Skip to main content

Effects of Cellular Phone- and Wi-Fi-Induced Electromagnetic Radiation on Oxidative Stress and Molecular Pathways in Brain

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

It has been suggested that the widespread use of cellular telephones and wireless devices may result in increased health risks resulting from brain exposure to electromagnetic radiation (EMR). The situation has prompted many investigations into the interaction between EMR and neuronal cells, even at intensities not able to produce thermal effects. This chapter reviews the effects of Wi-Fi (2.45 GHz) EMR exposure on the central nervous system in humans and experimental animals.

Several studies have suggested that EMR emitted by wireless devices can interfere with learning and memory in both animal models and human, but the results obtained are controversial and the molecular basis of this interaction is still unclear. Electromagnetic radiation may induce some degenerative effects in the brain by increasing oxidative stress and DNA breakage plus interference with the blood–brain barrier permeability. There are also recent reports on the role of Wi-Fi and mobile phone frequencies on Ca2+ influx through Ca2+ channels. The EMR increases ROS production in the neurons through the activation of oxidant system including NADPH oxidase activity and nitric oxide production. These effects are accompanied by a decrease in brain tissue of enzymatic antioxidants such as superoxide dismutase, catalase, and glutathione peroxidase together with a fall in the levels of nonenzymatic antioxidants such as glutathione and vitamin C.

Cell phone- and Wi-Fi-induced EMR appears to induce degenerative effects through increase of oxidative stress and decrease of antioxidants in the brain that affect neuronal physiological functions. Antioxidants seem to counteract the effects on the EMR, however.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DRG:

Dorsal root ganglion

EEG:

Electroencephalography

EMR:

Electromagnetic radiation

GSH:

Glutathione

GSH-Px:

Glutathione peroxidase

PUFAs:

Polyunsaturated fatty acids

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TRP:

Transient receptor potential

TRPM2:

Melastatin-like transient receptor potential 2

VGCC:

Voltage-gated calcium channels

WLAN:

Wireless local area networks

References

  • Aït-Aïssa S, Billaudel B, De Gannes FP, Hurtier A, Haro E, Taxile M, Ruffie G, Athane A, Veyret B, Lagroye I (2010) In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a Wi-Fi signal. Comptes Rendus Phys 11:592–601

    Article  Google Scholar 

  • Ammari M, Jacquet A, Lecomte A, Sakly M, Abdelmelek H, de Seze R (2008) Effect of head-only sub-chronic and chronic exposure to 900-MHz GSM electromagnetic fields on spatial memory in rats. Brain Inj 22(13–14):1021–1029

    Article  PubMed  Google Scholar 

  • Avci B, Akar A, Bilgici B, Tunçel ÖK (2012) Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats. Int J Radiat Biol 88(11):799–805

    Article  CAS  PubMed  Google Scholar 

  • Behari J (2010) Biological responses of mobile phone frequency exposure. Indian J Exp Biol 48(10):959–981

    CAS  PubMed  Google Scholar 

  • Bejarano I, Espino J, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2011) Pro-oxidant effect of melatonin in tumour leucocytes: relation with its cytotoxic and pro-apoptotic effects. Basic Clin Pharmacol Toxicol 108(1):14–20

    Article  CAS  PubMed  Google Scholar 

  • Borek C (2001) Antioxidant health effects of aged garlic extract. J Nutr 131(3s):1010S–1015S

    CAS  PubMed  Google Scholar 

  • Bowman GL (2012) Ascorbic acid, cognitive function, and Alzheimer’s disease: a current review and future direction. Biofactors 38(2):114–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bridi R, Crossetti FP, Steffen VM, Henriques AT (2001) The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in rats. Phytother Res 15(5):449–451

    Article  CAS  PubMed  Google Scholar 

  • Byus CV, Kartun K, Pieper S, Adey WR (1988) Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Res 48:4222–4226

    CAS  PubMed  Google Scholar 

  • Cassel JC, Cosquer B, Galani R, Kuster N (2004) Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats. Behav Brain Res 155:37–43

    Article  PubMed  Google Scholar 

  • Cl B (2009) Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol 38:135–143

    Article  Google Scholar 

  • Cobb BL, Jauchem JR, Adair ER (2004) Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics 25:49–57

    Article  PubMed  Google Scholar 

  • Cosquer B, Galani R, Kuster N, Cassel JC (2005) Whole-body exposure to 2.45 GHz electromagnetic fields does not alter anxiety responses in rats: a plus-maze study including test validation. Behav Brain Res 156:65–74

    Article  PubMed  Google Scholar 

  • Dasdag S, Akdag MZ, Ulukaya E, Uzunlar AK, Ocak AR (2009) Effect of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain. Electromagn Biol Med 28(4):342–354

    Article  CAS  PubMed  Google Scholar 

  • Dasdag S, Akdag MZ, Kizil G, Kizil M, Cakir DU, Yokus B (2012) Effect of 900 MHz radio frequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the brain. Electromagn Biol Med 31(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Dogan M, Turtay MG, Oguzturk H, Samdanci E, Turkoz Y, Tasdemir S, Alkan A, Bakir S (2012) Effects of electromagnetic radiation produced by 3G mobile phones on rat brains: magnetic resonance spectroscopy, biochemical, and histopathological evaluation. Hum Exp Toxicol 31(6):557–564

    Article  CAS  PubMed  Google Scholar 

  • Dubreuil D, Jay T, Edeline JM (2002) Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks? Behav Brain Res 129:203–210

    Article  PubMed  Google Scholar 

  • Dubreuil D, Jay T, Edeline JM (2003) Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat’s memory in spatial and non-spatial tasks. Behav Brain Res 145:51–61

    Article  PubMed  Google Scholar 

  • Eberhardt JL, Persson BR, Brun AE, Salford LG, Malmgren LO (2008) Blood-brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Electromagn Biol Med 27(3):215–129

    Article  CAS  PubMed  Google Scholar 

  • Ekmekcioglu C (2006) Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 60:97–108

    CAS  PubMed  Google Scholar 

  • Espino J, Bejarano I, Paredes SD, Barriga C, Rodríguez AB, Pariente JA (2011) Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J Pineal Res 51(2):195–206

    Article  CAS  PubMed  Google Scholar 

  • Espino J, Pariente JA, Rodríguez AB (2012) Oxidative stress and immunosenescence: therapeutic effects of melatonin. Oxid Med Cell Longev 2012:670294. doi:10.1155/2012/670294

    Article  PubMed Central  PubMed  Google Scholar 

  • Foster KR, Glaser R (2007) Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines. Health Phys 92(6):609–620

    Article  CAS  PubMed  Google Scholar 

  • Fragopoulou AF, Samara A, Antonelou MH, Xanthopoulou A, Papadopoulou A, Vougas K, Koutsogiannopoulou E, Anastasiadou E, Stravopodis DJ, Tsangaris GT, Margaritis LH (2012) Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation. Electromagn Biol Med 31(4):250–274

    Article  CAS  PubMed  Google Scholar 

  • Franke H, Ringelstein E, Stögbauer F (2005) Electromagnetic Fields (GSM 1800) do not alter blood–brain barrier permeability to sucrose in models in vitro with high barrier tightness. Bioelectromagnetics 26:529–535

    Article  PubMed  Google Scholar 

  • Grafström G, Nittby H, Brun A, Malmgren L, Persson BRR, Salford LG, Eberhardt J (2008) Histopathological examinations of rat brains after long-term exposure to GSM-900 mobile phone radiation. Brain Res Bull 77:257–263

    Article  PubMed  Google Scholar 

  • Gumral N, Naziroglu M, Koyu A, Ongel K, Celik O, Saygin M, Kahriman M, Caliskan S, Kayan M, Gencel O, Others A (2009) Effects of selenium and L-carnitine on oxidative stress in blood of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res 132:153–163

    Article  CAS  PubMed  Google Scholar 

  • Ilhan A, Gurel A, Armutcu F, Kamisli S, Iraz M, Akyol O, Ozen S (2004) Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clin Chim Acta 340:153–162

    Article  CAS  PubMed  Google Scholar 

  • Irmak MK, Fadillioğlu E, Güleç M, Erdoğan H, Yağmurca M, Akyol O (2002) Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct 20(4):279–283

    Article  CAS  PubMed  Google Scholar 

  • Jing J, Yuhua Z, Xiao-qian Y, Rongping J, Dong-mei G, Xi C (2012) The influence of microwave radiation from cellular phone on fetal rat brain. Electromagn Biol Med 31(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Jl E, Brr P, Ae B, Lg S, Log M (2008) Blood–brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Electromag Biol Med 27:215–229

    Article  Google Scholar 

  • Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4(10):1399–1440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kesari KK, Behari J, Kumar S (2010) Mutagenic response of 2.45 GHz radiation exposure on rat brain. Int J Radiat Biol 86(4):334–343

    Article  CAS  PubMed  Google Scholar 

  • Kesari KK, Kumar S, Behari J (2012) Pathophysiology of microwave radiation: effect on rat brain. Appl Biochem Biotechnol 166(2):379–388

    Article  CAS  PubMed  Google Scholar 

  • Köylü H, Mollaoglu H, Ozguner F, Nazıroğlu M, Delibas N (2006) Melatonin modulates 900 Mhz microwave-induced lipid peroxidation changes in rat brain. Toxicol Ind Health 22(5):211–216

    Article  PubMed  Google Scholar 

  • Kumar S, Kesari KK, Behari J (2011) The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field. Clinics (Sao Paulo) 66(7):1237–1245

    Article  Google Scholar 

  • Kumlin T, Iivonen H, Miettinen P, Juvonen A, Van Groen T, Puranen L, Pitkäaho R, Juutilainen J, Tanila H (2007) Mobile phone radiation and the developing brain: behavioral and morphological effects in juvenile rats. Radiat Res 168:471–479

    Article  CAS  PubMed  Google Scholar 

  • Lai H, Singh NP (1996) Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol 69(4):513–521

    Article  CAS  PubMed  Google Scholar 

  • Lai H, Singh NP (2004) Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect 112(6):687–694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maganioti AE, Hountala CD, Papageorgiou CC, Kyprianou MA, Rabavilas AD, Capsalis CN (2010) Principal component analysis of the P600 waveform: RF and gender effects. Neurosci Lett 478(1):19–23

    Article  CAS  PubMed  Google Scholar 

  • Martens L, De Moerloose J, De Zutter D, De Poorter J, De Wagter C (1995) Calculation of the electromagnetic fields induced in the head of an operator of a cordless telephone. Radio Sci 30:283–290

    Article  Google Scholar 

  • Martínez-Búrdalo M, Martín A, Sanchis A, Villar R (2009) FDTD assessment of human exposure to electromagnetic fields from WiFi and bluetooth devices in some operating situations. Bioelectromagnetics 30(2):142–151

    Article  PubMed  Google Scholar 

  • Masuda H, Ushiyama A, Takahashi M, Wang J, Fujiwara O, Hikage T, Nojima T, Fujita K, Kudo M, Ohkubo C (2009) Effects of 915 MHZ electromagnetic-field radiation in tem cell on the blood–brain barrier and neurons in the rat brain. Radiat Res 172:66–73

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Chan SL (2001) Dysregulation of cellular calcium homeostasis in Alzheimer’s Disease. J Mol Neurosci 17:205–224

    Article  CAS  PubMed  Google Scholar 

  • Mcquade JMS, Merritt JH, Miller SA, Scholin T, Cook MC, Salazar A, Rahimi OB, Murphy MR, Mason PA (2009) Radiofrequency-radiation exposure does not induce detectable leakage of albumin across the blood–brain barrier. Radiat Res 171:615–621

    Article  CAS  PubMed  Google Scholar 

  • Meral I, Mert H, Mert N, Deger Y, Yoruk I, Yetkin A, Keskin S (2007) Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs. Brain Res 1169:120–124

    Article  CAS  PubMed  Google Scholar 

  • Nazıroğlu M (2007a) Molecular Mechanisms of vitamin E on intracellular signaling pathways in brain. In: Goth L (ed) Reactive Oxygen Species and Diseases. Research Signpost Press, Kerala, pp 239–256

    Google Scholar 

  • Nazıroğlu M (2007b) New molecular mechanisms on the activation of TRPM2 channels by Oxidative Stress and ADP-Ribose. Neurochem Res 32:1990–2001

    Article  PubMed  Google Scholar 

  • Nazıroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34(12):2181–2191

    Article  PubMed  Google Scholar 

  • Nazıroğlu M (2011) TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 36(3):355–366

    Article  PubMed  Google Scholar 

  • Nazıroğlu M (2012) Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res 32(3):134–141

    Article  PubMed  Google Scholar 

  • Nazıroğlu M, Gümral N (2009) Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol 85(8):680–689

    Article  PubMed  Google Scholar 

  • Nazıroğlu M, Çiğ B, Doğan S, Uğuz AC, Dilek S, Faouzi D (2012a) 2.45-GHz wireless devices induce oxidative stress and proliferation through cytosolic Ca2+ influx in human leukemia cancer cells. Int J Radiat Biol 88:449–456

    Article  PubMed  Google Scholar 

  • Nazıroğlu M, Tokat S, Demirci S (2012b) Role of melatonin on electromagnetic radiation-induced oxidative stress and Ca2+ signaling molecular pathways in breast cancer. J Recept Signal Transduct Res 32(6):290–297

    Article  PubMed  Google Scholar 

  • Nazıroğlu M, Dikici DM, Dursun S (2012c) Role of oxidative stress and Ca2+ signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res 37(10):2065–2075

    Article  PubMed  Google Scholar 

  • Nazıroğlu M, Çelik Ö, Özgül C, Çiğ B, Doğan S, Bal R, Gümral N, Rodríguez AB, Pariente JA (2012d) Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat. Physiol Behav 105:683–692

    Article  PubMed  Google Scholar 

  • Nazıroğlu M, Yıldız K, Tamtürk B, Erturan I, Flores-Arce M (2012e) Selenium and psoriasis. Biol Trace Elem Res 150(1–3):3–9

    PubMed  Google Scholar 

  • Nazıroğlu M, Yoldaş N, Uzgur EN, Kayan M (2013) Role of contrast media on oxidative stress, Ca(2+) signaling and apoptosis in kidney. J Membr Biol 246:91–100

    Article  PubMed  Google Scholar 

  • Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, Schuderer J, Kuster N, Wobus AM (2005) Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J 19(12):1686–1688

    CAS  PubMed  Google Scholar 

  • Nittby H, Grafström G, Tian DP, Malmgren L, Brun A, Persson BR, Salford LG, Eberhardt J (2008) Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics 29(3):219–232

    Article  PubMed  Google Scholar 

  • Nittby H, Brun A, Eberhardt J, Malmgren L, Persson BR, Salford LG (2009) Increased blood–brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology 16(2–3):103–112

    Article  CAS  PubMed  Google Scholar 

  • O’Connor RP, Madison SD, Leveque P, Roderick HL, Bootman MD (2010) Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheochromocytoma cells or rat hippocampal neurons. PLoS One 5(7):e11828

    Article  PubMed Central  PubMed  Google Scholar 

  • Omura Y, Losco M (1993) Electro-magnetic fields in the home environment (color TV, computer monitor, microwave oven, cellular phone, etc) as potential contributing factors for the induction of oncogen C-Fos Ab1, oncogen C-Fos Ab2, integrin alpha 5 beta 1 and development of cancer, as well as effects of microwave on amino acid composition of food and living human brain. Acupunct Electrother Res 18:33–73

    CAS  PubMed  Google Scholar 

  • Ozmen I, Naziroğlu M, Alici HA, Sahin F, Cengiz M, Eren I (2007) Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress. Neurochem Res 32(1):19–25

    Article  PubMed  Google Scholar 

  • Parekh AB, Putney JW (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  CAS  PubMed  Google Scholar 

  • Paulraj R, Behari J (2006a) Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res 596(1–2):76–80

    Article  CAS  PubMed  Google Scholar 

  • Paulraj R, Behari J (2006b) Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation. Electromagn Biol Med 25(1):61–70

    Article  CAS  PubMed  Google Scholar 

  • Pinto R, Lopresto V, Galloni P, Marino C, Mancini S, Lodato R, Pioli C, Lovisolo G (2010) Dosimetry of a set-up for the exposure of newborn mice to 2.45-GHz WiFi frequencies. Radiat Prot Dosimetry 140(4):326–332

    Article  CAS  PubMed  Google Scholar 

  • Platano D, Mesirca P, Paffi A, Pellegrino M, Liberti M, Apollonio F, Bersani F, Aicardi G (2007) Acute exposure to low‐level CW and GSM‐modulated 900 MHz radiofrequency does not affect Ba2+ currents through voltage‐gated calcium channels in rat cortical neurons. Bioelectromagnetics 28:599–607

    Article  CAS  PubMed  Google Scholar 

  • Poulletier De Gannes F, Billaudel B, Taxile M, Haro E, Ruffie G, Leveque P, Veyret B, Lagroye I (2009) Effects of head-only exposure of rats to GSM-900 on blood–brain barrier permeability and neuronal degeneration. Radiat Res 172:359–367

    Article  CAS  Google Scholar 

  • Salford LG, Brun A, Kjellén E, Pero RW, Persson RB (1997) Whole-body hyperthermia and ADPRT inhibition in experimental treatment of brain tumors. Ann N Y Acad Sci 835:194–202

    Article  CAS  PubMed  Google Scholar 

  • Salford LG, Brun AE, Eberhardt JL, Malmgren L, Persson BR (2003) Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect 111(7):881–883

    Article  PubMed Central  PubMed  Google Scholar 

  • Salford LG, Nittby H, Brun A, Grafström G, Eberhardt JL, Malmgren L, Persson BRR (2007) Non-thermal effects of EMF upon the mammalian brain: the lund experience. The Environmentalist 27:493–500

    Article  Google Scholar 

  • Shahin S, Singh VP, Shukla RK, Dhawan A, Gangwar RK, Singh SP, Chaturvedi CM (2013) 2.45 GHz microwave irradiation-induced oxidative stress affects implantation or pregnancy in mice, mus musculus. Appl Biochem Biotechnol 169(5):1727–1751

    Article  CAS  PubMed  Google Scholar 

  • Sienkiewicz ZJ, Blackwell RP, Haylock RGE, Saunders RD, Cobb BL (2000) Low‐level exposure to pulsed 900 MHz microwave radiation does not cause deficits in the performance of a spatial learning task in mice. Bioelectromagnetics 21:151–158

    Article  CAS  PubMed  Google Scholar 

  • Sokolovic D, Djindjic B, Nikolic J, Bjelakovic G, Pavlovic D, Kocic G, Krstic D, Cvetkovic T, Pavlovic V (2008) Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J Radiat Res 49(6):579–586

    Article  CAS  PubMed  Google Scholar 

  • Tatsuo S (1994) 1994. Protein kinases involved in the expression of long-term potentiation. Int J Biochem 26:735–744

    Article  Google Scholar 

  • Yang XS, He GL, Hao YT, Xiao Y, Chen CH, Zhang GB, Yu ZP (2012) Exposure to 2.45 GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus. Brain Res Bull 88(4):371–378

    Article  PubMed  Google Scholar 

  • Yioultsis T, Kosmanis T, Kosmidou E, Zygiridis T, Kantartzis N, Xenos T, Tsiboukis T (2002) A comparative study of the biological effects of various mobile phone and wireless LAN antennas. IEEE Trans Magn 38:777–780

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Peter J. Butterworth (Nutritional Sciences Division King’s College London, UK) for polishing English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Nazıroğlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Nazıroğlu, M., Akman, H. (2014). Effects of Cellular Phone- and Wi-Fi-Induced Electromagnetic Radiation on Oxidative Stress and Molecular Pathways in Brain. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_210

Download citation

Publish with us

Policies and ethics