992) Quaternary structure and stability of internal, external and core-glycosylated invertase from yeast. Protein Sci 1:120–131

    PubMed  CAS  Google Scholar 

  • Kern G, Kern D, Jaenicke R, Seckler R (1993) Kinetics of folding and association of differently glycosylated variants of invertase from Saccharomyces cerevisiae. Protein Sci 2:1862–1868

    PubMed  CAS  Google Scholar 

  • Kiener A, Husain I, Sancar A, Walsh C (1989) Purification and properties of Methanobacterium thermoautotrophicum DNA photolyase. J Biol Chem 264:13880–13887

    PubMed  CAS  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599

    PubMed  CAS  Google Scholar 

  • Kim R, Lai L, Lee H-H, Cheong G-W, Kim KK, Wu Z, Yokota H, Marqusee S, Kim SH (2003) On the mechanism of chaperone activity of the sHsp from Methanococcus jannaschii. Proc Natl Acad Sci USA 100:8151–8155

    PubMed  CAS  Google Scholar 

  • Klunker D, Haas B, Hirtreiter A, Figueiredo L, Naylor DJ, Pfeofer G, Müller V, Deppenmeier U, Gottscahlk G, Hartl FU, Hayer-Hartl M (2003) Coexistence of group I and group II chaperonins in the archaeon Methanosarcina Mazei. J Biol Chem 278:33256–33267

    PubMed  CAS  Google Scholar 

  • Knapp S, Ladenstein R, Galinski EA (1999) Extrinsic protein stabilization by the naturally occurring osmolytes β-hydroxyectoine and betaine. Extremophiles 3:191–198

    PubMed  CAS  Google Scholar 

  • Kneifel H, Stetter KO, Andreesen JR, Weigel J, König H, Schoberth SM (1986) Distribution of polyamines in representative species of archaebacteria. Syst Appl Microbiol 7:241–245

    CAS  Google Scholar 

  • Koonin EV, Tatusov RL, Galperin ML (1998) Beyond complete genomes: from sequence to structure and function. Curr Opin Struct Biol 8:355–363

    PubMed  CAS  Google Scholar 

  • Korber P, Stahl JM, Nierhaus KH, Bardwell JC (2000) Hsp15: a ribosome-associated heat shock protein. EMBO J 19:741–748

    PubMed  CAS  Google Scholar 

  • Koulis A, Cowan DA, Pearl LH, Savva R (1996) Uracil-DNA glycosylase activities in hyperthermophilic microorganisms. FEMS Microbiol Lett 143:267–271

    PubMed  CAS  Google Scholar 

  • Kowalak JA, Dalluge JJ, McCloskey JA, Stetter KO (1994) The role of posttranscriptional modification in the stabilization of transfer RNA from hyper-thermophiles. Biochemistry 33:1869–1876

    Google Scholar 

  • Kumar A, Ma B, Tsai CJ, Nussinov R (2000a) Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers. Proteins 38:368–383

    PubMed  CAS  Google Scholar 

  • Kumar S, Tsai CJ, Nussinov R (2000b) Factors enhancing protein thermostability. Protein Eng 13:179–191

    PubMed  CAS  Google Scholar 

  • Kuntz ID (1971) Hydration of macromolecules IV: polypeptide conformation in frozen solution. J Am Chem Soc 93:516–518

    PubMed  CAS  Google Scholar 

  • Kuntz ID, Kauzmann W (1974) Hydration of proteins and polypeptides. Adv Protein Chem 28:239–345

    PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    PubMed  CAS  Google Scholar 

  • Laksanalamai P, Robb FT (2004) Small heat shock proteins from extremophiles. Extremophiles 8:1–11

    PubMed  CAS  Google Scholar 

  • Lamosa P, Martins LO, da Costa MS, Santos H (1998) Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl Environ Microbiol 64:3591–3598

    PubMed  CAS  Google Scholar 

  • Langworthy TA, Pond JL (1986) Membranes and lipids of thermophiles. In: Brock TD (ed) Thermophiles: general, molecular and applied microbiology. Wiley, New York, NY, pp 107–135

    Google Scholar 

  • Lauffer MA (1975) Entropy-driven processes in biology. Springer, New York, NY

    Google Scholar 

  • Laws RM, Franks F (eds) (1990) Life at low temperature. Phil Trans R Soc Lond B 326:517–692

    Google Scholar 

  • Lazarides T, Lee I, Kaplan M (1997) Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Protein Sci 6:2589–2605

    Google Scholar 

  • Ledl F, Schleicher E (1990) Die Maillard Reaktion in Lebensmitteln und im menschlichen Körper. Angew Chem 102:597–626

    CAS  Google Scholar 

  • Leibrock E, Bayer P, Lüdemann H-D (1995) Non-enzymatic hydrolysis of ATP at high temperatures and high pressures. Biophys Chem 54:175–180

    PubMed  CAS  Google Scholar 

  • Leroux MP, Fändrich M, Klunker D, Siegers K, Lupas AN, Brown JR, Schiebel E, Dobson CM, Hartl FU (1999) MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J 18:6730–6743

    PubMed  CAS  Google Scholar 

  • Li WT, Shriver JW, Reeve JN (2000) Mutational analysis of differences in thermostability between histones from mesophilic and hyperthermophilic archaea. J Bacteriol 182:812–817

    PubMed  CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature (London) 362:709–715

    CAS  Google Scholar 

  • Loladze VV, Ibarra-Molero B, Sanchez-Ruiz JM, Makhatadze GI (1999) Engineering a thermostable protein via optimization of charge-charge interactions on the protein surface. Biochemistry 38:16419–16423

    PubMed  CAS  Google Scholar 

  • López-Garcia P, Forterre P (1997) DNA topology in hyperthermophilic archaea: Reference states and their variation with growth phase, growth temperature and temperature stresses. Mol Microbiol 23:1267–1279

    PubMed  Google Scholar 

  • López-Garcia P, Forterre P (2000) DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles. Bioessays 22:738–746

    PubMed  Google Scholar 

  • Lorimer G (1996) A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. FASEB J 10:5–9

    PubMed  CAS  Google Scholar 

  • Lumry R, Rajender S (1970) Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 9:1125–1227

    PubMed  CAS  Google Scholar 

  • Macario AJL, Lange M, Ahring BK, Conway de Macario E (1999) Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 63:923–967

    PubMed  CAS  Google Scholar 

  • Maes D, Zeelen JP, Thanki N, Beaucamp N, Alvarez M, Thi MH, Backmann J, Martial JA, Wyns L, Jaenicke R, Wierenga RK (1999) The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures. Proteins 37:441–453

    PubMed  CAS  Google Scholar 

  • Makhatadze GI, Privalov PL (1995) Energetics of protein structure. Adv Protein Chem 47:307–345

    PubMed  CAS  Google Scholar 

  • Malakauskas SM, Mayo SL (1998) Design, structure and stability of a hyperthermophilic protein variant. Nat Struct Biol 5:470–475

    PubMed  CAS  Google Scholar 

  • Mallick R, Boutz DR, Eisenberg D, Yeates TO (2002) Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds. Proc Natl Acad Sci USA 99:9679–9684

    PubMed  CAS  Google Scholar 

  • Marguet E, Forterre P (1994) DNA stability at temperatures typical for hyperthermophiles. Nucleic Acids Res 22:1681–1686

    PubMed  CAS  Google Scholar 

  • Marguet E, Forterre P (1998) Protection of DNA by salts against thermodegradation at temperatures typical for hyperthermophiles. Extremophiles 2:115–122

    PubMed  CAS  Google Scholar 

  • Marguet E, Forterre P (2001) Stability and manipulation of DNA at extreme temperatures. Meth Enzymol 334:205–215

    PubMed  CAS  Google Scholar 

  • Marshall CJ (1997) Cold-adapted enzymes. Trends Biotechnol 15:359–364

    PubMed  CAS  Google Scholar 

  • Martins LO, Santos H (1995) Accumulation of mannosylglycerate and di-myo-inositol-phosphate by Pyrococcus furiosus in response to salinity and temperature. Appl Environ Microbiol 61:3299–3303

    PubMed  CAS  Google Scholar 

  • Martins LO, Carreto LS, da Costa MS, Santos H (1996) New compatible solutes related to di-myo-inositol-phosphate in members of the order Thermotogales. J Bacteriol 178:5644–5651

    PubMed  CAS  Google Scholar 

  • Martins LO, Huber R, Huber H, Stetter KO, da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic archaea. Appl Environ Microbiol 63:896–902

    PubMed  CAS  Google Scholar 

  • Mathai G, Sprott GD, Zeidel ML (2001) Molecular mechanism of water and solute transport across archaebacterial lipid membranes. J Biol Chem 276:27266–27271

    PubMed  CAS  Google Scholar 

  • Matthews BW (1993) Structural and genetic analysis of protein stability. Annu Rev Biochem 62:139–160

    PubMed  CAS  Google Scholar 

  • Matthews BW (1995) Studies on protein stability with T4 lysozyme. Adv Protein Chem 46:249–278

    PubMed  CAS  Google Scholar 

  • Matthews BW (1996) Structural and genetic analysis of the folding and function of T4 lysozyme. FASEB J 10:35–41

    PubMed  CAS  Google Scholar 

  • Matthews BW, Nicholson H, Becktel WJ (1987) Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci USA 84:6663–6667

    PubMed  CAS  Google Scholar 

  • McAfee JG, Edmondson SP, Zegar I, Shriver JW (1996) Equilibrium DNA binding of Sac7d protein from the hyperthermophile Sulfolobus acidocaldarius: fluorescence and circular dichroism studies. Biochemistry 35:4034–4045

    PubMed  CAS  Google Scholar 

  • McFall-Ngai M, Horwith J (1990) A comparative study of the thermal stability of the vertebrate eye lens: Antarctic fish to the desert iguana. Exp Eye Res 50:703–709

    PubMed  CAS  Google Scholar 

  • Meister A (1965) Biochemistry of the amino acids, 2nd edn. Academic, New York

    Google Scholar 

  • Melchior DL (1982) Lipid phase transitions and regulation of membrane fluidity in prokaryotes. Curr Top Membr Transp 17:263–316

    CAS  Google Scholar 

  • Merz A, Knöchel T, Jansonius JN, Kirschner K (1999) The hyperthermostable indole-glycerol phosphate synthase from Thermotoga maritima is destabilised by mutational: disruption of two solvent-exposed salt bridges. J Mol Biol 288:753–763

    PubMed  CAS  Google Scholar 

  • Meyer J, Clay MD, Johnson MK, Stubna A, Münck E, Higgins C, Wittung-Stafshede P (2002) A hyperthermophilic plant-type [2Fe-2 S] ferredoxin from Aquifex aeolicus is stabilized by a disulfide bond. Biochemistry 41:3096–3108

    PubMed  CAS  Google Scholar 

  • Miller SL, Lazcano A (1995) The origin of life—did it occur at high temperature? J Mol Evol 41:689–692

    PubMed  CAS  Google Scholar 

  • Minton AP (2000) Implications of macromolecular crowding for protein assembly. Cur Opin Struct Biol 10:34–39

    CAS  Google Scholar 

  • Minton KW, Daly MJ (1995) A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans. Bioessays 17:457–464

    PubMed  CAS  Google Scholar 

  • Minuth T, Frey G, Lindner P, Rachel R, Stetter KO, Jaenicke R (1998) Recombinant homo-and hetero-oligomers of an ultrastable chaperonin from the archaeon Pyrodictium occultum show chaperone activity in vitro. Eur J Biochem 258:837–845

    PubMed  CAS  Google Scholar 

  • Minuth T, Henn M, Rutkat K, Andrä S, Frey G, Rachel R, Stetter KO, Jaenicke R (1999) The recombinant thermosome from the archaeon Methanopyrus kandleri: in vitro analysis of its chaperone activity. Biol Chem 380:55–62

    PubMed  CAS  Google Scholar 

  • Mirsky AE, Pauling L (1936) On the structure of native, denatured and coagulated proteins. Proc Natl Acad Sci USA 22:439–447

    PubMed  CAS  Google Scholar 

  • Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949

    PubMed  CAS  Google Scholar 

  • Motohashi K, Watanabe Y, Yohda M, Yoshida M (1999) Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc Natl Acad Sci USA 96:7184–7189

    PubMed  CAS  Google Scholar 

  • Mueller U, Perl D, Schmid FX, Heinemann U (2000) Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. J Mol Biol 297:975–988

    PubMed  CAS  Google Scholar 

  • Murphy KP, Freire E (1992) Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem 43:313–361

    PubMed  CAS  Google Scholar 

  • Myers JK, Pace CN, Scholtz JM (1995) Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci 4:2138–2148

    PubMed  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Fraser CM (1999) Evidence for lateral gene transfer between archaea and bacteria from gene sequence of Thermotoga maritima. Nature (London) 399:323–329

    CAS  Google Scholar 

  • Németh A, Svingor A, Pocsik M, Dobo J, Magyar C, Szilagyi A, Gal P, Závodszky P (2000) Mirror image mutations reveal the significance of an intersubunit ion cluster in the stability of 3-isopropylmalate dehydrogenase. FEBS Lett 468:48–52

    PubMed  Google Scholar 

  • Nichols PD, Franzmann PD (1992) Unsaturated diether phospholipids in the Antarctic methanogen Methanococcoides burtonii. FEMS Microbiol Lett 98:205–208

    CAS  Google Scholar 

  • Nisbet E (2000) The realms of archaean life. Nature (London) 405:625–626

    CAS  Google Scholar 

  • Noon KR, Bruenger E, McCloskey JA (1998) Posttranscriptional modifications in 16 S rRNA and 23 S rRNA of the archaeal hyperthermophile Sulfolobus solfataricus. J Bacteriol 180:2883–2888

    PubMed  CAS  Google Scholar 

  • Nordberg Karlsson E, Abou-Hachem M, Holst O, Danson MJ, Hough DW (2002) Rhodothermus marinus: a thermophilic bacterium producing dimeric and hexameric citrate synthase isoenzymes. Extremophiles 6:51–56

    PubMed  Google Scholar 

  • Nordberg Karlsson E, Crennell SJ, Higgins C, Nawaz S, Yeoh L, Hough DW, Danson MJ (2003) Citrate synthase from Thermus aquaticus: a thermostable bacterial enzyme with a five-membered inter-subunit ionic network. Extremophiles 7:9–16

    PubMed  CAS  Google Scholar 

  • Nozaki Y, Tanford C (1971) The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobic scale. J Biol Chem 246:2211–2217

    PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature (London) 405:298–304

    Google Scholar 

  • Ögrünc M, Becker DF, Ragsdale SW, Sancar A (1998) Nucleotide excision repair in the third kingdom. J Bacteriol 180:5796–5798

    PubMed  Google Scholar 

  • Otting G, Liepinsh E, Wüthrich K (1991) Protein hydration in aqueous solution. Science 254:974–980

    PubMed  CAS  Google Scholar 

  • Pace CN (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Meth Enzymol 131:266–280

    PubMed  CAS  Google Scholar 

  • Pace CN (1992) Contribution of the hydrophobic effect to globular protein stability. J Mol Biol 226:29–35

    PubMed  CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    PubMed  CAS  Google Scholar 

  • Pace CN (2000) Single surface stabilizer. Nat Struct Biol 7:345–346

    PubMed  CAS  Google Scholar 

  • Pace CN (2001) Polar group burial contributes more to protein stability than non-polar group burial. Biochemistry 40:310–313

    PubMed  CAS  Google Scholar 

  • Pace CN, Scholtz JM (1997) Measuring the conformational stability of a protein. In: Creighton TE (ed) Protein structure: a practical approach. IRL Press, Oxford, UK, pp 299–321

    Google Scholar 

  • Pace CN, Shirley BA, McNutt M, Gajiwala K (1996) Forces contributing to the conformational stability of proteins. FASEB J 10:75–83

    PubMed  CAS  Google Scholar 

  • Pappenberger G, Schurig H, Jaenicke R (1997) Disruption of an ionic network leads to accelerated thermal denaturation of GAPDH from the hyperthermophilic bacterium Thermotoga maritima. J Mol Biol 274:676–683

    PubMed  CAS  Google Scholar 

  • Pauling L (1940) The nature of the chemical bond. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Pauling L, Hayward R (1964) The architecture of molecules. W. H. Freeman, San Francisco and London, US/UK, pp 1–116

    Google Scholar 

  • Peak MJ, Robb FT, Peak JG (1995) Extreme resistance to thermally induced DNA backbone breaks in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 177:6316–6318

    PubMed  CAS  Google Scholar 

  • Perl D, Schmid FX (2001) Some like it hot: the molecular determinants of protein thermostability. Chem BioChem 3:39–44

    Google Scholar 

  • Perl D, Welker C, Schindler T, Schröder K, Marahiel MA, Jaenicke R, Schmid FX (1998) Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold-shock proteins. Nature Struct Biol 5:229–235

    PubMed  CAS  Google Scholar 

  • Perl D, Mueller U, Heinemann U, Schmid FX (2000) Two exposed amino acid residues confer thermostability on a cold shock protein. Nature Struct Biol 7:380–383

    PubMed  CAS  Google Scholar 

  • Perutz MF, Raidt H (1975) Stereochemical basis of heat stability in bacterial ferredoxins and in hemoglobin A2. Nature (London) 255:256–259

    CAS  Google Scholar 

  • Peterson ME, Eisenthal R, Danson MJ, Spence A, Daniel RM (2004) A new, intrinsic, thermal parameter for enzymes reveals true temperature optima. J Biol Chem 279(20):20717–20722

    PubMed  CAS  Google Scholar 

  • Petsko GA (2001) Structural basis of thermostability in hyperthermophilic proteins, or “There’s more than one way to skin a cat. Meth Enzymol 334:469–478

    PubMed  CAS  Google Scholar 

  • Petukhov M, Kil Y, Kuramitsu S, Lanzov V (1997) Insights into thermal resistance of proteins from the intrinsic stability of their α-helices. Proteins 29:309–320

    PubMed  CAS  Google Scholar 

  • Pfeil W (1998) Protein stability and folding: a collection of thermodynamic data. Springer, New York, NY

    Google Scholar 

  • Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2:175–180

    PubMed  CAS  Google Scholar 

  • Phipps BM, Hoffmann A, Stetter KO, Baumeister W (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10:1711–1722

    PubMed  CAS  Google Scholar 

  • Plaza del Pino IM, Ibarra-Molero B, Sanchez-Ruiz JM (2000) Lower kinetic limit to protein thermal stability: a proposal regarding protein stability in vivo and its relation with misfolding diseases. Prot Struct Funct Genet 40:58–70

    CAS  Google Scholar 

  • Privalov PL (1979) Stability of proteins. Adv Protein Chem 33:167–241

    PubMed  CAS  Google Scholar 

  • Privalov PL (1988) Hydrophobic interactions in proteins. In: Winnacker E-L, Huber R (eds) Protein structure and protein design. Springer, New York, NY, pp 6–15

    Google Scholar 

  • Privalov PL, Gill SJ (1988) Stability of protein structure and hydrophobic interaction. Adv Protein Chem 39:193–231

    Google Scholar 

  • Ramakrishnan V, Verhagen MFJM, Adams MWW (1997) Characterization of di-myo-inositol-1,1′-phosphate in the hyperthermophilic bacterium Thermotoga maritima. Appl Environ Microbiol 63:347–350

    PubMed  CAS  Google Scholar 

  • Ramirez F, Marecek JF, Szamosi J (1980) Magnesium and calcium ion effects on hydrolysis rates of ATP. J Org Chem 45:4748–4752

    CAS  Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic sulphide deposit. Nature (London) 405:676–679

    CAS  Google Scholar 

  • Raviv U, Laurat P, Klein J (2001) Fluidity of water confined to subnanometre films. Nature (London) 413:51–54

    CAS  Google Scholar 

  • Relini A, Cassinadri D, Fan Q, Gulik A, Mirghani Z, de Rosa M, Gliozzi A (1996) Effect of physical constraints on the mechanism of membrane fusion: bolaform lipid vesicles as model systems. Biophys J 71:1789–1795

    PubMed  CAS  Google Scholar 

  • Richards FM (1977) Areas, volumes, packing and protein structure. Ann Rev Biophys Bioeng 6:151–176

    CAS  Google Scholar 

  • Ring K, Henkel B, Valenteijn A, Gutermann R (1986) Studies on the permeability and stability of liposomes derived from a membrane spanning bipolar archaebacterial tetraether lipid. In: Schmidt KH (ed) Liposomes as drug carriers. Thieme Verlag, Stuttgart, Germany, pp 101–123

    Google Scholar 

  • Rose GD, Geselowitz AR, Lesser G-J, Lee RH, Zehfuss MH (1985) Hydrophobicity of amino acid residues in globular proteins. Science 229:834–838

    PubMed  CAS  Google Scholar 

  • Rosing MT (1999) 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676

    PubMed  CAS  Google Scholar 

  • Saenger W (1984) Water and nucleic acids principles of nucleic acid structure. Springer, New York, NY, pp 368–384

    Google Scholar 

  • Sanchez-Ruiz JM, Makhatadze GI (2001) To charge or not to charge? Trends Biotechnol 19:132–135

    PubMed  CAS  Google Scholar 

  • Schellman JA (1997) Temperature, stability, and the hydrophobic interaction. Biophys J 73:2960–2964

    PubMed  CAS  Google Scholar 

  • Schiene-Fischer C, Fischer G (2000) Enzymes that catalyse the restructuring of proteins. Curr Opin Struct Biol 10:40–45

    Google Scholar 

  • Schiene-Fischer C, Yu C (2001) Receptor accessory folding helper enzymes: The functional role of peptidyl prolyl cis-trans isomerases. FEBS Lett 495:1–6

    PubMed  CAS  Google Scholar 

  • Scholz S, Sonnenbichler J, Schäfer W, Hensel R (1992) Di-myo-inositol-1,1’-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett 306:239–242

    PubMed  CAS  Google Scholar 

  • Schuler B, Kremer W, Kalbitzer HR, Jaenicke R (2002) Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic Csp at high temperatures using 19 F NMR. Biochemistry 41:11670–11680

    PubMed  CAS  Google Scholar 

  • Schulz GE, Schirmer H (1979) Principles of protein structure. Springer, New York, NY, p 160

    Google Scholar 

  • Shoichet BK, Baase WA, Kuroki R, Matthews BW (1995) A relationship between protein stability and protein function. Proc Natl Acad Sci USA 92:452–456

    PubMed  CAS  Google Scholar 

  • Shtilerman M, Lorimer GH, Englander SW (1999) Chaperonin function: Folding by forced unfolding. Science 284:822–825

    PubMed  CAS  Google Scholar 

  • Siegert R, Leroux MR, Scheuffler C, Hartl FU, Moarefi I (2000) Structure of the molecular chaperone prefoldin: Unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103:621–623

    PubMed  CAS  Google Scholar 

  • Sigler PB, Xu ZH, Rye HS, Burston SG, Fenton WA, Horvich AL (1998) Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 67:581–608

    PubMed  CAS  Google Scholar 

  • Skorvaga M, Raven ND, Margison GP (1998) Thermostable archaeal O6-alkyl-guanine-DNA alkyltransferases. Proc Natl Acad Sci USA 95:6711–6715

    PubMed  CAS  Google Scholar 

  • Soares D, Dahlke I, Li W-T, Sandman K, Hethke C, Thomm M, Reeve JN (1998) Archaeal histone stability, DNA binding, and transcription inhibition above 90 °C. Extremophiles 2:75–81

    PubMed  CAS  Google Scholar 

  • Somero GN (1992) Adaptations to high hydrostatic pressure. Ann Rev Physiol 54:557–577

    CAS  Google Scholar 

  • Somero GN (1995) Proteins and temperature. Ann Rev Physiol 57:43–68

    CAS  Google Scholar 

  • Somero GN (2000) Unity in diversity: a perspective on the methods, contributions and future of comparative physiology. Ann Rev Physiol 62:927–937

    CAS  Google Scholar 

  • Spector S, Wang M, Carp SA, Robblee J, Hendsch ZS, Fairman R, Tidor B, Raleigh DP (2000) Rational modification of protein stability by the mutation of charged surface residues. Biochemistry 39:872–879

    PubMed  CAS  Google Scholar 

  • Speelmans G, Poolman B, Abee T, Konings WN (1993a) Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc Natl Acad Sci USA 90:7579–7979

    Google Scholar 

  • Speelmans G, Poolman B, Konings WN (1993b) Amino acid transport in the thermophilic anaerobe Clostridium fervidus is driven by an electrochemical sodium gradient. J Bacteriol 175:2060–2066

    PubMed  CAS  Google Scholar 

  • Sprott GD, Meloche M, Richards JC (1991) Proportions of diether and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J Bacteriol 173:3907–3910

    PubMed  CAS  Google Scholar 

  • Spyracopoulos L, Sykes BD (2001) Thermodynamic insights into proteins from NMR spin relaxation studies. Curr Opin Struct Biol 11:555–559

    PubMed  CAS  Google Scholar 

  • Stadtman ER (1990) Covalent modification reactions are marketing steps in protein turnover. Biochemistry 29:6323–6331

    PubMed  CAS  Google Scholar 

  • Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. J Biol Chem 266:2005–2008

    PubMed  CAS  Google Scholar 

  • Sterner R, Liebl W (2001) Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36:39–106

    PubMed  CAS  Google Scholar 

  • Sterner R, Kleemann GR, Szadkowski H, Lustig A, Hennig M, Kirschner K (1996) Phosphoribosyl anthranilate isomerase from Thermotoga maritima is an extremely stable and active homodimer. Protein Sci 5:2000–2008

    PubMed  CAS  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149–158

    CAS  Google Scholar 

  • Stetter KO (1998) Hyperthermophiles: isolation, classification and properties. In: Horikoshi K (ed) Grant extremophiles: microbial life in extreme environments. Wiley-Liss, New York, NY, pp 1–24

    Google Scholar 

  • Stetter KO (1999) Extremophiles and their adaptation to hot environments. FEBS Lett 452:22–25

    PubMed  CAS  Google Scholar 

  • Stillinger FH (1977) Theoretical approaches to the intermolecular nature of water. Phil Trans R Soc London Ser B Biol Sci 278:97–112

    CAS  Google Scholar 

  • Strop P, Mayo SL (2000) Contribution of surface salt bridges to protein stability. Biochemistry 39:1251–1255

    PubMed  CAS  Google Scholar 

  • Sturtevant JM (1977) Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci USA 74:2236–2240

    PubMed  CAS  Google Scholar 

  • Suggett A (1975) Polysaccharides. In: Franks F (ed) Water: a comprehensive treatise, vol 4. Plenum Press, New York, NY, pp 519–567

    Google Scholar 

  • Suutari M, Laakso S (1992) Unsaturated and branched-chain fatty acids in temperature adaptation of B. subtilis and B. megaterium. Biochim Biophys Acta 1126:119–124

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Hatagaki K, Oda H (1991) A hyperthermostable pullulanase produced by an extreme thermophile, B. flavocaldarius KP1228 and evidence for the proline theory of increasing protein thermostability. Appl Microbiol Biotechnol 34:707–714

    PubMed  CAS  Google Scholar 

  • Szilagyi A, Závodszky P (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey. Struct Fold Des 8:493–504

    CAS  Google Scholar 

  • Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York, NY

    Google Scholar 

  • Tanford C (1962) Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J Am Chem Soc 84:4240–4247

    CAS  Google Scholar 

  • Tanford C (1968) Protein denaturation, Part A and B. Adv Protein Chem 23:121–282

    PubMed  CAS  Google Scholar 

  • Tanford C (1970) Protein denaturation. Part C Adv Protein Chem 24:1–95

    CAS  Google Scholar 

  • Tanford C (1980) The hydrophobic effect, 2nd edn. Wiley, New York, NY

    Google Scholar 

  • Tardieu A, Le Verge A, Malfois M, Bonneté F, Finet S, Riès-Kautt M, Belloni L (1999) Proteins in solution: from X-ray scattering intensities to interaction potentials. J Crystal Growth 196:193–203

    CAS  Google Scholar 

  • Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. Bioessays 20:49–57

    PubMed  CAS  Google Scholar 

  • Thoma R, Hennig M, Sterner R, Kirschner K (2000) Structure and function of mutationally generated monomers of dimeric phosphoribosylanthranilate isomerase from Thermotoga maritima. Struct Fold Des 8:265–276

    CAS  Google Scholar 

  • Thomm M, Madon J, Stetter KO (1986) DNA-dependent RNA polymerases of the three orders of methanogens. Biol Chem Hoppe Seyler 367:473–481

    PubMed  CAS  Google Scholar 

  • Thompson MJ, Eisenberg D (1999) Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J Mol Biol 290:595–604, errata 292 and 946

    PubMed  CAS  Google Scholar 

  • Timasheff SN (1995) Solvent stabilization of protein structure. In: Shirley BA (ed) Protein stability and folding, vol 40, Methods in molecular biology. Humana Press, Totowa, NJ, pp 253–269

    Google Scholar 

  • Timasheff SN, Arakawa T (1997) Stabilization of protein structure by solvents. In: Creighton TE (ed) Protein structure: a practical approach, 2nd edn. IRL Press, Oxford, UK, pp 331–345

    Google Scholar 

  • Tolner B, Poolman B, Konings WN (1998) Adaptation of microorganisms and their transport systems to high temperature. Comp Biochem Physiol 118A:423–428

    Google Scholar 

  • Tomschy A, Böhm G, Jaenicke R (1994) Effect of central and peripheral ion pairs on the thermal stability of GAPDH from the hyperthermophilic bacterium Thermotoga maritima. Protein Eng 7:1471–1478

    PubMed  CAS  Google Scholar 

  • Toth EA, Worby C, Dixon JE, Goedken ER, Marqusee S, Yeates TO (2000) The crystal structure of adenylosuccinate lyase from Pyrobaculum aerophilum reveals a intracellular protein with three disulfide bonds. J Mol Biol 301:433–450

    PubMed  CAS  Google Scholar 

  • Trent JD (1996) A review of acquired thermotolerance, heat-shock proteins and molecular chaperones in archaea. FEMS Microbiol Rev 18:249–258

    CAS  Google Scholar 

  • Trent JD, Nimmesgern E, Wall JS, Hartl U, Horvich AL (1991) A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein Tcp1. Nature 354:490–493

    PubMed  CAS  Google Scholar 

  • Trent JD, Kagawa HK, Yaoi T, Olle E, Zaluze NJ (1997) Chaperonin filaments: the archaeal cytoskeleton. Proc Natl Acad Sci USA 94:5383–5388

    PubMed  CAS  Google Scholar 

  • Upasani VN, Desai SG, Moldoveanu N, Kates M (1994) Lipids of extremely halophilic archaebacteria from saline environments in India: a novel glycolipid in Natronobacterium strains. Microbiology 40:1959–1966

    Google Scholar 

  • van de Vossenberg JL, Ubbink-Kok T, Elferink MG, Konings WN (1995) Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol Microbiol 18:925–932

    PubMed  Google Scholar 

  • van de Vossenberg JL, Driessen AJ, Konings WN (1998) The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2:163–170

    PubMed  Google Scholar 

  • van de Vossenberg JL, Driessen AJ, da Costa MS, Konings WN (1999) Homeostasis of the membrane proton permeability in Bac. subtilis grown at different temperatures. Biochim Biophys Acta 1419:97–104

    PubMed  Google Scholar 

  • van den Burg B, Vriend G, Veltman OR, Venema G, Eijsink VGH (1998) Engineering an enzyme to resist boiling. Proc Natl Acad Sci USA 95:2056–2060

    PubMed  Google Scholar 

  • van Holde KE (1985) Physical biochemistry, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • van Montfort RL, Slingsby C, Vierling E (2002) Structure and function of the small heat shock protein/a-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    Google Scholar 

  • Vetriani C, Maeder DL, Tolliday N, Yip KS, Stillman TJ, Britton KL, Rice DW, Klump HH, Robb FT (1998) Protein thermostability above 100 °C: a key role for ionic interactions. Proc Natl Acad Sci USA 95:12300–12305

    PubMed  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    PubMed  CAS  Google Scholar 

  • Volkin DB, Mach H, Middaugh CR (1995) Degradative covalent reactions important to protein stability. In: Shirley BA (ed) Protein stability and folding, Methods in molecular biology. Humana Press, Totowa, NJ, pp 35–63

    Google Scholar 

  • von Hippel PH, Schleich T (1969) The effects of neutral salts on the structure and conformational stability of macromolecules in solution. In: Timasheff SN, Fasman GD (eds) Structure and stability of biological macromolecules, vol 2, Biological macromolecules. M. Dekker, New York, NY, pp 417–574

    Google Scholar 

  • Walter S, Buchner J (2002) Molecular chaperones—Cellular machines for protein folding. Angew Chem Int Ed 41:1098–1113

    CAS  Google Scholar 

  • Watanabe K, Shima M, Oshima T, Nishimura S (1976) Heat-induced stability of tRNA from an extreme thermophile, Thermus thermophilus. Biochem Biophys Res Commun 72:1137–1144

    PubMed  CAS  Google Scholar 

  • Watanabe K, Chishiro K, Kitamura K, Suzuki Y (1991) Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bac. thermoglucosidasius KP1006. J Biol Chem 266:24287–24294

    PubMed  CAS  Google Scholar 

  • Watanabe K, Masuda T, Ohashi H, Mihara H, Suzuki Y (1994) Multiple proline substitutions cumulatively thermostabilize B. cereus ATCC7064 oligo-1,6-glucosidase irrefragable proof supporting the proline rule. Eur J Biochem 226:277–283

    PubMed  CAS  Google Scholar 

  • Watanabe K, Kitamura K, Suzuki Y (1996) Analysis of the critical sites for protein thermostabilization by proline substitution in oligo-1,6-glucosidase from Bac. coagulans ATCC7050 and the evolutionary consideration of proline residues. Arch Environ Microbiol 62:2066–2073

    CAS  Google Scholar 

  • Watanabe K, Hata Y, Kizaki H, Katsube Y, Suzuki Y (1997) The refined crystal structure of Bac. stereus oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilization. J Mol Biol 269:142–153

    PubMed  CAS  Google Scholar 

  • Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Söll D, Stetter KO, Short JM, Noordewier M (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100:12984–12988

    PubMed  CAS  Google Scholar 

  • Wearne SJ, Creighton TE (1989) Effect of protein conformation on rate of deamidation: Ribonuclease A. Proteins 5:8–12

    PubMed  CAS  Google Scholar 

  • Weber-Ban EU, Reid BG, Miranker AD, Horwich AL (1999) Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature (London) 401:90–93

    CAS  Google Scholar 

  • Westhof E, Beveridge DL (1990) Hydration of nucleic acids. In: Franks F (ed) Water science reviews, vol. 5: the modes of life, 5. Cambridge University Press, New York, NY, pp 24–136

    Google Scholar 

  • Wetlaufer DB (1980) Practical consequences of protein folding mechanisms. In: Jaenicke R (ed) Protein folding. Elsevier/North Holland Biomedical Press, Amsterdam, The Netherlands, pp 323–329

    Google Scholar 

  • White RH (1984) Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 °C. Nature (London) 310:430–432

    CAS  Google Scholar 

  • Wierenga RK (2001) The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett 492:193–198

    PubMed  CAS  Google Scholar 

  • Wintrode PL, Arnold FH (2000) Temperature adaptation of enzymes: lessons from directed evolution. Adv Prot Chem 55:161–225

    CAS  Google Scholar 

  • Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains of archaea, bacteria and eucarya. Proc Natl Acad Sci USA 87:4576–4579

    PubMed  CAS  Google Scholar 

  • Wrba A, Schwaiger A, Schultes V, Jaenicke R, Závodszky P (1990) GAPDH from the extreme thermophilic eubacterium Thermotoga maritima. Biochemistry 29:7585–7592

    Google Scholar 

  • Wright HT (1991) Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit Rev Biochem Mol Biol 26:1–52

    PubMed  CAS  Google Scholar 

  • Wright PE, Baldwin RL (2000) The folding process of apomyoglobin. In: Pain RH (ed) Mechanisms of protein folding, vol 32, 2nd edn, Frontiers in molecular biology. Oxford University Press, Oxford, UK, pp 309–329

    Google Scholar 

  • Xiao L, Honig B (1999) Electrostatic contributions to the stability of hyperthermophilic proteins. J Mol Biol 289:1435–1444

    PubMed  CAS  Google Scholar 

  • Yamauchi K, Kinoshita M (1995) Highly stable lipid membranes from archaeabacterial extremophiles. Prog Polymer Sci 18:763–804

    Google Scholar 

  • Yano JK, Poulos TL (2003) New understandings of thermostable and peizostable enzymes. Curr Opin Biotechnol 14:360–365

    PubMed  CAS  Google Scholar 

  • Yip KS, Stillman TJ, Britton KL, Atrymiuk PJ, Baker PJ, Sedelnikova SE, Engel PC, Pasquo A, Chiaraluce R, Consalvi V, Scandurra R, Rice DW (1995) The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3:1147–1158

    PubMed  CAS  Google Scholar 

  • Yip KS, Britton KL, Stillman TJ, Lebbink J, de Vos WM, Robb FT, Vetriani C, Maeder D, Rice DW (1998) Insights into the molecular basis of thermal stability from the analysis of ion-pair networks in the glutamate dehydrogenase family. Eur J Biochem 253:336–346

    Google Scholar 

  • Yokoyama S, Inagaki F, Miyazawa T (1981) Advanced nuclear magnetic resonance lanthanide probe analyses of short-range conformational interrelations controlling ribonucleic acid structures. Biochemistry 20:2981–2988

    PubMed  CAS  Google Scholar 

  • Zachariassen KE, Kristiansen E (2000) Ice nucleation and antinucleation in nature. Cryobiology 41:257–279

    PubMed  CAS  Google Scholar 

  • Zale SE, Klibanov AM (1986) What does ribonuclease irreversibly inactivate at high temperatures? Biochemistry 25:5432–5444

    PubMed  CAS  Google Scholar 

  • Závodszky P, Kardos J, Svingor R, Petsko GA (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 95:7406–7411

    PubMed  Google Scholar 

  • Zhang XJ, Matthews BW (1994) Conservation of solvent-binding sites in 10 crystal forms of lysozyme. Protein Sci 3:1031–1039

    PubMed  CAS  Google Scholar 

  • Zimmerman SB, Minton AP (1993) Macromolecular crowding: biochemical, biophysical and physiological consequences Ann. Rev Biophys Biomol Struct 22:27–65

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Professor John T. Edsall (3 November 1902–12 June 2002), one of the founders of physical biochemistry: scientist, teacher and mentor.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Jaenicke, R., Sterner, R. (2013). Life at High Temperatures. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_55

Download citation

Publish with us

Policies and ethics