Skip to main content

Freshwater Microbial Communities

  • Reference work entry

Abstract

Freshwaters provide essential commodities and services to society and they act as regulators of carbon cycling and of local and global climate. Prokaryotic microbes in lacustrine ecosystems are centrally involved in various biogeochemical cycles, for example, they are responsible for a considerable fraction of global methane and carbon dioxide production. Freshwater systems comprise a diverse set of habitats hosting contrasting microbial assemblages. Subsurface environments such as groundwater and hyporheic corridors harbor various types of chemolithotrophic bacteria, as well as microbes from exotic phyla without a single cultured representative. The microbial assemblages in large rivers exhibit distinct longitudinal transformations related to the gradually changing supply of organic carbon in lotic environments, and abrupt shifts in community composition are induced by discontinuities, for example, impoundments or point sources of organic matter. Riverine and stream biofilms may be regarded as “landscapes” of microbial assemblages which appear to be more shaped by extrinsic factors, particularly the velocity and direction of the water flow, than by immigration of waterborne bacteria. Lakes and ponds offer a range of habitats to specialized prokaryotic assemblages, including the air-water interface, the chemocline and anoxic realms, the benthic layer, or the aufwuchs (periphyton) on littoral macrophytes. The prokaryotic assemblages in the euphotic zone of standing and running waters harbor both, oxygenic and anoxygenic autotrophic microbes, and various lineages of bacteriorhodopsin-bearing photoheterotrophs. If categorized according to growth strategy and cell size, microbes in freshwater pelagic habitats can be roughly divided into free-living ultramicrobacteria, opportunistically growing bacteria that often exhibit a dual lifestyle (planktonic and surface attached), and filamentous bacteria that resist protistan grazing. Apart from the biotic interactions that affect prokaryotes in all biomes, such as competition with other pro- and eukaryotes, predation, and parasitism, there are specific properties of lacustrine ecosystem that may be responsible for the establishment of typical and unique microbial assemblages: On the one hand, there are indications for the importance of regional factors in shaping freshwater microbial assemblages, such as local climate, biogeochemical interaction with the catchment area, and the massive introduction of bacteria into lakes with low hydrological retention times. On the other hand, freshwaters are discontinuous habitats, and intrinsic factors, such as internal variability, lake trophic state, pH, organic matter composition, phytoplankton, and food web structure, may all codetermine microbial community structure by selecting for or against particular ecotypes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alfreider A, Schirmer M, Vogt C (2012) Diversity and expression of different forms of RubisCO genes in polluted groundwater under different redox conditions. FEMS Microbiol Ecol 79:649–660

    Article  PubMed  CAS  Google Scholar 

  • Allgaier M, Grossart HP (2006a) Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat Microb Ecol 45:115–128

    Article  Google Scholar 

  • Allgaier M, Grossart HP (2006b) Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl Environ Microbiol 72:3489–3497

    Article  PubMed  CAS  Google Scholar 

  • Alonso C, Warnecke F, Amann R, Pernthaler J (2007) High local and global diversity of Flavobacteria in marine plankton. Environ Microbiol 9:1253–1266

    Article  PubMed  CAS  Google Scholar 

  • Alonso C, Zeder M, Piccini C, Conde D, Pernthaler J (2009) Ecophysiological differences of betaproteobacterial populations in two hydrochemically distinct compartments of a subtropical lagoon. Environ Microbiol 11:867–876

    Article  PubMed  Google Scholar 

  • Ask J, Karlsson J, Persson L, Ask P, Bystrom P, Jansson M (2009) Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes. Ecology 90:1923–1932

    Article  PubMed  Google Scholar 

  • Atamna-Ismaeel N, Sabehi G, Sharon I, Witzel KP, Labrenz M, Jurgens K et al (2008) Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. ISME J 2:656–662

    Article  PubMed  CAS  Google Scholar 

  • Auguet JC, Casamayor EO (2008) A hotspot for cold crenarchaeota in the neuston of high mountain lakes. Environ Microbiol 10:1080–1086

    Article  PubMed  CAS  Google Scholar 

  • Bahr M, Hobbie JE, Sogin ML (1996) Bacterial diversity in an arctic lake: a freshwater SAR11 cluster. Aquat Microb Ecol 11:271–277

    Article  Google Scholar 

  • Battin TJ, Wille A, Sattler B, Psenner R (2001) Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol 67:799–807

    Article  PubMed  CAS  Google Scholar 

  • Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5:76–81

    Article  PubMed  CAS  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600

    Article  CAS  Google Scholar 

  • Beier S, Bertilsson S (2011) Uncoupling of chitinase activity and uptake of hydrolysis products in freshwater bacterioplankton. Limnol Oceanogr 56:1179–1188

    Article  CAS  Google Scholar 

  • Benner R (2003) Molecular indicators of bioavailability of dissolved organic matter. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic, San Diego, pp 121–137

    Chapter  Google Scholar 

  • Berggren M, Laudon H, Haei M, Strom L, Jansson M (2010) Efficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sources. ISME J 4:408–416

    Article  PubMed  CAS  Google Scholar 

  • Berggren M, Lapierre J-F, del Giorgio PA (2012) Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J 6:984–993

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson S, Tranvik LJ (1998) Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol Oceanogr 43:885–895

    Article  CAS  Google Scholar 

  • Besemer K, Peter H, Logue JB, Langenheder S, Lindström ES, Tranvik LJ, Battin TJ (2012) Unraveling assembly of stream biofilm communities. ISME J 6:1–10

    Article  CAS  Google Scholar 

  • Blom JF, Horňák K, Šimek K, Pernthaler J (2010) Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues. Environ Microbiol 12:2486–2495

    Article  PubMed  CAS  Google Scholar 

  • Böckelmann U, Manz W, Neu TR, Szewzyk U (2000) Characterization of the microbial community of lotic organic aggregates (‘river snow’) in the Elbe river of Germany by cultivation and molecular methods. FEMS Microbiol Ecol 33:157–170

    Article  Google Scholar 

  • Bosshard PP, Santini Y, Gruyter D, Stettler R, Bachofen R (2000) Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis. FEMS Microbiol Ecol 31(2):173–182

    Article  PubMed  CAS  Google Scholar 

  • Boucher D, Jardillier L, Debroas D (2006) Succession of bacterial community composition over two consecutive years in two aquatic systems: a natural lake and a lake-reservoir. FEMS Microbiol Ecol 55:79–97

    Article  PubMed  CAS  Google Scholar 

  • Brock ML, Brock TD (1968) The application of micro-autoradiographic techniques to ecological studies. Mitt Int Verein Limnol 15:1–29

    Google Scholar 

  • Bruns A, Nübel U, Cypionka H, Overmann J (2003) Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl Environ Microbiol 69:1980–1989

    Article  PubMed  CAS  Google Scholar 

  • Buck U, Grossart HP, Amann R, Pernthaler J (2009) Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environ Microbiol 11:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Burkert U, Warnecke F, Babenzien D, Zwirnmann E, Pernthaler J (2003) Members of a readily enriched beta-proteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol 69:6550–6559

    Article  PubMed  CAS  Google Scholar 

  • Callieri C (2007) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater Rev 1:1–28

    Google Scholar 

  • Callieri C, Corno G, Caravati E, Rasconi S, Contesini M, Bertoni R (2009) Bacteria, Archaea, and Crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Appl Environ Microbiol 75:7298–7300

    Article  PubMed  CAS  Google Scholar 

  • Canfield DE, Kristensen E, Thamdrup B (eds) (2005) Aquatic geomicrobiology. Elsevier/Academic Press, San Diego

    Google Scholar 

  • Casamayor EO, Garcia-Cantizano J, Pedros-Alio C (2008) Carbon dioxide fixation in the dark by photosynthetic bacteria in sulfide-rich stratified lakes with oxic-anoxic interfaces. Limnol Oceanogr 53:1193–1203

    Article  CAS  Google Scholar 

  • Cébron A, Coci M, Garnier J, Laanbroek HJ (2004) Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: impact of Paris wastewater effluents. Appl Environ Microbiol 70:6726–6737

    Article  PubMed  CAS  Google Scholar 

  • Chaffron S, Rehrauer H, Pernthaler J, von Mering C (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res 20:947–959

    Article  PubMed  CAS  Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Article  PubMed  Google Scholar 

  • Cole JJ, Pace ML, Caraco NF, Steinhart GS (1993) Bacterial biomass and cell-size distributions in lakes—more and larger cells in anoxic waters. Limnol Oceanogr 38:1627–1632

    Article  Google Scholar 

  • Corno G, Jurgens K (2006) Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl Environ Microbiol 72:78–86

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilm. Annu Rev Microbiol 49:711–745

    Article  PubMed  CAS  Google Scholar 

  • Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105–121

    Article  CAS  Google Scholar 

  • Cousin S, Brambilla E, Yang J, Stackebrandt E (2008) Culturable aerobic bacteria from the upstream region of a karst water rivulet. Int Microbiol 11:91–100

    PubMed  CAS  Google Scholar 

  • Crump BC, Hobbie JE (2005) Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr 50:1718–1729

    Article  CAS  Google Scholar 

  • Crump BC, Koch EW (2008) Attached bacterial populations shared by four species of aquatic angiosperms. Appl Environ Microbiol 74:5948–5957

    Article  PubMed  CAS  Google Scholar 

  • Crump BC, Kling GW, Bahr M, Hobbie JE (2003) Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69:2253–2268

    Article  PubMed  Google Scholar 

  • Crump BC, Adams HE, Hobbie JE, Kling GW (2007) Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology 88:1365–1378

    Article  PubMed  Google Scholar 

  • Currie DJ, Kalff J (1984) Can bacteria outcompete phytoplankton for phosphorus? A chemostat test. Microb Ecol 10:205–216

    Article  CAS  Google Scholar 

  • Dokulil MT, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12

    Article  CAS  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG et al (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397

    Article  Google Scholar 

  • Dunbar C (1908) Principles of sewage treatment. C. Griffin, London

    Google Scholar 

  • Eckert EM, Salcher MM, Posch T, Eugster B, Pernthaler J (2011) Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environ Microbiol. doi:10.1111/j.1462-2920.2011.02639.x, online early

    Google Scholar 

  • Eiler A, Bertilsson S (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6:1228–1243

    Article  PubMed  Google Scholar 

  • Eiler A, Bertilsson S (2007) Flavobacteria blooms in four eutrophic lakes: linking population dynamics of freshwater bacterioplankton to resource availability. Appl Environ Microbiol 73:3511–3518

    Article  PubMed  CAS  Google Scholar 

  • Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6:330–342

    Article  PubMed  CAS  Google Scholar 

  • Farnleitner AH, Wilhartitz I, Ryzinska G, Kirschner AKT, Stadler H, Burtscher MM et al (2005) Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Environ Microbiol 7:1248–1259

    Article  PubMed  CAS  Google Scholar 

  • Fazi S, Amalfitano S, Piccini C, Zoppini A, Puddu A, Pernthaler J (2008) Colonization of overlaying water by bacteria from dry river sediments. Environ Microbiol 10:2760–2772

    Article  PubMed  CAS  Google Scholar 

  • Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381

    PubMed  CAS  Google Scholar 

  • Fred EB, Wilson FC, Davenport A (1924) The distribution and significance of bacteria in Lake Mendota. Ecology 5:322–339

    Article  Google Scholar 

  • Freese HM, Schink B (2011) Composition and Stability of the Microbial Community inside the Digestive Tract of the Aquatic Crustacean Daphnia magna. Microb Ecol 62:882–894

    Article  PubMed  Google Scholar 

  • Gaston KJ, May RM (1992) Taxonomy of Taxonomists. Nature 356:281–282

    Article  Google Scholar 

  • Ghai R, McMahon KD, Rodriguez-Valera F (2011a) Breaking a paradigm: cosmopolitan and abundant freshwater actinobacteria are low GC. Environ Microbiol Rep 3. doi:10.1111/j.1758-2229.2011.00274.x

    Google Scholar 

  • Ghai R, Rodriguez-Valera F, McMahon KD, Toyama D, Rinke R, de Oliveira TCS et al (2011b) Metagenomics of the Water Column in the Pristine Upper Course of the Amazon River. PLoS One 6:e23785

    Article  PubMed  CAS  Google Scholar 

  • Gich F, Overmann J (2006) Sandarakinorhabdus limnophila gen. nov., sp nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. Int J Syst Evol Microbiol 56:847–854

    Article  PubMed  CAS  Google Scholar 

  • Glöckner FO, Babenzien H-D, Amann R (1998) Phylogeny and identification in situ of Nevskia ramosa. Appl Environ Microbiol 64:1895–1901

    PubMed  Google Scholar 

  • Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    PubMed  Google Scholar 

  • Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66:5053–5065

    Article  PubMed  Google Scholar 

  • Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshwat Biol 54:649–677

    Article  Google Scholar 

  • Grime J (1979) Evidence for the existance of three primary strategies in plants and its releveance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grossart HP, Jezbera J, Horňák K, Hutalle KML, Buck U, Šimek K (2008) Top-down and bottom-up induced shifts in bacterial abundance, production and community composition in an experimentally divided humic lake. Environ Microbiol 10:635–652

    Article  PubMed  CAS  Google Scholar 

  • Grossart HP, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci USA 108:19657–19661

    Article  PubMed  CAS  Google Scholar 

  • Gutknecht JLM, Goodman RM, Balser TC (2006) Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant Soil 289:17–34

    Article  CAS  Google Scholar 

  • Hahn MG (2003) Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69:5248–5254

    Article  PubMed  CAS  Google Scholar 

  • Hahn M, Pöckl M (2005) Ecotypes of planktonic Actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl Environ Microbiol 71:766–773

    Article  PubMed  CAS  Google Scholar 

  • Hahn MW, Moore ERB, Hofle MG (2000) Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas sp MWH1. Microb Ecol 39:175–185

    PubMed  Google Scholar 

  • Hahn MW, Lunsdorf H, Wu QL, Schauer M, Hofle MG, Boenigk J, Stadler P (2003) Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69:1442–1451

    Article  PubMed  CAS  Google Scholar 

  • Hahn MW, Stadler P, Wu QL, Pockl M (2004) The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57:379–390

    Article  PubMed  CAS  Google Scholar 

  • Hahn MW, Pockl M, Wu QLL (2005) Low intraspecific diversity in a Polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Appl Environ Microbiol 71:4539–4547

    Article  PubMed  CAS  Google Scholar 

  • Hahn MW, Lang E, Brandt U, Wu QL, Scheuerl T (2009) Emended description of the genus Polynucleobacter and the species P. necessarius and proposal of two subspecies, P. necessarius subspecies necessarius subsp. nov. and P. necessarius subsp. asymbioticus subsp. nov. Int J Syst Evol Microbiol 59:2002–2009

    Article  PubMed  CAS  Google Scholar 

  • Hahn MW, Kasalicky V, Jezbera J, Brandt U, Jezberova J, Šimek K (2010) Limnohabitans curvus gen. nov., sp nov., a planktonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 60:1358–1365

    Article  PubMed  CAS  Google Scholar 

  • Hahn MW, Scheuerl T, Jezberová J, Koll U, Jezbera J, Šimek K et al (2012) The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living Polynucleobacter population. PLos one 7:e32772

    Article  PubMed  CAS  Google Scholar 

  • Hamlin C (1990) A science of impurity: water analysis in nineteenth century Britain. University of California Press, Berkeley

    Google Scholar 

  • Haukka K, Heikkinen E, Kairesalo T, Karjalainen H, Sivonen K (2005) Effect of humic material on the bacterioplankton community composition in boreal lakes and mesocosms. Environ Microbiol 7:620–630

    Article  PubMed  CAS  Google Scholar 

  • Henrici AT (1933) Studies of freshwater bacteria I: a direct microscopic technique. J Bacteriol 25:277–287

    PubMed  CAS  Google Scholar 

  • Hiorns WD, Methe BA, Nierzwicki-Bauer SA, Zehr JP (1997) Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl Environ Microbiol 63:2957–2960

    PubMed  CAS  Google Scholar 

  • Hoekstra AY, Mekonnen MM (2012) The water footprint of humanity. Proc Natl Acad Sci USA 109:3232–3237

    Article  PubMed  CAS  Google Scholar 

  • Holmfeldt K, Dziallas C, Titelman J, Pohlmann K, Grossart HP, Riemann L (2009) Diversity and abundance of freshwater Actinobacteria along environmental gradients in the brackish northern Baltic Sea. Environ Microbiol 11:2042–2054

    Article  PubMed  CAS  Google Scholar 

  • Horňák K, Jezbera J, Nedoma J, Gasol JM, Šimek K (2006) Effects of resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography. Aquat Microb Ecol 45:277–289

    Article  Google Scholar 

  • Horňák K, Jezbera J, Šimek K (2008) Effects of a Microcystis aeruginosa bloom and bacterivory on bacterial abundance and activity in a eutrophic reservoir. Aquat Microb Ecol 52:107–117

    Article  Google Scholar 

  • Horňák K, Zeder M, Blom JF, Posch T, Pernthaler J (2012) Suboptimal light conditions negatively affect the heterotrophy of Planktothrix rubescens but are beneficial for accompanying Limnohabitans spp. Environ Microbiol 14:765

    Article  PubMed  CAS  Google Scholar 

  • Hörtnagl P, Perez MT, Sommaruga R (2010) Living at the border: a community and single-cell assessment of lake bacterioneuston activity. Limnol Oceanogr 55:1134–1144

    Article  PubMed  CAS  Google Scholar 

  • Huisman J, Matthijs CP, Visser PM (2005) Harmful cyanobacteria. Springer, Dordrecht

    Book  Google Scholar 

  • Hullar MAJ, Kaplan LA, Stahl DA (2006) Recurring seasonal dynamics of microbial communities in stream habitats. Appl Environ Microbiol 72:713–722

    Article  PubMed  CAS  Google Scholar 

  • Jannasch HW (1958) Studies on planktonic bacteria by means of a direct membrane filter method. J Gen Microbiol 18:609–620

    PubMed  CAS  Google Scholar 

  • Jezbera J, Horňák K, Šimek K (2006) Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol 8:1330–1339

    Article  PubMed  Google Scholar 

  • Jezbera J, Jezberova J, Brandt U, Hahn MW (2011) Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol 13:922–931

    Article  PubMed  CAS  Google Scholar 

  • Jezberova J, Komarkova J (2007) Morphological transformation in a freshwater Cyanobium sp induced by grazers. Environ Microbiol 9:1858–1862

    Article  PubMed  CAS  Google Scholar 

  • Jezberova J, Jezbera J, Brandt U, Lindström ES, Langenheder S, Hahn MW (2010) Ubiquity of Polynucleobacter necessarius ssp asymbioticus in lentic freshwater habitats of a heterogenous 2000 km2 area. Environ Microbiol 12:658–669

    Article  PubMed  Google Scholar 

  • Jones JG (1974) Some Observations on Direct Counts of Freshwater Bacteria Obtained with a Fluorescence Microscope. Limnol Oceanogr 19:540–543

    Article  Google Scholar 

  • Jones SE, McMahon KD (2009) Species-sorting may explain an apparent minimal effect of immigration on freshwater bacterial community dynamics. Environ Microbiol 11:905–913

    Article  PubMed  Google Scholar 

  • Jones SE, Chiu CY, Kratz TK, Wu JT, Shade A, McMahon KD (2008) Typhoons initiate predictable change in aquatic bacterial communities. Limnol Oceanogr 53:1319–1326

    Article  Google Scholar 

  • Jones SE, Newton RJ, McMahon KD (2009) Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes. Environ Microbiol 11:2463–2472

    Article  PubMed  CAS  Google Scholar 

  • Jürgens K, Stolpe G (1995) Seasonal dynamics of crustacean zooplankton, heterotrophic nanoflagellates and bacteria in a shallow, eutrophic lake. Freshwat Biol 33:27–38

    Article  Google Scholar 

  • Jürgens K, Arndt H, Rothhaupt KO (1994) Zooplankton-mediated change of bacterial community structure. Microb Ecol 27:27–42

    Article  Google Scholar 

  • Jürgens K, Pernthaler J, Schalla S, Amann R (1999) Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl Environ Microbiol 65:1241–1250

    PubMed  Google Scholar 

  • Kent AD, Jones SE, Yannarell AC, Graham JM, Lauster GH, Kratz TK, Triplett EW (2004) Annual patterns in bacterioplankton community variability in a humic lake. Microb Ecol 48:550–560

    Article  PubMed  CAS  Google Scholar 

  • Kent AD, Yannarell AC, Rusak JA, Triplett EW, McMahon KD (2007) Synchrony in aquatic microbial community dynamics. ISME J 1:38–47

    Article  PubMed  CAS  Google Scholar 

  • Keough BP, Schmidt TM, Hicks RE (2003) Archaeal nucleic acids in picoplankton from great lakes on three continents. Microb Ecol 46:238–248

    Article  PubMed  CAS  Google Scholar 

  • Kirchman DL, Dittel AI, Findlay SEG, Fischer D (2004) Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat Microb Ecol 35:243–257

    Article  Google Scholar 

  • Kolmonen E, Haukka K, Rantala-Ylinen A, Rajaniemi-Wacklin P, Lepisto L, Sivonen K (2011) Bacterioplankton community composition in 67 Finnish lakes differs according to trophic status. Aquat Microb Ecol 62:241–U249

    Article  Google Scholar 

  • Krashnopolsky VA, Maillard JP, Owen TC (2004) Detection of methane in the martian atmosphere: evidence for life? Icarus 172:537–547

    Article  CAS  Google Scholar 

  • LaMontagne MG, Holden PA (2003) Comparison of free-living and particle-associated bacterial communities in a coastal lagoon. Microb Ecol 46:228–237

    Article  PubMed  CAS  Google Scholar 

  • Lemarchand C, Jardillier L, Carrias JF, Richardot M, Debroas D, Sime-Ngando T, Amblard C (2006) Community composition and activity of prokaryotes associated to detrital particles in two contrasting lake ecosystems. FEMS Microbiol Ecol 57:442–451

    Article  PubMed  CAS  Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418

    Article  Google Scholar 

  • Lindström ES (2000) Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microb Ecol 40:104–113

    PubMed  Google Scholar 

  • Lindström ES, Langenheder S (2012) Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep. doi:10.1111/j.1758-2229.2011.00257.x

    Google Scholar 

  • Lindström ES, Forslund M, Algesten G, Bergstrom AK (2006) External control of bacterial community structure in lakes. Limnol Oceanogr 51:339–342

    Article  Google Scholar 

  • Logares R, Bråte J, Heinrich F, Shalchian-Tabrizi K, Bertilsson S (2010) Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11). Mol Biol Evol 27:347–357

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Garcia M, Swan BK, Poulton NJ, Gomez ML, Masland D, Sieracki ME, Stepanauskas R (2012) High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J 6:113–123

    Article  PubMed  CAS  Google Scholar 

  • Masin M, Nedoma J, Pechar L, Koblizek M (2008) Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ Microbiol 10:1988–1996

    Article  PubMed  CAS  Google Scholar 

  • Methé BA, Hiorns WD, Zehr JP (1998) Contrasts between marine and freshwater bacterial community composition: analyses of communities in Lake George and six other Adirondack lakes. Limnol Oceanogr 43:368–374

    Article  Google Scholar 

  • Minder L (1920) Zur Hydrophysik des Zürich- und Walensees, nebst Beitrag zur Hydrochemie und Hydrobakteriologie des Zürichsees. Arch Hydrobiol 12:122–194

    Google Scholar 

  • Mindl B, Sonntag B, Pernthaler J, Vrba J, Psenner R, Posch T (2005) Effects of phosphorus loading on interactions of algae and bacteria: reinvestigation of the ‘phytoplankton-bacteria paradox’ in a continuous cultivation system. Aquat Microb Ecol 38:203–213

    Article  Google Scholar 

  • Miyoshi T, Iwatsuki T, Naganuma T (2005) Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer-pore-size filters. Appl Environ Microbiol 71:1084–1088

    Article  PubMed  CAS  Google Scholar 

  • Morita RY (1997) Bacteria in oligotrophic environments: starvation-survival lifestyle. Chapman Hall, New York

    Google Scholar 

  • Muylaert K, Van der Gucht K, Vloemans N, De Meester L, Gillis M, Vyverman W (2002) Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Appl Environ Microbiol 68:4740–4750

    Article  PubMed  CAS  Google Scholar 

  • Newton RJ, McMahon KD (2011) Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake. Environ Microbiol 13:887–899

    Article  PubMed  CAS  Google Scholar 

  • Newton RJ, Kent AD, Triplett EW, McMahon KD (2006) Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ Microbiol 8:956–970

    Article  PubMed  Google Scholar 

  • Newton RJ, Jones SE, Helmus MR, McMahon KD (2007) Phylogenetic ecology of the freshwater Actinobacteria acI lineage. Appl Environ Microbiol 73:7169–7176

    Article  PubMed  CAS  Google Scholar 

  • Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan LA, Weightman AJ, Fry JC (2002) New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taff epilithon. Appl Environ Microbiol 68:2093-b

    Google Scholar 

  • Overmann J, Tuschak C, Frostl JM, Sass H (1998) The ecological niche of the consortium “Pelochromatium roseum”. Arch Microbiol 169:120–128

    Article  PubMed  CAS  Google Scholar 

  • Overmann J, Coolen MJL, Tuschak C (1999) Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Arch Microbiol 172:83–94

    Article  PubMed  CAS  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC et al (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–243

    Article  PubMed  CAS  Google Scholar 

  • Page KA, Connon SA, Giovannoni SJ (2004) Representative freshwater bacterioplankton isolated from Crater Lake, Oregon. Appl Environ Microbiol 70:6542–6550

    Article  PubMed  CAS  Google Scholar 

  • Perez MT, Sommaruga R (2006) Differential effect of algal- and soil-derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnol Oceanogr 51:2527–2537

    Article  CAS  Google Scholar 

  • Pernthaler J, Posch T (2009) Microbial food webs. In: Encyclopedia of inland waters. Elsevier, Oxford, pp 244–251

    Chapter  Google Scholar 

  • Pernthaler J, Glockner FO, Unterholzner S, Alfreider A, Psenner R, Amann R (1998) Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 64:4299–4306

    PubMed  CAS  Google Scholar 

  • Pernthaler J, Posch T, Šimek K, Vrba J, Pernthaler A, Glockner FO et al (2001) Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl Environ Microbiol 67:2145–2155

    Article  PubMed  CAS  Google Scholar 

  • Pernthaler J, Zollner E, Warnecke F, Jürgens K (2004) Bloom of filamentous bacteria in a mesotrophic lake: identity and potential controlling mechanism. Appl Environ Microbiol 70:6272–6281

    Article  PubMed  CAS  Google Scholar 

  • Philosof A, Sabehi G, Beja O (2009) Comparative analyses of actinobacterial genomic fragments from Lake Kinneret. Environ Microbiol 11:3189–3200

    Article  PubMed  CAS  Google Scholar 

  • Piccini C, Conde D, Alonso C, Sommaruga R, Pernthaler J (2006) Blooms of single bacterial species in a coastal lagoon of the southwestern Atlantic Ocean. Appl Environ Microbiol 72:6560–6568

    Article  PubMed  CAS  Google Scholar 

  • Pollard PC, Ducklow H (2011) Ultrahigh bacterial production in a eutrophic subtropical Australian river: does viral lysis short-circuit the microbial loop? Limnol Oceanogr 56:1115–1129

    Article  CAS  Google Scholar 

  • Posch T, Franzoi J, Prader M, Salcher MM (2009) New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquat Microb Ecol 54:113–126

    Article  Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J (2009) Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeol J 17:37–48

    Article  Google Scholar 

  • Rappe MS, Kemp PF, Giovannoni SJ (1997) Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnol Oceanogr 42:811–826

    Article  CAS  Google Scholar 

  • Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    Article  PubMed  CAS  Google Scholar 

  • Rasumov AS (1932) Die direkte Methode der Zählung der Bakterien im Wasser und ihre Vergleichung mit der Kochschen Plattenkultur Methode. Microbiol, Moskow 1:131

    Google Scholar 

  • Raymond PA, Bauer JE (2001) Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409:497–500

    Article  PubMed  CAS  Google Scholar 

  • Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Riemann L, Winding A (2001) Community dynamics of free-living and particle-associated bacterial assemblages during a freshwater phytoplankton bloom. Microb Ecol 42:274–285

    Article  PubMed  CAS  Google Scholar 

  • Salcher MM, Pernthaler J, Psenner R, Posch T (2005) Succession of bacterial grazing defense mechanisms against protistan predators in an experimental microbial community. Aquat Microb Ecol 38:215–229

    Article  Google Scholar 

  • Salcher MM, Pernthaler J, Zeder M, Psenner R, Posch T (2008) Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ Microbiol 10:2074–2086

    Article  PubMed  CAS  Google Scholar 

  • Salcher MM, Pernthaler J, Posch T (2010) Spatiotemporal distribution and activity patterns of bacteria from three phylogenetic groups in an oligomesotrophic lake. Limnol Oceanogr 55:846–856

    Article  CAS  Google Scholar 

  • Salcher MM, Pernthaler J, Posch T (2011a) Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’ (LD12). ISME J 5:1242–1252

    Article  PubMed  CAS  Google Scholar 

  • Salcher MM, Pernthaler J, Frater N, Posch T (2011b) Vertical and longitudinal distribution patterns of different bacterioplankton populations in a canyon-shaped, deep prealpine lake. Limnol Oceanogr 56:2027–2039

    Article  CAS  Google Scholar 

  • Sander BC, Kalff J (1993) Factors controlling bacterial production in marine and freshwater sediments. Microb Ecol 26:79–99

    Article  Google Scholar 

  • Schauer M, Hahn MW (2005) Diversity and phylogenetic affiliations of morphologically conspicuous large filamentous bacteria occurring in the pelagic zones of a broad spectrum of freshwater habitats. Appl Environ Microbiol 71:1931–1940

    Article  PubMed  CAS  Google Scholar 

  • Schauer M, Kamenik C, Hahn MW (2005) Ecological differentiation within a cosmopolitan group of planktonic freshwater bacteria (SOL cluster, Saprospiraceae, Bacteroidetes). Appl Environ Microbiol 71:5900–5907

    Article  PubMed  CAS  Google Scholar 

  • Schauer M, Jiang J, Hahn MW (2006) Recurrent seasonal variations in abundance and composition of filamentous SOL cluster bacteria (Saprospiraceae, Bacteroidetes) in oligomesotrophic Lake Mondsee (Austria). Appl Environ Microbiol 72:4704–4712

    Article  PubMed  CAS  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative Equilibria in Shallow Lakes. Trends Ecol Evol 8:275–279

    Article  PubMed  CAS  Google Scholar 

  • Schink B (1989) Microbial Communities in Sediments. Naturwissenschaften 76:364–372

    Article  CAS  Google Scholar 

  • Schubert CJ, Vazquez F, Losekann-Behrens T, Knittel K, Tonolla M, Boetius A (2011) Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol Ecol 76:26–38

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer B, Huber I, Amann R, Ludwig W, Simon M (2001) Alpha- and beta-proteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl Environ Microbiol 67:632–645

    Article  PubMed  CAS  Google Scholar 

  • Shabarova T, Pernthaler J (2010) Karst pools in subsurface environments: collectors of microbial diversity or temporary residence between habitat types. Environ Microbiol 12:1061–1074

    Article  PubMed  CAS  Google Scholar 

  • Shade A, Kent AD, Jones SE, Newton RJ, Triplett EW, McMahon KD (2007) Interannual dynamics and phenology of bacterial communities in a eutrophic lake. Limnol Oceanogr 52:487–494

    Article  CAS  Google Scholar 

  • Sharma AK, Sommerfeld K, Bullerjahn GS, Matteson AR, Wilhelm SW, Jezbera J et al (2009) Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria. ISME J 3:726–737

    Article  PubMed  CAS  Google Scholar 

  • Šimek K, Chrzanowski TH (1992) Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl Environ Microbiol 58:3715–3720

    PubMed  Google Scholar 

  • Šimek K, Pernthaler J, Weinbauer MG, Horňák K, Dolan JR, Nedoma J et al (2001) Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol 67:2723–2733

    Article  PubMed  Google Scholar 

  • Šimek K, Horňák K, Jezbera J, Masin M, Nedoma J, Gasol JM, Schauer M (2005) Influence of top-down and bottom-up manipulations on the R-BT065 subcluster of beta-proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir. Appl Environ Microbiol 71:2381–2390

    Article  PubMed  CAS  Google Scholar 

  • Šimek K, Horňák K, Jezbera J, Nedoma J, Vrba J, Straskrabova V et al (2006) Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol 8:1613–1624

    Article  PubMed  CAS  Google Scholar 

  • Šimek K, Weinbauer MG, Horňák K, Jezbera J, Nedoma J, Dolan JR (2007) Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community. Environ Microbiol 9:789–800

    Article  PubMed  Google Scholar 

  • Šimek K, Kasalicky V, Jezbera J, Jezberova J, Hahn MW (2010a) Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus limnohabitans. Appl Environ Microbiol 76:3763

    Article  CAS  Google Scholar 

  • Šimek K, Kasalicky V, Horňák K, Hahn MW, Weinbauer MG (2010b) Assessing niche separation among coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore. Appl Environ Microbiol 76:1406–1416

    Article  PubMed  CAS  Google Scholar 

  • Šimek K, Kasalicky V, Zapomelova E, Horňák K (2011) Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol 77:7307–7315

    Article  PubMed  CAS  Google Scholar 

  • Simon M (1987) Biomass and production of small and large free-living bacteria in Lake Constance. Limnol Oceanogr 32:591

    Article  CAS  Google Scholar 

  • Singer G, Besemer K, Schmitt-Kopplin P, Hodl I, Battin TJ (2010) Physical heterogeneity Iincreases biofilm resource use and its molecular diversity in stream mesocosms. PLoS One 5:e9988

    Article  PubMed  CAS  Google Scholar 

  • Sommaruga R (2001) The role of solar UV radiation in the ecology of alpine lakes. J Photochem Photobiol B-Biol 62:35–42

    Article  CAS  Google Scholar 

  • Sommaruga R, Casamayor EO (2009) Bacterial ‘cosmopolitanism’ and importance of local environmental factors for community composition in remote high-altitude lakes. Freshwat Biol 54:994–1005

    Article  CAS  Google Scholar 

  • Sommaruga R, Psenner R (1995) Permanent presence of grazing-resistant bacteria in a hypertrophic lake. Appl Environ Microbiol 61:3457–3459

    PubMed  CAS  Google Scholar 

  • Stepanauskas R, Moran MA, Bergamaschi BA, Hollibaugh JT (2003) Covariance of bacterioplankton composition and environmental variables in a temperate delta system. Aquat Microb Ecol 31:85–98

    Article  Google Scholar 

  • Stürmeyer H, Overmann J, Babenzien HD, Cypionka H (1998) Ecophysiological and phylogenetic studies of Nevskia ramosa in pure culture. Appl Environ Microbiol 64:1890–1894

    PubMed  Google Scholar 

  • Taipale S, Kankaala P, Hahn MW, Jones RI, Tiirola M (2011) Methane-oxidizing and photoautotrophic bacteria are major producers in a humic lake with a large anoxic hypolimnion. Aquat Microb Ecol 64:81–95

    Article  Google Scholar 

  • Tarao M, Jezbera J, Hahn MW (2009) Involvement of cell surface structures in size-independent grazing resistance of freshwater actinobacteria. Appl Environ Microbiol 75:4720–4726

    Article  PubMed  CAS  Google Scholar 

  • Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328

    Article  Google Scholar 

  • Tonolla M, Demarta A, Peduzzi R, Hahn D (1999) In situ analysis of phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 65:1325–1330

    PubMed  CAS  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Article  CAS  Google Scholar 

  • Urbach E, Vergin KL, Larson GL, Giovannoni SJ (2007) Bacterioplankton communities of Crater Lake, OR: dynamic changes with euphotic zone food web structure and stable deep water populations. Hydrobiologia 574:161–177

    Article  Google Scholar 

  • Van der Gucht K, Vandekerckhove T, Vloemans N, Cousin S, Muylaert K, Sabbe K et al (2005) Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiol Ecol 53:205–220

    Article  PubMed  CAS  Google Scholar 

  • Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S et al (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc Natl Acad Sci USA 104:20404–20409

    Article  PubMed  Google Scholar 

  • van Hannen EJ, Zwart G, van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ (1999) Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microbiol 65:795–801

    PubMed  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130

    Article  Google Scholar 

  • Warnecke F, Amann R, Pernthaler J (2004) Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol 6:242–253

    Article  PubMed  CAS  Google Scholar 

  • Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J (2005) Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71:5551–5559

    Article  PubMed  CAS  Google Scholar 

  • Weinbauer MG, Höfle MG (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol 64:431–438

    PubMed  CAS  Google Scholar 

  • Wetzel RG (2000) Freshwater ecology: changes, requirements, and future demands. Limnology 1:3–9

    Article  Google Scholar 

  • Winter C, Hein T, Kavka G, Mach RL, Farnleitner AH (2007) Longitudinal changes in the bacterial community composition of the Danube river: a whole-river approach. Appl Environ Microbiol 73:421–431

    Article  PubMed  CAS  Google Scholar 

  • Wobus A, Bleul C, Maassen S, Scheerer C, Schuppler M, Jacobs E, Roske I (2003) Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiol Ecol 46:331–347

    Article  PubMed  CAS  Google Scholar 

  • Wright RT, Hobbie JE (1965) The uptake of organic solutes in lake water. Limnol Oceanogr 10:22–28

    Article  CAS  Google Scholar 

  • Wu QL, Hahn MW (2006a) Differences in structure and dynamics of Polynucleobacter communities in a temperate and a subtropical lake, revealed at three phylogenetic levels. FEMS Microbiol Ecol 57:67–79

    Article  PubMed  CAS  Google Scholar 

  • Wu QLL, Hahn MW (2006b) High predictability of the seasonal dynamics of a species-like Polynucleobacter population in a freshwater lake. Environ Microbiol 8:1660–1666

    Article  PubMed  CAS  Google Scholar 

  • Wu OLL, Boenigk J, Hahn MW (2004) Successful predation of filamentous bacteria by a nanoflagellate challenges current models of flagellate bacterivory. Appl Environ Microbiol 70:332–339

    Article  PubMed  CAS  Google Scholar 

  • Yannarell AC, Triplett EW (2004) Within- and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales. Appl Environ Microbiol 70:214–223

    Article  PubMed  CAS  Google Scholar 

  • Zeder M, Peter S, Shabarova T, Pernthaler J (2009) A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ Microbiol 11:2676–2686

    Article  PubMed  Google Scholar 

  • Zwart G, Crump BC, Agterveld M, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Article  Google Scholar 

Download references

Acknowledgments

My thanks go to my wife and little daughter for tolerating that I finished this chapter during our holidays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Pernthaler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Pernthaler, J. (2013). Freshwater Microbial Communities. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_40

Download citation

Publish with us

Policies and ethics