Skip to main content

Zebrafish

  • Living reference work entry
  • First Online:
Book cover Drug Discovery and Evaluation: Pharmacological Assays

Abstract

The zebrafish (Danio rerio) is a cost-effective vertebrate model system amenable to pharmacological investigation. Many of the available drug assays are relatively straightforward to perform, as small molecules dissolved directly in the water can be directly taken up by the zebrafish to elicit biological effects in target tissues. The low cost and ease of drug administration have especially enabled the adoption of high-throughput pharmacological screening in whole, intact animals. In addition, a fully sequenced genome and numerous tools to manipulate genes allow for the rapid generation of zebrafish disease models. Finally, the high conservation between zebrafish and mammalian drug targets facilitates bringing zebrafish pharmacological discoveries into the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

General Considerations

  • Auer TO, Del Bene F (2014) CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 69:142–150

    CAS  PubMed  Google Scholar 

  • Bedell VM, Ekker SC (2015) Using engineered endonucleases to create knockout and knockin zebrafish models. Methods Mol Biol 1239:291–305

    PubMed  Google Scholar 

  • Chang T-Y, Shi P, Steinmeyer JD, Chatnuntawech I, Tillberg P, Love KT, Eimon PM, Anderson DG, Yanik MF (2014) Organ-targeted high-throughput in vivo biologics screen identifies materials for RNA delivery. Integr Biol (Camb) 6:926–934

    CAS  Google Scholar 

  • Dunér T, Conlon JM, Kukkonen JP, Akerman KEO, Yan Y-L, Postlethwait JH, Larhammar D (2002) Cloning, structural characterization and functional expression of a zebrafish bradykinin B2-related receptor. Biochem J 364:817–824

    PubMed Central  PubMed  Google Scholar 

  • Eliceiri BP, Gonzalez AM, Baird A (2011) Zebrafish model of the blood-brain barrier: morphological and permeability studies. Methods Mol Biol 686:371–378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fleming A, Diekmann H, Goldsmith P (2013) Functional characterisation of the maturation of the blood-brain barrier in larval zebrafish. PLoS One 8:e77548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Nuñez V, Fernández M, de Velasco E, Arsequell G, Valencia G, Rodríguez RE (2007) Identification of dynorphin a from zebrafish: a comparative study with mammalian dynorphin A. Neuroscience 144:675–684

    PubMed  Google Scholar 

  • Hossain MS, Larsson A, Scherbak N, Olsson P-E, Orban L (2008) Zebrafish androgen receptor: isolation, molecular, and biochemical characterization. Biol Reprod 78:361–369

    CAS  PubMed  Google Scholar 

  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh DJ-Y, Liao C-F (2002) Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia. Br J Pharmacol 137:782–792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeong J-Y, Kwon H-B, Ahn J-C, Kang D, Kwon S-H, Park JA, Kim K-W (2008) Functional and developmental analysis of the blood-brain barrier in zebrafish. Brain Res Bull 75:619–628

    CAS  PubMed  Google Scholar 

  • Kawakami K, Abe G, Asada T, Asakawa K, Fukuda R, Ito A, Lal P, Mouri N, Muto A, Suster ML et al (2010) zTrap: zebrafish gene trap and enhancer trap database. BMC Dev Biol 10:105

    PubMed Central  PubMed  Google Scholar 

  • Kettleborough RNW, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, Sealy I, White RJ, Herd C, Nijman IJ et al (2013) A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496:494–497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    CAS  PubMed  Google Scholar 

  • Kondrychyn I, Teh C, Garcia-Lecea M, Guan Y, Kang A, Korzh V (2011) Zebrafish enhancer TRAP transgenic line database ZETRAP 2.0. Zebrafish 8:181–182

    CAS  PubMed  Google Scholar 

  • Kyzar E, Zapolsky I, Green J, Gaikwad S, Pham M, Collins C, Roth A, Stewart AM, St-Pierre P, Hirons B et al (2012a) The Zebrafish Neurophenome Database (ZND): a dynamic open-access resource for zebrafish neurophenotypic data. Zebrafish 9:8–14

    PubMed  Google Scholar 

  • Nüsslein-Volhard C (2012) The zebrafish issue of development. Development 139:4099–4103

    PubMed  Google Scholar 

  • Pardo-Martin C, Chang T-Y, Koo BK, Gilleland CL, Wasserman SC, Yanik MF (2010) High-throughput in vivo vertebrate screening. Nat Methods 7:634–636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parng C (2005) In vivo zebrafish assays for toxicity testing. Curr Opin Drug Discov Devel 8:100–106

    CAS  PubMed  Google Scholar 

  • Peitsaro N, Sundvik M, Anichtchik OV, Kaslin J, Panula P (2007) Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior. Biochem Pharmacol 73:1205–1214

    CAS  PubMed  Google Scholar 

  • Peterson RT, Fishman MC (2011) Designing zebrafish chemical screens. Methods Cell Biol 105:525–541

    CAS  PubMed  Google Scholar 

  • Pfriem A, Pylatiuk C, Alshut R, Ziegener B, Schulz S, Bretthauer G (2012) A modular, low-cost robot for zebrafish handling. Conf Proc IEEE Eng Med Biol Soc 2012:980–983

    PubMed  Google Scholar 

  • Pugach EK, Li P, White R, Zon L (2009) Retro-orbital injection in adult zebrafish. J Vis Exp 34. pii: 1645

    Google Scholar 

  • Radi M, Evensen L, Dreassi E, Zamperini C, Caporicci M, Falchi F, Musumeci F, Schenone S, Lorens JB, Botta M (2012) A combined targeted/phenotypic approach for the identification of new antiangiogenics agents active on a zebrafish model: from in silico screening to cyclodextrin formulation. Bioorg Med Chem Lett 22:5579–5583

    CAS  PubMed  Google Scholar 

  • Renier C, Faraco JH, Bourgin P, Motley T, Bonaventure P, Rosa F, Mignot E (2007a) Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet Genomics 17:237–253

    CAS  PubMed  Google Scholar 

  • Rennekamp AJ, Peterson RT (2015) 15 years of zebrafish chemical screening. Curr Opin Chem Biol 24C:58–70

    Google Scholar 

  • Ringholm A, Fredriksson R, Poliakova N, Yan Y-L, Postlethwait JH, Larhammar D, Schiöth HB (2002) One melanocortin 4 and two melanocortin 5 receptors from zebrafish show remarkable conservation in structure and pharmacology. J Neurochem 82:6–18

    CAS  PubMed  Google Scholar 

  • Rivas-Boyero AA, Herrero-Turrión MJ, Gonzalez-Nunez V, Sánchez-Simón FM, Barreto-Valer K, Rodríguez RE (2011) Pharmacological characterization of a nociceptin receptor from zebrafish (Danio rerio). J Mol Endocrinol 46:111–123

    CAS  PubMed  Google Scholar 

  • Ruuskanen JO, Peitsaro N, Kaslin JVM, Panula P, Scheinin M (2005) Expression and function of alpha-adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions. J Neurochem 94:1559–1569

    CAS  PubMed  Google Scholar 

  • Spaink HP, Cui C, Wiweger MI, Jansen HJ, Veneman WJ, Marín-Juez R, de Sonneville J, Ordas A, Torraca V, van der Ent W et al (2013) Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods 62:246–254

    CAS  PubMed  Google Scholar 

  • Sprague J, Bayraktaroglu L, Bradford Y, Conlin T, Dunn N, Fashena D, Frazer K, Haendel M, Howe DG, Knight J et al (2008) The Zebrafish Information Network: the zebrafish model organism database provides expanded support for genotypes and phenotypes. Nucleic Acids Res 36:D768–D772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamplin OJ, White RM, Jing L, Kaufman CK, Lacadie SA, Li P, Taylor AM, Zon LI (2012) Small molecule screening in zebrafish: swimming in potential drug therapies. Wiley Interdiscip Rev Dev Biol 1:459–468

    CAS  PubMed  Google Scholar 

  • Tan JL, Zon LI (2011) Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods Cell Biol 105:493–516

    CAS  PubMed  Google Scholar 

  • Wang W, Liu X, Gelinas D, Ciruna B, Sun Y (2007) A fully automated robotic system for microinjection of zebrafish embryos. PLoS One 2:e862

    PubMed Central  PubMed  Google Scholar 

  • Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Oregon Press, Eugene

    Google Scholar 

  • Williams FE, Messer WS (2004) Muscarinic acetylcholine receptors in the brain of the zebrafish (Danio rerio) measured by radioligand binding techniques. Comp Biochem Physiol C Toxicol Pharmacol 137:349–353

    PubMed  Google Scholar 

  • Xie J, Farage E, Sugimoto M, Anand-Apte B (2010) A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development. BMC Dev Biol 10:76

    PubMed Central  PubMed  Google Scholar 

Developmental Signalling, Cell Proliferation, and Cancer

  • Alvarez Y, Astudillo O, Jensen L, Reynolds AL, Waghorne N, Brazil DP, Cao Y, O’Connor JJ, Kennedy BN (2009) Selective inhibition of retinal angiogenesis by targeting PI3 kinase. PLoS One 4:e7867

    PubMed Central  PubMed  Google Scholar 

  • Anelli V, Santoriello C, Distel M, Köster RW, Ciccarelli FD, Mione M (2009) Global repression of cancer gene expression in a zebrafish model of melanoma is linked to epigenetic regulation. Zebrafish 6:417–424

    CAS  PubMed  Google Scholar 

  • Brion F, Le Page Y, Piccini B, Cardoso O, Tong S-K, Chung B, Kah O (2012) Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP) zebrafish embryos. PLoS One 7:e36069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi W-Y, Gemberling M, Wang J, Holdway JE, Shen M-C, Karlstrom RO, Poss KD (2013a) In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140:660–666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Das BC, McCartin K, Liu T-C, Peterson RT, Evans T (2010) A forward chemical screen in zebrafish identifies a retinoic acid derivative with receptor specificity. PLoS One 5:e10004

    PubMed Central  PubMed  Google Scholar 

  • Dovey M, White RM, Zon LI (2009) Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish. Zebrafish 6:397–404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    CAS  PubMed  Google Scholar 

  • Dryja TP, O’Neil-Dryja M, Pawelek JM, Albert DM (1978) Demonstration of tyrosinase in the adult bovine uveal tract and retinal pigment epithelium. Invest Ophthalmol Vis Sci 17:511–514

    CAS  PubMed  Google Scholar 

  • Gebruers E, Cordero-Maldonado ML, Gray AI, Clements C, Harvey AL, Edrada-Ebel R, de Witte PAM, Crawford AD, Esguerra CV (2013) A phenotypic screen in zebrafish identifies a novel small-molecule inducer of ectopic tail formation suggestive of alterations in non-canonical Wnt/PCP signaling. PLoS One 8:e83293

    PubMed Central  PubMed  Google Scholar 

  • Geling A, Steiner H, Willem M, Bally-Cuif L, Haass C (2002) A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 3:688–694

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Groh ED, Swanhart LM, Cosentino CC, Jackson RL, Dai W, Kitchens CA, Day BW, Smithgall TE, Hukriede NA (2010) Inhibition of histone deacetylase expands the renal progenitor cell population. J Am Soc Nephrol 21:794–802

    PubMed Central  PubMed  Google Scholar 

  • Gutierrez A, Pan L, Groen RWJ, Baleydier F, Kentsis A, Marineau J, Grebliunaite R, Kozakewich E, Reed C, Pflumio F et al (2014) Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest 124:644–655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    CAS  PubMed  Google Scholar 

  • Hao J, Ao A, Zhou L, Murphy CK, Frist AY, Keel JJ, Thorne CA, Kim K, Lee E, Hong CC (2013) Selective small molecule targeting β-catenin function discovered by in vivo chemical genetic screen. Cell Rep 4:898–904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holder N, Hill J (1991) Retinoic acid modifies development of the midbrain-hindbrain border and affects cranial ganglion formation in zebrafish embryos. Development 113:1159–1170

    CAS  PubMed  Google Scholar 

  • Jung D-W, Williams D, Khersonsky SM, Kang T-W, Heidary N, Chang Y-T, Orlow SJ (2005) Identification of the F1F0 mitochondrial ATPase as a target for modulating skin pigmentation by screening a tagged triazine library in zebrafish. Mol Biosyst 1:85–92

    CAS  PubMed  Google Scholar 

  • Kitambi SS, McCulloch KJ, Peterson RT, Malicki JJ (2009) Small molecule screen for compounds that affect vascular development in the zebrafish retina. Mech Dev 126:464–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 93:8455–8459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, Lin S, Prochownik E, Trede NS, Zon LI et al (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science 299:887–890

    CAS  PubMed  Google Scholar 

  • Langheinrich U, Hennen E, Stott G, Vacun G (2002) Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol 12:2023–2028

    CAS  PubMed  Google Scholar 

  • Mathew LK, Sengupta S, Kawakami A, Andreasen EA, Löhr CV, Loynes CA, Renshaw SA, Peterson RT, Tanguay RL (2007a) Unraveling tissue regeneration pathways using chemical genetics. J Biol Chem 282:35202–35210

    CAS  PubMed  Google Scholar 

  • Michailidou C, Jones M, Walker P, Kamarashev J, Kelly A, Hurlstone AFL (2009) Dissecting the roles of Raf- and PI3K-signalling pathways in melanoma formation and progression in a zebrafish model. Dis Model Mech 2:399–411

    CAS  PubMed  Google Scholar 

  • Molina G, Vogt A, Bakan A, Dai W, Queiroz de Oliveira P, Znosko W, Smithgall TE, Bahar I, Lazo JS, Day BW et al (2009) Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat Chem Biol 5:680–687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphey RD, Stern HM, Straub CT, Zon LI (2006) A chemical genetic screen for cell cycle inhibitors in zebrafish embryos. Chem Biol Drug Des 68:213–219

    CAS  PubMed  Google Scholar 

  • Neumann CJ, Grandel H, Gaffield W, Schulte-Merker S, Nüsslein-Volhard C (1999) Transient establishment of anteroposterior polarity in the zebrafish pectoral fin bud in the absence of sonic hedgehog activity. Development 126:4817–4826

    CAS  PubMed  Google Scholar 

  • North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang I-H, Grosser T et al (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447:1007–1011

    CAS  PubMed Central  PubMed  Google Scholar 

  • North TE, Goessling W, Peeters M, Li P, Ceol C, Lord AM, Weber GJ, Harris J, Cutting CC, Huang P et al (2009) Hematopoietic stem cell development is dependent on blood flow. Cell 137:736–748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paik EJ, de Jong JLO, Pugach E, Opara P, Zon LI (2010) A chemical genetic screen in zebrafish for pathways interacting with cdx4 in primitive hematopoiesis. Zebrafish 7:61–68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papalopulu N, Clarke JD, Bradley L, Wilkinson D, Krumlauf R, Holder N (1991) Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development 113:1145–1158

    CAS  PubMed  Google Scholar 

  • Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, Berghmans S, Mayhall EA, Traver D, Fletcher CDM et al (2005) BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15:249–254

    CAS  PubMed  Google Scholar 

  • Peterson RT, Link BA, Dowling JE, Schreiber SL (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci U S A 97:12965–12969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ridges S, Heaton WL, Joshi D, Choi H, Eiring A, Batchelor L, Choudhry P, Manos EJ, Sofla H, Sanati A et al (2012) Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 119:5621–5631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rovira M, Huang W, Yusuff S, Shim JS, Ferrante AA, Liu JO, Parsons MJ (2011) Chemical screen identifies FDA-approved drugs and target pathways that induce precocious pancreatic endocrine differentiation. Proc Natl Acad Sci U S A 108:19264–19269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sachidanandan C, Yeh J-RJ, Peterson QP, Peterson RT (2008) Identification of a novel retinoid by small molecule screening with zebrafish embryos. PLoS One 3:ple1–ple9, e1947

    Google Scholar 

  • Sandoval IT, Manos EJ, Van Wagoner RM, Delacruz RGC, Edes K, Winge DR, Ireland CM, Jones DA (2013) Juxtaposition of chemical and mutation-induced developmental defects in zebrafish reveal a copper-chelating activity for kalihinol F. Chem Biol 20:753–763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santoriello C, Gennaro E, Anelli V, Distel M, Kelly A, Köster RW, Hurlstone A, Mione M (2010) Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PLoS One 5:e15170

    PubMed Central  PubMed  Google Scholar 

  • Saydmohammed M, Vollmer LL, Onuoha EO, Vogt A, Tsang M (2011) A high-content screening assay in transgenic zebrafish identifies two novel activators of fgf signaling. Birth Defects Res C Embryo Today 93:281–287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stachel SE, Grunwald DJ, Myers PZ (1993) Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117:1261–1274

    CAS  PubMed  Google Scholar 

  • Sugiyama M, Sakaue-Sawano A, Iimura T, Fukami K, Kitaguchi T, Kawakami K, Okamoto H, Higashijima S, Miyawaki A (2009) Illuminating cell-cycle progression in the developing zebrafish embryo. Proc Natl Acad Sci U S A 106:20812–20817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terriente J, Pujades C (2013) Use of zebrafish embryos for small molecule screening related to cancer. Dev Dyn 242:97–107

    CAS  PubMed  Google Scholar 

  • Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69

    CAS  PubMed  Google Scholar 

  • Tran TC, Sneed B, Haider J, Blavo D, White A, Aiyejorun T, Baranowski TC, Rubinstein AL, Doan TN, Dingledine R et al (2007a) Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res 67:11386–11392

    CAS  PubMed  Google Scholar 

  • Tsuji N, Ninov N, Delawary M, Osman S, Roh AS, Gut P, Stainier DYR (2014) Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation. PLoS One 9:e104112

    PubMed Central  PubMed  Google Scholar 

  • Wang C, Tao W, Wang Y, Bikow J, Lu B, Keating A, Verma S, Parker TG, Han R, Wen X-Y (2010) Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur Urol 58:418–426

    CAS  PubMed  Google Scholar 

  • White RM, Cech J, Ratanasirintrawoot S, Lin CY, Rahl PB, Burke CJ, Langdon E, Tomlinson ML, Mosher J, Kaufman C et al (2011) DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471:518–522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu C, Tabebordbar M, Iovino S, Ciarlo C, Liu J, Castiglioni A, Price E, Liu M, Barton ER, Kahn CR et al (2013a) A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155:909–921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeh J-RJ, Munson KM, Elagib KE, Goldfarb AN, Sweetser DA, Peterson RT (2009) Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat Chem Biol 5:236–243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, Lin HY, Bloch KD, Peterson RT (2008) Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4:33–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Z-R, Li J-H, Li S, Liu A-L, Hoi P-M, Tian H-Y, Ye W-C, Lee SM-Y, Jiang R-W (2014a) In vivo angiogenesis screening and mechanism of action of novel tanshinone derivatives produced by one-pot combinatorial modification of natural tanshinone mixture from Salvia miltiorrhiza. PLoS One 9:e100416

    PubMed Central  PubMed  Google Scholar 

  • Zhou L, Ishizaki H, Spitzer M, Taylor KL, Temperley ND, Johnson SL, Brear P, Gautier P, Zeng Z, Mitchell A et al (2012) ALDH2 mediates 5-nitrofuran activity in multiple species. Chem Biol 19:883–892

    CAS  PubMed Central  PubMed  Google Scholar 

Fin Regeneration

  • Andreasen EA, Mathew L, Tanguay RL (2006) Regenerative growth is impacted by TCDD: gene expression analysis reveals extracellular matrix modulation. Toxicol Sci 92(1):254–269

    CAS  PubMed  Google Scholar 

  • Andreasen EA, Mathew LK, Löhr CV, Hasson R, Tanguay RL (2007) Aryl hydrocarbon receptor activation impairs extracellular matrix remodeling during zebra fish fin regeneration. Toxicol Sci 95:215–226

    CAS  PubMed  Google Scholar 

  • Bayliss PE, Bellavance KL, Whitehead GG, Abrams JM, Aegerter S, Robbins HS, Cowan DB, Keating MT, O’Reilly T, Wood JM et al (2006) Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nat Chem Biol 2:265–273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gemberling M, Bailey TJ, Hyde DR, Poss KD (2013) The zebrafish as a model for complex tissue regeneration. Trends Genet 29:611–620

    CAS  PubMed  Google Scholar 

  • Goessling W, North TE (2014) Repairing quite swimmingly: advances in regenerative medicine using zebrafish. Dis Model Mech 7:769–776

    PubMed Central  PubMed  Google Scholar 

  • Jaźwińska A, Badakov R, Keating MT (2007) Activin-betaA signaling is required for zebrafish fin regeneration. Curr Biol 17:1390–1395

    PubMed  Google Scholar 

  • Johnson SL, Weston JA (1995) Temperature-sensitive mutations that cause stage-specific defects in zebrafish fin regeneration. Genetics 141:1583–1595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawakami A, Fukazawa T, Takeda H (2004) Early fin primordia of zebrafish larvae regenerate by a similar growth control mechanism with adult regeneration. Dev Dyn 231(4):693–699

    PubMed  Google Scholar 

  • Mathew LK, Andreasen EA, Tanguay RL (2006) Aryl hydrocarbon receptor activation inhibits regenerative growth. Mol Pharmacol 69:257–265

    CAS  PubMed  Google Scholar 

  • Mathew LK, Sengupta S, Kawakami A, Andreasen EA, Löhr CV, Loynes CA, Renshaw SA, Peterson RT, Tanguay RL (2007b) Unraveling tissue regeneration pathways using chemical genetics. J Biol Chem 282:35202–35210

    CAS  PubMed  Google Scholar 

  • Moon H-Y, Kim O-H, Kim H-T, Choi J-H, Yeo S-Y, Kim N-S, Park D-S, Oh H-W, You K-H, De Zoysa M et al (2013) Establishment of a transgenic zebrafish EF1α:Kaede for monitoring cell proliferation during regeneration. Fish Shellfish Immunol 34:1390–1394

    CAS  PubMed  Google Scholar 

  • Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:996–999

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Donnell EF, Saili KS, Koch DC, Kopparapu PR, Farrer D, Bisson WH, Mathew LK, Sengupta S, Kerkvliet NI, Tanguay RL et al (2010) The anti-inflammatory drug leflunomide is an agonist of the aryl hydrocarbon receptor. PLoS One 5:e13128

    PubMed Central  PubMed  Google Scholar 

  • Oppedal D, Goldsmith MI (2010) A chemical screen to identify novel inhibitors of fin regeneration in zebrafish. Zebrafish 7:53–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poss KD, Shen J, Nechiporuk A, McMahon G, Thisse B, Thisse C, Keating MT (2000) Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol 222:347–358

    CAS  PubMed  Google Scholar 

  • Rieger S, Sagasti A (2011) Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol 9:e1000621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith A, Avaron F, Guay D, Padhi BK, Akimenko MA (2006) Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblasts differentiation and function. Dev Biol 299:438–454

    CAS  PubMed  Google Scholar 

  • Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N, Moon RT (2007) Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Dev Camb Engl 134:479–489

    CAS  Google Scholar 

  • Whitehead GG, Makino S, Lien C-L, Keating MT (2005) fgf20 is essential for initiating zebrafish fin regeneration. Science 310:1957–1960

    CAS  PubMed  Google Scholar 

  • Zodrow JM, Tanguay RL (2003) 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibits zebrafish caudal fin regeneration. Toxicol Sci 76:151–161

    CAS  PubMed  Google Scholar 

Heart Regeneration

  • Chablais F, Jazwinska A (2012a) The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling. Dev Camb Engl 139:1921–1930

    CAS  Google Scholar 

  • Chablais F, Jaźwińska A (2012b) Induction of myocardial infarction in adult zebrafish using cryoinjury. J Vis Exp 62:e3666

    Google Scholar 

  • Choi W-Y, Gemberling M, Wang J, Holdway JE, Shen M-C, Karlstrom RO, Poss KD (2013b) In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Dev Camb Engl 140:660–666

    CAS  Google Scholar 

  • Dickover MS, Zhang R, Han P, Chi NC (2013) Zebrafish cardiac injury and regeneration models: a noninvasive and invasive in vivo model of cardiac regeneration. Methods Mol Biol 1037:463–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • González-Rosa JM, Mercader N (2012) Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish. Nat Protoc 7:782–788

    PubMed  Google Scholar 

  • Huang W-C, Yang C-C, Chen I-H, Liu Y-ML, Chang S-J, Chuang Y-J (2013a) Treatment of glucocorticoids inhibited early immune responses and impaired cardiac repair in adult zebrafish. PLoS One 8:e66613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Y, Harrison MR, Osorio A, Kim J, Baugh A, Duan C, Sucov HM, Lien C-L (2013b) Igf signaling is required for cardiomyocyte proliferation during zebrafish heart development and regeneration. PLoS One 8:e67266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itou J, Oishi I, Kawakami H, Glass TJ, Richter J, Johnson A, Lund TC, Kawakami Y (2012) Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Dev Camb Engl 139:4133–4142

    CAS  Google Scholar 

  • Itou J, Akiyama R, Pehoski S, Yu X, Kawakami H, Kawakami Y (2014) Regenerative responses after mild heart injuries for cardiomyocyte proliferation in zebrafish. Dev Dyn 243:1477–1486

    PubMed  Google Scholar 

  • Jopling C, Sleep E, Raya M, Martí M, Raya A, Izpisúa Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464:606–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DYR, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464:601–605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Rubin N, Huang Y, Tuan TL, Lien CL (2012) In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix. Nat Protoc 7(2):247–255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Wu Q, Zhang Y, Wiens KM, Huang Y, Rubin N, Shimada H, Handin RI, Chao MY, Tuan T-L et al (2010) PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc Natl Acad Sci U S A 107:17206–17210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    CAS  PubMed  Google Scholar 

  • Wang J, Panáková D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, Singh SP, Dickson AL, Lin Y-F, Sabeh MK, Werdich AA, Yelon D, MacRae CA, Poss KD (2011) The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138(16):3421–3430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin Y-F, Ocorr K, Kang G, Chen J, Stainier DYR et al (2013) In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498:497–501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao L, Borikova AL, Ben-Yair R, Guner-Ataman B, MacRae CA, Lee RT, Burns CG, Burns CE (2014a) Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci U S A 111:1403–1408

    CAS  PubMed Central  PubMed  Google Scholar 

Hair Cell Damage and Regeneration

  • Chiu LL, Cunningham LL, Raible DW, Rubel EW, Ou HC (2008) Using the zebrafish lateral line to screen for ototoxicity. J Assoc Res Otolaryngol 9:178–190

    PubMed Central  PubMed  Google Scholar 

  • Esterberg R, Coffin AB, Ou H, Simon JA, Raible DW, Rubel EW (2013). Fish in a dish: drug discovery for hearing habilitation. Drug Discov Today Dis Model 10(1). doi:10.1016/j.ddmod.2012.02.001

    Google Scholar 

  • He Y, Cai C, Tang D, Sun S, Li H (2014) Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts. Front Cell Neurosci 8:382

    PubMed Central  PubMed  Google Scholar 

  • Hernández PP, Moreno V, Olivari FA, Allende ML (2006) Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hear Res 213:1–10

    PubMed  Google Scholar 

  • Hirose Y, Simon JA, Ou HC (2011) Hair cell toxicity in anti-cancer drugs: evaluating an anti-cancer drug library for independent and synergistic toxic effects on hair cells using the zebrafish lateral line. J Assoc Res Otolaryngol 12:719–728

    PubMed Central  PubMed  Google Scholar 

  • Ma EY, Rubel EW, Raible DW (2008) Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J Neurosci 28:2261–2273

    CAS  PubMed  Google Scholar 

  • Mackenzie SM, Raible DW (2012) Proliferative regeneration of zebrafish lateral line hair cells after different ototoxic insults. PLoS One 7:e47257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moon IS, So J-H, Jung Y-M, Lee W-S, Kim EY, Choi J-H, Kim C-H, Choi JY (2011) Fucoidan promotes mechanosensory hair cell regeneration following amino glycoside-induced cell death. Hear Res 282:236–242

    CAS  PubMed  Google Scholar 

  • Murakami SL, Cunningham LL, Werner LA, Bauer E, Pujol R, Raible DW, Rubel EW (2003) Developmental differences in susceptibility to neomycin-induced hair cell death in the lateral line neuromasts of zebrafish (Danio rerio). Hear Res 186:47–56

    CAS  PubMed  Google Scholar 

  • Namdaran P, Reinhart KE, Owens KN, Raible DW, Rubel EW (2012) Identification of modulators of hair cell regeneration in the zebrafish lateral line. J Neurosci 32:3516–3528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ou HC, Raible DW, Rubel EW (2007) Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res 233:46–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owens KN, Santos F, Roberts B, Linbo T, Coffin AB, Knisely AJ, Simon JA, Rubel EW, Raible DW (2008) Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet 4:e1000020

    PubMed Central  PubMed  Google Scholar 

  • Pisano GC, Mason SM, Dhliwayo N, Intine RV, Sarras MP (2014) An assay for lateral line regeneration in adult zebrafish. J Vis Exp 86. doi:10.3791/51343

    Google Scholar 

  • Santos F, MacDonald G, Rubel EW, Raible DW (2006) Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio rerio). Hear Res 213:25–33

    CAS  PubMed  Google Scholar 

  • Seiler C, Nicolson T (1999) Defective calmodulin-dependent rapid apical endocytosis in zebrafish sensory hair cell mutants. J Neurobiol 41:424–434

    CAS  PubMed  Google Scholar 

  • Ton C, Parng C (2005) The use of zebrafish for assessing ototoxic and otoprotective agents. Hear Res 208:79–88

    CAS  PubMed  Google Scholar 

  • Thomas AJ, Wu P, Raible DW, Rubel EW, Simon JA, Ou HC (2015) Identification of small molecule inhibitors of cisplatin-induced hair cell death: results of a 10,000 compound screen in the zebrafish lateral line. Otol Neurotol 36:519–525

    PubMed  Google Scholar 

Retinal Regeneration

  • Ariga J, Walker SL, Mumm JS (2010) Multicolor time-lapse imaging of transgenic zebrafish: visualizing retinal stem cells activated by targeted neuronal cell ablation. J Vis Exp 43. pii: 2093

    Google Scholar 

  • Bernardos RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J Neurosci 27:7028–7040

    CAS  PubMed  Google Scholar 

  • Cameron DA (2000) Cellular proliferation and neurogenesis in the injured retina of adult zebrafish. Vis Neurosci 17:789–797

    CAS  PubMed  Google Scholar 

  • Fimbel SM, Montgomery JE, Burket CT, Hyde DR (2007) Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J Neurosci 27:1712–1724

    CAS  PubMed  Google Scholar 

  • Fraser B, DuVal MG, Wang H, Allison WT (2013) Regeneration of cone photoreceptors when cell ablation is primarily restricted to a particular cone subtype. PLoS One 8:e55410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman D (2014) Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci 15:431–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hitchcock PF, Lindsey Myhr KJ, Easter SS, Mangione-Smith R, Jones DD (1992) Local regeneration in the retina of the goldfish. J Neurobiol 23:187–203

    CAS  PubMed  Google Scholar 

  • Lenkowski JR, Qin Z, Sifuentes CJ, Thummel R, Soto CM, Moens CB, Raymond PA (2013) Retinal regeneration in adult zebrafish requires regulation of TGFβ signaling. Glia 61:1687–1697

    PubMed Central  PubMed  Google Scholar 

  • Montgomery JE, Parsons MJ, Hyde DR (2010) A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors. J Comp Neurol 18(6):800–814

    Google Scholar 

  • Meyers JR, Hu L, Moses A, Kaboli K, Papandrea A, Raymond PA (2012) β-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. Neural Dev 7:30

    PubMed Central  PubMed  Google Scholar 

  • Rajaram K, Summerbell ER, Patton JG (2014a) Technical brief: constant intense light exposure to lesion and initiate regeneration in normally pigmented zebrafish. Mol Vis 20:1075–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajaram K, Harding RL, Hyde DR, Patton JG (2014b) miR-203 regulates progenitor cell proliferation during adult zebrafish retina regeneration. Dev Biol 392:393–403

    CAS  PubMed  Google Scholar 

  • Ramachandran R, Zhao X-F, Goldman D (2011) Ascl1a/Dkk/beta-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration. Proc Natl Acad Sci U S A 108:15858–15863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raymond PA, Reifler MJ, Rivlin PK (1988) Regeneration of goldfish retina: rod precursors are a likely source of regenerated cells. J Neurobiol 19:431–463

    CAS  PubMed  Google Scholar 

  • Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ (2006) Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol 6:36

    PubMed Central  PubMed  Google Scholar 

  • Senut M-C, Gulati-Leekha A, Goldman D (2004) An element in the alpha1-tubulin promoter is necessary for retinal expression during optic nerve regeneration but not after eye injury in the adult zebrafish. J Neurosci 24:7663–7673

    CAS  PubMed  Google Scholar 

  • Sherpa T, Fimbel SM, Mallory DE, Maaswinkel H, Spritzer SD, Sand JA, Li L, Hyde DR, Stenkamp DL (2008) Ganglion cell regeneration following whole-retina destruction in zebrafish. Dev Neurobiol 68:166–181

    PubMed Central  PubMed  Google Scholar 

  • Taylor S, Chen J, Luo J, Hitchcock P (2012a) Light-induced photoreceptor degeneration in the retina of the zebrafish. Methods Mol Biol Clifton NJ 884:247–254

    CAS  Google Scholar 

  • Vihtelic TS, Hyde DR (2000) Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina. J Neurobiol 44:289–307

    CAS  PubMed  Google Scholar 

  • Wan J, Zhao X-F, Vojtek A, Goldman D (2014) Retinal injury, growth factors, and cytokines converge on β-catenin and pStat3 signaling to stimulate retina regeneration. Cell Rep 9:285–297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao X-F, Wan J, Powell C, Ramachandran R, Myers MG, Goldman D (2014b) Leptin and IL-6 family cytokines synergize to stimulate Müller glia reprogramming and retina regeneration. Cell Rep 9:272–284

    CAS  PubMed Central  PubMed  Google Scholar 

Spinal Cord Regeneration

  • Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M (1997) Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377:577–595

    CAS  PubMed  Google Scholar 

  • Dias TB, Yang Y-J, Ogai K, Becker T, Becker CG (2012) Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J Neurosci 32:3245–3252

    CAS  PubMed  Google Scholar 

  • Goldshmit Y, Sztal TE, Jusuf PR, Hall TE, Nguyen-Chi M, Currie PD (2012) Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J Neurosci 32:7477–7492

    CAS  PubMed  Google Scholar 

  • Reimer MM, Sörensen I, Kuscha V, Frank RE, Liu C, Becker CG, Becker T (2008) Motor neuron regeneration in adult zebrafish. J Neurosci 28:8510–8516

    CAS  PubMed  Google Scholar 

  • Reimer MM, Kuscha V, Wyatt C, Sörensen I, Frank RE, Knüwer M, Becker T, Becker CG (2009) Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish. J Neurosci 29:15073–15082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reimer MM, Norris A, Ohnmacht J, Patani R, Zhong Z, Dias TB, Kuscha V, Scott AL, Chen Y-C, Rozov S et al (2013) Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration. Dev Cell 25:478–491

    CAS  PubMed  Google Scholar 

Brain Puncture Injury and Regeneration

  • Kizil C, Kaslin J, Kroehne V, Brand M (2012a) Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 72:429–461

    PubMed  Google Scholar 

  • Kizil C, Dudczig S, Kyritsis N, Machate A, Blaesche J, Kroehne V, Brand M (2012b) The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain. Neural Dev 7:27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kizil C, Kyritsis N, Dudczig S, Kroehne V, Freudenreich D, Kaslin J, Brand M (2012c) Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3. Dev Cell 23:1230–1237

    CAS  PubMed  Google Scholar 

  • Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Dev Camb Engl 138:4831–4841

    CAS  Google Scholar 

  • Kyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, Iltzsche A, Brand M (2012) Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338:1353–1356

    CAS  PubMed  Google Scholar 

  • März M, Schmidt R, Rastegar S, Strähle U (2011) Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn 240:2221–2231

    PubMed  Google Scholar 

  • Morcos PA, Li Y, Jiang S (2008) Vivo-morpholinos: a non-peptide transporter delivers morpholinos into a wide array of mouse tissues. Biotechniques 45:613–614, 616, 618 passim

    CAS  PubMed  Google Scholar 

  • Schmidt R, Beil T, Strähle U, Rastegar S (2014) Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration. J Vis Exp 90:e51753

    PubMed  Google Scholar 

Birefringence

  • Bassett DI, Bryson-Richardson RJ, Daggett DF, Gautier P, Keenan DG, Currie PD (2003) Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development 130:5851–5860

    CAS  PubMed  Google Scholar 

  • Berger J, Sztal T, Currie PD (2012) Quantification of birefringence readily measures the level of muscle damage in zebrafish. Biochem Biophys Res Commun 423:785–788

    CAS  PubMed  Google Scholar 

  • Gibbs EM, Horstick EJ, Dowling JJ (2013) Swimming into prominence: the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies. FEBS J 280:4187–4197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goody MF, Kelly MW, Reynolds CJ, Khalil A, Crawford BD, Henry CA (2012) NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol 10:e1001409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guyon JR, Mosley AN, Zhou Y, O’Brien KF, Sheng X, Chiang K, Davidson AJ, Volinski JM, Zon LI, Kunkel LM (2003) The dystrophin associated protein complex in zebrafish. Hum Mol Genet 12:601–615

    CAS  PubMed  Google Scholar 

  • Guyon JR, Goswami J, Jun SJ, Thorne M, Howell M, Pusack T, Kawahara G, Steffen LS, Galdzicki M, Kunkel LM (2009) Genetic isolation and characterization of a splicing mutant of zebrafish dystrophin. Hum Mol Genet 18:202–211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall TE, Bryson-Richardson RJ, Berger S, Jacoby AS, Cole NJ, Hollway GE, Berger J, Currie PD (2007) The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin alpha2-deficient congenital muscular dystrophy. Proc Natl Acad Sci U S A 104:7092–7097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson NM, Farr GH, Maves L (2013) The HDAC inhibitor TSA ameliorates a zebrafish model of Duchenne muscular dystrophy. PLoS Curr 5. pii: ecurrents.md.8273cf41db10e2d15dd3ab827cb4b027

    Google Scholar 

  • Kawahara G, Guyon JR, Nakamura Y, Kunkel LM (2010) Zebrafish models for human FKRP muscular dystrophies. Hum Mol Genet 19:623–633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawahara G, Karpf JA, Myers JA, Alexander MS, Guyon JR, Kunkel LM (2011) Drug screening in a zebrafish model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 108:5331–5336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawahara G, Kunkel LM (2013) Zebrafish based small molecule screens for novel DMD drugs. Drug Discov Today Technol 10:e91–e96

    PubMed Central  Google Scholar 

  • Kawahara G, Gasperini MJ, Myers JA, Widrick JJ, Eran A, Serafini PR, Alexander MS, Pletcher MT, Morris CA, Kunkel LM (2014) Dystrophic muscle improvement in zebrafish via increased heme oxygenase signaling. Hum Mol Genet 23:1869–1878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Andersson-Lendahl M, Sejersen T, Arner A (2014) Muscle dysfunction and structural defects of dystrophin-null sapje mutant zebrafish larvae are rescued by ataluren treatment. FASEB J 28:1593–1599

    CAS  PubMed  Google Scholar 

  • Maves L (2014) Recent advances using zebrafish animal models for muscle disease drug discovery. Expert Opin Drug Discov 9:1033–1045

    CAS  PubMed  Google Scholar 

  • Mitsuhashi H, Mitsuhashi S, Lynn-Jones T, Kawahara G, Kunkel LM (2013) Expression of DUX4 in zebrafish development recapitulates facioscapulohumeral muscular dystrophy. Hum Mol Genet 22:568–577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith LL, Beggs AH, Gupta VA (2013) Analysis of skeletal muscle defects in larval zebrafish by birefringence and touch-evoke escape response assays. J Vis Exp 82:e50925

    PubMed  Google Scholar 

  • Wallace LM, Garwick SE, Mei W, Belayew A, Coppee F, Ladner KJ, Guttridge D, Yang J, Harper SQ (2011) DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann Neurol 69:540–552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winder SJ, Lipscomb L, Angela Parkin C, Juusola M (2011) The proteasomal inhibitor MG132 prevents muscular dystrophy in zebrafish. PLoS Curr 3:RRN1286

    PubMed Central  PubMed  Google Scholar 

  • Xu C, Tabebordbar M, Iovino S, Ciarlo C, Liu J, Castiglioni A, Price E, Liu M, Barton ER, Kahn CR et al (2013b) A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155:909–921

    CAS  PubMed Central  PubMed  Google Scholar 

Foetal Alcohol Syndrome

  • Ali S, Champagne DL, Alia A, Richardson MK (2011a) Large-scale analysis of acute ethanol exposure in zebrafish development: a critical time window and resilience. PLoS One 6:e20037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arenzana FJ, Carvan MJ, Aijón J, Sánchez-González R, Arévalo R, Porteros A (2006) Teratogenic effects of ethanol exposure on zebrafish visual system development. Neurotoxicol Teratol 28:342–348

    CAS  PubMed  Google Scholar 

  • Bilotta J, Saszik S, Givin CM, Hardesty HR, Sutherland SE (2002a) Effects of embryonic exposure to ethanol on zebrafish visual function. Neurotoxicol Teratol 24:759–766

    CAS  PubMed  Google Scholar 

  • Buske C, Gerlai R (2011a) Early embryonic ethanol exposure impairs shoaling and the dopaminergic and serotoninergic systems in adult zebrafish. Neurotoxicol Teratol 33:698–707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carvan MJ, Loucks E, Weber DN, Williams FE (2004) Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 26:757–768

    CAS  PubMed  Google Scholar 

  • Dlugos CA, Rabin RA (2010) Structural and functional effects of developmental exposure to ethanol on the zebrafish heart. Alcohol Clin Exp Res 34:1013–1021

    PubMed  Google Scholar 

  • Fernandes Y, Gerlai R (2009a) Long-term behavioral changes in response to early developmental exposure to ethanol in zebrafish. Alcohol Clin Exp Res 33:601–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flentke GR, Klingler RH, Tanguay RL, Carvan MJ, Smith SM (2014) An evolutionarily conserved mechanism of calcium-dependent neurotoxicity in a zebrafish model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 38:1255–1265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y-X, Yang H-T, Zdanowicz M, Sicklick JK, Qi Y, Camp TJ, Diehl AM (2007) Fetal alcohol exposure impairs Hedgehog cholesterol modification and signaling. Lab Invest 87:231–240

    CAS  PubMed  Google Scholar 

  • Lockwood B, Bjerke S, Kobayashi K, Guo S (2004) Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharmacol Biochem Behav 77:647–654

    CAS  PubMed  Google Scholar 

  • Mahabir S, Chatterjee D, Gerlai R (2014) Strain dependent neurochemical changes induced by embryonic alcohol exposure in zebrafish. Neurotoxicol Teratol 41:1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marrs JA, Clendenon SG, Ratcliffe DR, Fielding SM, Liu Q, Bosron WF (2010) Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement. Alcohol 44:707–715

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCarthy N, Wetherill L, Lovely CB, Swartz ME, Foroud TM, Eberhart JK (2013) Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD. Development 140:3254–3265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarmah S, Muralidharan P, Curtis CL, McClintick JN, Buente BB, Holdgrafer DJ, Ogbeifun O, Olorungbounmi OC, Patino L, Lucas R et al (2013) Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects. Biol Open 2:1013–1021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swartz ME, Wells MB, Griffin M, McCarthy N, Lovely CB, McGurk P, Rozacky J, Eberhart JK (2014) A screen of zebrafish mutants identifies ethanol-sensitive genetic loci. Alcohol Clin Exp Res 38:694–703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C, Frazier JM, Chen H, Liu Y, Lee J-A, Cole GJ (2014b) Molecular and morphological changes in zebrafish following transient ethanol exposure during defined developmental stages. Neurotoxicol Teratol 44:70–80

    CAS  PubMed  Google Scholar 

Heart Rate

  • Berghmans S, Butler P, Goldsmith P, Waldron G, Gardner I, Golder Z, Richards FM, Kimber G, Roach A, Alderton W et al (2008a) Zebrafish based assays for the assessment of cardiac, visual and gut function–potential safety screens for early drug discovery. J Pharmacol Toxicol Methods 58:59–68

    CAS  PubMed  Google Scholar 

  • Burns CG, Milan DJ, Grande EJ, Rottbauer W, MacRae CA, Fishman MC (2005) High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat Chem Biol 1:263–264

    CAS  PubMed  Google Scholar 

  • Chan PK, Lin CC, Cheng SH (2009) Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio) embryos. BMC Biotechnol 9:11

    PubMed Central  PubMed  Google Scholar 

  • Craig MP, Gilday SD, Hove JR (2006) Dose-dependent effects of chemical immobilization on the heart rate of embryonic zebrafish. Lab Anim (NY) 35:41–47

    Google Scholar 

  • De Luca E, Zaccaria GM, Hadhoud M, Rizzo G, Ponzini R, Morbiducci U, Santoro MM (2014) ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Sci Rep. doi:10.1038/srep04898

    Google Scholar 

  • Freeman JL, Weber GJ, Peterson SM, Nie LH (2014) Embryonic ionizing radiation exposure results in expression alterations of genes associated with cardiovascular and neurological development, function, and disease and modified cardiovascular function in zebrafish. Front Genet 5:268

    PubMed Central  PubMed  Google Scholar 

  • Lai Y-C, Chang W-T, Lin K-Y, Liau I (2014) Optical assessment of the cardiac rhythm of contracting cardiomyocytes in vitro and a pulsating heart in vivo for pharmacological screening. Biomed Opt Express 5:1616–1625

    PubMed Central  PubMed  Google Scholar 

  • Langheinrich U, Vacun G, Wagner T (2003) Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicol Appl Pharmacol 193:370–382

    CAS  PubMed  Google Scholar 

  • Mickoleit M, Schmid B, Weber M, Fahrbach FO, Hombach S, Reischauer S, Huisken J (2014) High-resolution reconstruction of the beating zebrafish heart. Nat Methods 11:919–922

    CAS  PubMed  Google Scholar 

  • Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA (2003) Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107:1355–1358

    PubMed  Google Scholar 

  • Miller S, Pollack J, Bradshaw J, Kumai Y, Perry SF (2014) Cardiac responses to hypercapnia in larval zebrafish (Danio rerio): the links between CO2 chemoreception, catecholamines and carbonic anhydrase. J Exp Biol 217:3569–3578

    PubMed  Google Scholar 

  • Mittelstadt SW, Hemenway CL, Craig MP, Hove JR (2008) Evaluation of zebrafish embryos as a model for assessing inhibition of hERG. J Pharmacol Toxicol Methods 57:100–105

    CAS  PubMed  Google Scholar 

  • Parker T, Libourel P-A, Hetheridge MJ, Cumming RI, Sutcliffe TP, Goonesinghe AC, Ball JS, Owen SF, Chomis Y, Winter MJ (2014a) A multi-endpoint in vivo larval zebrafish (Danio rerio) model for the assessment of integrated cardiovascular function. J Pharmacol Toxicol Methods 69:30–38

    CAS  PubMed  Google Scholar 

  • Peal DS, Mills RW, Lynch SN, Mosley JM, Lim E, Ellinor PT, January CT, Peterson RT, Milan DJ (2011a) Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation 123:23–30

    PubMed Central  PubMed  Google Scholar 

  • Rana N, Moond M, Marthi A, Bapatla S, Sarvepalli T, Chatti K, Challa AK (2010) Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: an effective system for experiments in chemical biology. Zebrafish 7:69–81

    CAS  PubMed  Google Scholar 

  • Sabeh MK, Kekhia H, Macrae CA (2012) Optical mapping in the developing zebrafish heart. Pediatr Cardiol 33:916–922

    PubMed  Google Scholar 

  • Santoriello C, Zon LI (2012) Hooked! Modeling human disease in zebrafish. J Clin Invest 122:2337–2343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yozzo KL, Isales GM, Raftery TD, Volz DC (2013a) High-content screening assay for identification of chemicals impacting cardiovascular function in zebrafish embryos. Environ Sci Technol 47:11302–11310

    CAS  PubMed  Google Scholar 

Circulation and Blood Vessel Formation

  • Han L, Yuan Y, Zhao L, He Q, Li Y, Chen X, Liu X, Liu K (2012) Tracking antiangiogenic components from Glycyrrhiza uralensis Fisch. based on zebrafish assays using high-speed countercurrent chromatography. J Sep Sci 35:1167–1172

    CAS  PubMed  Google Scholar 

  • Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318

    CAS  PubMed  Google Scholar 

  • Leet JK, Lindberg CD, Bassett LA, Isales GM, Yozzo KL, Raftery TD, Volz DC (2014) High-content screening in zebrafish embryos identifies butafenacil as a potent inducer of anemia. PLoS One 9:e104190

    PubMed Central  PubMed  Google Scholar 

  • Parker T, Libourel P-A, Hetheridge MJ, Cumming RI, Sutcliffe TP, Goonesinghe AC, Ball JS, Owen SF, Chomis Y, Winter MJ (2014b) A multi-endpoint in vivo larval zebrafish (Danio rerio) model for the assessment of integrated cardiovascular function. J Pharmacol Toxicol Methods 69:30–38

    CAS  PubMed  Google Scholar 

  • Peterson RT, Shaw SY, Peterson TA, Milan DJ, Zhong TP, Schreiber SL, MacRae CA, Fishman MC (2004) Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 22:595–599

    CAS  PubMed  Google Scholar 

  • Tran TC, Sneed B, Haider J, Blavo D, White A, Aiyejorun T, Baranowski TC, Rubinstein AL, Doan TN, Dingledine R et al (2007b) Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res 67:11386–11392

    CAS  PubMed  Google Scholar 

  • Watkins SC, Maniar S, Mosher M, Roman BL, Tsang M, St Croix CM (2012) High resolution imaging of vascular function in zebrafish. PLoS One 7:e44018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watson O, Novodvorsky P, Gray C, Rothman AMK, Lawrie A, Crossman DC, Haase A, McMahon K, Gering M, Van Eeden FJM et al (2013) Blood flow suppresses vascular Notch signalling via dll4 and is required for angiogenesis in response to hypoxic signalling. Cardiovasc Res 100:252–261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinstein BM, Stemple DL, Driever W, Fishman MC (1995) Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat Med 1:1143–1147

    CAS  PubMed  Google Scholar 

  • Yozzo KL, Isales GM, Raftery TD, Volz DC (2013b) High-content screening assay for identification of chemicals impacting cardiovascular function in zebrafish embryos. Environ Sci Technol 47:11302–11310

    CAS  PubMed  Google Scholar 

Larval Electrocardiogram

  • Arnaout R, Ferrer T, Huisken J, Spitzer K, Stainier DYR, Tristani-Firouzi M, Chi NC (2007a) Zebrafish model for human long QT syndrome. Proc Natl Acad Sci U S A 104:11316–11321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dhillon SS, Dóró E, Magyary I, Egginton S, Sík A, Müller F (2013) Optimisation of embryonic and larval ECG measurement in zebrafish for quantifying the effect of QT prolonging drugs. PLoS One 8:e60552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huttner IG, Trivedi G, Jacoby A, Mann SA, Vandenberg JI, Fatkin D (2013) A transgenic zebrafish model of a human cardiac sodium channel mutation exhibits bradycardia, conduction-system abnormalities and early death. J Mol Cell Cardiol 61:123–132

    CAS  PubMed  Google Scholar 

  • Yu F, Huang J, Adlerz K, Jadvar H, Hamdan MH, Chi N, Chen J-N, Hsiai TK (2010a) Evolving cardiac conduction phenotypes in developing zebrafish larvae: implications to drug sensitivity. Zebrafish 7:325–331

    PubMed Central  PubMed  Google Scholar 

Adult Electrocardiogram

  • Arnaout R, Ferrer T, Huisken J, Spitzer K, Stainier DYR, Tristani-Firouzi M, Chi NC (2007b) Zebrafish model for human long QT syndrome. Proc Natl Acad Sci U S A 104:11316–11321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaudhari GH, Chennubhotla KS, Chatti K, Kulkarni P (2013) Optimization of the adult zebrafish ECG method for assessment of drug-induced QTc prolongation. J Pharmacol Toxicol Methods 67:115–120

    CAS  PubMed  Google Scholar 

  • Milan DJ, Jones IL, Ellinor PT, MacRae CA (2006) In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am J Physiol Heart Circ Physiol 291:H269–H273

    CAS  PubMed  Google Scholar 

  • Sun P, Zhang Y, Yu F, Parks E, Lyman A, Wu Q, Ai L, Hu C-H, Zhou Q, Shung K et al (2009) Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart. Ann Biomed Eng 37:890–901

    PubMed  Google Scholar 

  • Yu F, Li R, Parks E, Takabe W, Hsiai TK (2010b) Electrocardiogram signals to assess zebrafish heart regeneration: implication of long QT intervals. Ann Biomed Eng 38:2346–2357

    PubMed Central  PubMed  Google Scholar 

Action Potential Recording

  • Alday A, Alonso H, Gallego M, Urrutia J, Letamendia A, Callol C, Casis O (2014) Ionic channels underlying the ventricular action potential in zebrafish embryo. Pharmacol Res 84:26–31

    CAS  PubMed  Google Scholar 

  • Arnaout R, Ferrer T, Huisken J, Spitzer K, Stainier DYR, Tristani-Firouzi M, Chi NC (2007c) Zebrafish model for human long QT syndrome. Proc Natl Acad Sci U S A 104:11316–11321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bazett H (1920) An analysis of the time-relations of electrocardiograms. Heart 7:353–370

    Google Scholar 

  • Brette F, Luxan G, Cros C, Dixey H, Wilson C, Shiels HA (2008) Characterization of isolated ventricular myocytes from adult zebrafish (Danio rerio). Biochem Biophys Res Commun 374:143–146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jou CJ, Spitzer KW, Tristani-Firouzi M (2010) Blebbistatin effectively uncouples the excitation-contraction process in zebrafish embryonic heart. Cell Physiol Biochem 25:419–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kovács M, Tóth J, Hetényi C, Málnási-Csizmadia A, Sellers JR (2004a) Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279:35557–35563

    PubMed  Google Scholar 

  • Nemtsas P, Wettwer E, Christ T, Weidinger G, Ravens U (2010) Adult zebrafish heart as a model for human heart? An electrophysiological study. J Mol Cell Cardiol 48:161–171

    CAS  PubMed  Google Scholar 

  • Tsai C-T, Wu C-K, Chiang F-T, Tseng C-D, Lee J-K, Yu C-C, Wang Y-C, Lai L-P, Lin J-L, Hwang J-J (2011) In-vitro recording of adult zebrafish heart electrocardiogram – a platform for pharmacological testing. Clin Chim Acta 412:1963–1967

    CAS  PubMed  Google Scholar 

Optical Mapping

  • Kovács M, Tóth J, Hetényi C, Málnási-Csizmadia A, Sellers JR (2004b) Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279:35557–35563

    PubMed  Google Scholar 

  • Lin E, Ribeiro A, Ding W, Hove-Madsen L, Sarunic MV, Beg MF, Tibbits GF (2014) Optical mapping of the electrical activity of isolated adult zebrafish hearts: acute effects of temperature. Am J Physiol Regul Integr Comp Physiol 306:R823–R836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peal DS, Mills RW, Lynch SN, Mosley JM, Lim E, Ellinor PT, January CT, Peterson RT, Milan DJ (2011b) Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation 123:23–30

    PubMed Central  PubMed  Google Scholar 

  • Samson SC, Ferrer T, Jou CJ, Sachse FB, Shankaran SS, Shaw RM, Chi NC, Tristani-Firouzi M, Yost HJ (2013) 3-OST-7 regulates BMP-dependent cardiac contraction. PLoS Biol 11:e1001727

    PubMed Central  PubMed  Google Scholar 

  • Sedmera D, Reckova M, deAlmeida A, Sedmerova M, Biermann M, Volejnik J, Sarre A, Raddatz E, McCarthy RA, Gourdie RG et al (2003) Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. Am J Physiol Heart Circ Physiol 284:H1152–H1160

    CAS  PubMed  Google Scholar 

  • Tsutsui H, Higashijima S, Miyawaki A, Okamura Y (2010) Visualizing voltage dynamics in zebrafish heart. J Physiol 588:2017–2021

    CAS  PubMed Central  PubMed  Google Scholar 

Flow Cytometry of Red Blood Cells

  • Brownlie A, Donovan A, Pratt SJ, Paw BH, Oates AC, Brugnara C, Witkowska HE, Sassa S, Zon LI (1998) Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat Genet 20:244–250

    CAS  PubMed  Google Scholar 

  • Danilova N, Sakamoto KM, Lin S (2008) Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 112:5228–5237

    CAS  PubMed  Google Scholar 

  • Detrich HW, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler JA, Pratt S, Ransom D, Zon LI (1995) Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci 92:10713–10717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dooley KA, Fraenkel PG, Langer NB, Schmid B, Davidson AJ, Weber G, Chiang K, Foott H, Dwyer C, Wingert RA et al (2008) Montalcino, a zebrafish model for variegate porphyria. Exp Hematol 36:1132–1142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Long Q, Meng A, Wang H, Jessen JR, Farrell MJ, Lin S (1997) GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124:4105–4111

    CAS  PubMed  Google Scholar 

  • Payne EM, Virgilio M, Narla A, Sun H, Levine M, Paw BH, Berliner N, Look AT, Ebert BL, Khanna-Gupta A (2012) L-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway. Blood 120:2214–2224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shafizadeh E, Paw BH, Foott H, Liao EC, Barut BA, Cope JJ, Zon LI, Lin S (2002) Characterization of zebrafish merlot/chablis as non-mammalian vertebrate models for severe congenital anemia due to protein 4.1 deficiency. Development 129:4359–4370

    CAS  PubMed  Google Scholar 

  • Shafizadeh E, Peterson RT, Lin S (2004) Induction of reversible hemolytic anemia in living zebrafish using a novel small molecule. Comp Biochem Physiol C Toxicol Pharmacol 138:245–249

    PubMed  Google Scholar 

  • Taylor AM, Humphries JM, White RM, Murphey RD, Burns CE, Zon LI (2012b) Hematopoietic defects in rps29 mutant zebrafish depend upon p53 activation. Exp Hematol 40:228–237.e5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uechi T, Nakajima Y, Chakraborty A, Torihara H, Higa S, Kenmochi N (2008) Deficiency of ribosomal protein S19 during early embryogenesis leads to reduction of erythrocytes in a zebrafish model of Diamond-Blackfan anemia. Hum Mol Genet 17:3204–3211

    CAS  PubMed  Google Scholar 

  • Van Rooijen E, Voest EE, Logister I, Korving J, Schwerte T, Schulte-Merker S, Giles RH, van Eeden FJ (2009) Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. Blood 113:6449–6460

    PubMed  Google Scholar 

Video Analysis of Gut Motility

  • Berghmans S, Butler P, Goldsmith P, Waldron G, Gardner I, Golder Z, Richards FM, Kimber G, Roach A, Alderton W et al (2008b) Zebrafish based assays for the assessment of cardiac, visual and gut function–potential safety screens for early drug discovery. J Pharmacol Toxicol Methods 58:59–68

    CAS  PubMed  Google Scholar 

  • Burzynski G, Shepherd IT, Enomoto H (2009) Genetic model system studies of the development of the enteric nervous system, gut motility and Hirschsprung’s disease. Neurogastroenterol Motil 21:113–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holmberg A, Schwerte T, Pelster B, Holmgren S (2004) Ontogeny of the gut motility control system in zebrafish Danio rerio embryos and larvae. J Exp Biol 207:4085–4094

    PubMed  Google Scholar 

  • Holmberg A, Olsson C, Holmgren S (2006) The effects of endogenous and exogenous nitric oxide on gut motility in zebrafish Danio rerio embryos and larvae. J Exp Biol 209:2472–2479

    CAS  PubMed  Google Scholar 

  • Holmberg A, Olsson C, Hennig GW (2007) TTX-sensitive and TTX-insensitive control of spontaneous gut motility in the developing zebrafish (Danio rerio) larvae. J Exp Biol 210:1084–1091

    CAS  PubMed  Google Scholar 

  • Kuhlman J, Eisen JS (2007) Genetic screen for mutations affecting development and function of the enteric nervous system. Dev Dyn 236:118–127

    PubMed  Google Scholar 

  • Rich A (2009) A new high-content model system for studies of gastrointestinal transit: the zebrafish. Neurogastroenterol Motil 21:225–228

    CAS  PubMed  Google Scholar 

  • Rich A, Gordon S, Brown C, Gibbons SJ, Schaefer K, Hennig G, Farrugia G (2013) Kit signaling is required for development of coordinated motility patterns in zebrafish gastrointestinal tract. Zebrafish 10:154–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roach G, Heath Wallace R, Cameron A, Emrah Ozel R, Hongay CF, Baral R, Andreescu S, Wallace KN (2013) Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of distal intestinal motility. Dev Biol 376:171–186

    CAS  PubMed Central  PubMed  Google Scholar 

Intestinal Transit Assay

  • Abrams J, Davuluri G, Seiler C, Pack M (2012) Smooth muscle caldesmon modulates peristalsis in the wild type and non-innervated zebrafish intestine. Neurogastroenterol Motil 24:288–299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cocchiaro JL, Rawls JF (2013) Microgavage of zebrafish larvae. J Vis Exp 72:e4434

    PubMed  Google Scholar 

  • Davuluri G, Seiler C, Abrams J, Soriano AJ, Pack M (2010) Differential effects of thin and thick filament disruption on zebrafish smooth muscle regulatory proteins. Neurogastroenterol Motil 22:1100–e285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Field HA, Kelley KA, Martell L, Goldstein AM, Serluca FC (2009) Analysis of gastrointestinal physiology using a novel intestinal transit assay in zebrafish. Neurogastroenterol Motil 21:304–312

    CAS  PubMed  Google Scholar 

  • Zhou J, Guo S-Y, Zhang Y, Li C-Q (2014) Human prokinetic drugs promote gastrointestinal motility in zebrafish. Neurogastroenterol Motil 26:589–595

    CAS  PubMed  Google Scholar 

Renal Function

  • Cao Y, Semanchik N, Lee SH, Somlo S, Barbano PE, Coifman R, Sun Z (2009) Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proc Natl Acad Sci U S A 106:21819–21824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cianciolo Cosentino C, Roman BL, Drummond IA, Hukriede NA (2010) Intravenous microinjections of zebrafish larvae to study acute kidney injury. J Vis Exp 42. pii: 2079

    Google Scholar 

  • Drummond IA (2005) Kidney development and disease in the zebrafish. J Am Soc Nephrol 16:299–304

    CAS  PubMed  Google Scholar 

  • Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, Neuhauss SC, Stemple DL, Zwartkruis F, Rangini Z et al (1998) Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125:4655–4667

    CAS  PubMed  Google Scholar 

  • Hentschel DM, Bonventre JV (2005) Novel non-rodent models of kidney disease. Curr Mol Med 5:537–546

    CAS  PubMed  Google Scholar 

  • Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond I, Bonventre JV (2005) Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Renal Physiol 288:F923–F929

    CAS  PubMed  Google Scholar 

  • Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132:1907–1921

    CAS  PubMed  Google Scholar 

  • Swanhart LM, Cosentino CC, Diep CQ, Davidson AJ, de Caestecker M, Hukriede NA (2011) Zebrafish kidney development: basic science to translational research. Birth Defects Res Part C Embryo Today Rev 93:141–156

    CAS  Google Scholar 

  • Tobin JL, Beales PL (2008) Restoration of renal function in zebrafish models of ciliopathies. Pediatr Nephrol 23:2095–2099

    PubMed  Google Scholar 

Models of Infection and Immunity

  • Burgos JS, Ripoll-Gomez J, Alfaro JM, Sastre I, Valdivieso F (2008) Zebrafish as a new model for herpes simplex virus type 1 infection. Zebrafish 5:323–333

    CAS  PubMed  Google Scholar 

  • Carvalho R, de Sonneville J, Stockhammer OW, Savage NDL, Veneman WJ, Ottenhoff THM, Dirks RP, Meijer AH, Spaink HP (2011) A high-throughput screen for tuberculosis progression. PLoS One 6:e16779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clatworthy AE, Lee JS-W, Leibman M, Kostun Z, Davidson AJ, Hung DT (2009) Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect Immun 77:1293–1303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding C-B, Zhang J-P, Zhao Y, Peng Z-G, Song D-Q, Jiang J-D (2011) Zebrafish as a potential model organism for drug test against hepatitis C virus. PLoS One 6:e22921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabor KA, Goody MF, Mowel WK, Breitbach ME, Gratacap RL, Witten PE, Kim CH (2014) Influenza A virus infection in zebrafish recapitulates mammalian infection and sensitivity to anti-influenza drug treatment. Dis Model Mech 7:1227–1237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goody MF, Sullivan C, Kim CH (2014) Studying the immune response to human viral infections using zebrafish. Dev Comp Immunol 46:84–95

    CAS  PubMed  Google Scholar 

  • Hall CJ, Wicker SM, Chien A-T, Tromp A, Lawrence LM, Sun X, Krissansen GW, Crosier KE, Crosier PS (2014) Repositioning drugs for inflammatory disease – fishing for new anti-inflammatory agents. Dis Model Mech 7:1069–1081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harriff MJ, Bermudez LE, Kent ML (2007) Experimental exposure of zebrafish, Danio rerio (Hamilton), to Mycobacterium marinum and Mycobacterium peregrinum reveals the gastrointestinal tract as the primary route of infection: a potential model for environmental mycobacterial infection. J Fish Dis 30:587–600

    CAS  PubMed  Google Scholar 

  • Meijer AH, Spaink HP (2011) Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 12:1000–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neely MN, Pfeifer JD, Caparon M (2002) Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun 70:3904–3914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novoa B, Figueras A (2012) Current topics in innate immunity II. Springer New York, New York

    Google Scholar 

  • O’Toole R, Von Hofsten J, Rosqvist R, Olsson P-E, Wolf-Watz H (2004) Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb Pathog 37:41–46

    PubMed  Google Scholar 

  • Palha N, Guivel-Benhassine F, Briolat V, Lutfalla G, Sourisseau M, Ellett F, Wang C-H, Lieschke GJ, Herbomel P, Schwartz O et al (2013) Real-time whole-body visualization of Chikungunya virus infection and host interferon response in zebrafish. PLoS Pathog 9:e1003619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pressley ME, Phelan PE, Witten PE, Mellon MT, Kim CH (2005) Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. Dev Comp Immunol 29:501–513

    CAS  PubMed  Google Scholar 

  • Robertson AL, Holmes GR, Bojarczuk AN, Burgon J, Loynes CA, Chimen M, Sawtell AK, Hamza B, Willson J, Walmsley SR et al (2014) A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Sci Transl Med 6:225ra29

    PubMed Central  PubMed  Google Scholar 

  • Sullivan C, Kim CH (2008) Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol 25:341–350

    CAS  PubMed  Google Scholar 

  • Van der Sar AM, Musters RJP, van Eeden FJM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, Bitter W (2003) Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 5:601–611

    PubMed  Google Scholar 

  • Van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, Bitter W (2004) A star with stripes: zebrafish as an infection model. Trends Microbiol 12:451–457

    PubMed  Google Scholar 

  • Wang X, Robertson AL, Li J, Chai RJ, Haishan W, Sadiku P, Ogryzko NV, Everett M, Yoganathan K, Luo HR et al (2014) Inhibitors of neutrophil recruitment identified using transgenic zebrafish to screen a natural product library. Dis Model Mech 7:163–169

    CAS  PubMed Central  PubMed  Google Scholar 

The Photomotor Response (PMR)

  • Fernandes AM, Fero K, Driever W, Burgess HA (2013) Enlightening the brain: linking deep brain photoreception with behavior and physiology. Bioessays 35:775–779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Y-Y, Neuhauss SCF (2008) The optokinetic response in zebrafish and its applications. Front. Biosci. 13:1899–1916

    PubMed  Google Scholar 

  • Kokel D, Bryan J, Laggner C, White R, Cheung CYJ, Mateus R, Healey D, Kim S, Werdich AA, Haggarty SJ et al (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kokel D, Dunn TW, Ahrens MB, Alshut R, Cheung CYJ, Saint-Amant L, Bruni G, Mateus R, van Ham TJ, Shiraki T et al (2013a) Identification of nonvisual photomotor response cells in the vertebrate hindbrain. J Neurosci 33:3834–3843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kokel D, Cheung CYJ, Mills R, Coutinho-Budd J, Huang L, Setola V, Sprague J, Jin S, Jin YN, Huang X-P et al (2013b) Photochemical activation of TRPA1 channels in neurons and animals. Nat Chem Biol 9:257–263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rihel J, Schier AF (2012a) Behavioral screening for neuroactive drugs in zebrafish. Dev Neurobiol 72:373–385

    CAS  PubMed  Google Scholar 

Visual Motor Response (Light and Dark Photokinesis)

  • Akhtar MT, Ali S, Rashidi H, van der Kooy F, Verpoorte R, Richardson MK (2013) Developmental effects of cannabinoids on zebrafish larvae. Zebrafish 10:283–293

    CAS  PubMed  Google Scholar 

  • Ali S, van Mil HGJ, Richardson MK (2011b) Large-scale assessment of the zebrafish embryo as a possible predictive model in toxicity testing. PLoS One 6:e21076

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ali S, Champagne DL, Richardson MK (2012) Behavioral profiling of zebrafish embryos exposed to a panel of 60 water-soluble compounds. Behav Brain Res 228:272–283

    CAS  PubMed  Google Scholar 

  • Burgess HA, Granato M (2007a) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210:2526–2539

    PubMed  Google Scholar 

  • Deeti S, O’Farrell S, Kennedy BN (2014a) Early safety assessment of human oculotoxic drugs using the zebrafish visualmotor response. J Pharmacol Toxicol Methods 69:1–8

    CAS  PubMed  Google Scholar 

  • Emran F, Rihel J, Adolph AR, Wong KY, Kraves S, Dowling JE (2007a) OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci U S A 104:19126–19131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Emran F, Rihel J, Dowling JE (2008). A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp 20. pii: 923

    Google Scholar 

  • Emran F, Rihel J, Adolph AR, Dowling JE (2010a) Zebrafish larvae lose vision at night. Proc Natl Acad Sci U S A 107:6034–6039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandes AM, Fero K, Arrenberg AB, Bergeron SA, Driever W, Burgess HA (2012) Deep brain photoreceptors control light-seeking behavior in zebrafish larvae. Curr Biol 22:2042–2047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fadool JM, Dowling JE (2008) Zebrafish: a model system for the study of eye genetics. Prog Retin Eye Res 27:89–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao Y, Chan RHM, Chow TWS, Zhang L, Bonilla S, Pang C-P, Zhang M, Leung YF (2014) A high-throughput zebrafish screening method for visual mutants by light-induced locomotor response. IEEE/ACM Trans Comput Biol Bioinform 11:693–701

    Google Scholar 

  • Long S-M, Liang F-Y, Wu Q, Lu X-L, Yao X-L, Li S-C, Li J, Su H, Pang J-Y, Pei Z (2014) Identification of marine neuroactive molecules in behaviour-based screens in the larval zebrafish. Mar Drugs 12:3307–3322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spulber S, Kilian P, Wan Ibrahim WN, Onishchenko N, Ulhaq M, Norrgren L, Negri S, Di Tuccio M, Ceccatelli S (2014) PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae. PLoS One 9:e94227

    PubMed Central  PubMed  Google Scholar 

Optomotor Reflex (OMR)

  • Bilotta J, Saszik S, Givin CM, Hardesty HR, Sutherland SE (2002b) Effects of embryonic exposure to ethanol on zebrafish visual function. Neurotoxicol Teratol 24:759–766

    CAS  PubMed  Google Scholar 

  • Orger MB, Smear MC, Anstis SM, Baier H (2000) Perception of Fourier and non-Fourier motion by larval zebrafish. Nat Neurosci 3:1128–1133

    CAS  PubMed  Google Scholar 

  • Orger MB, Gahtan E, Muto A, Page-McCaw P, Smear MC, Baier H (2004) Behavioral screening assays in zebrafish. In: Westerfield M, Zon LI, Detrich WH (eds) Methods in cell biology, vol I. Academic, San Diego, pp 53–68

    Google Scholar 

  • Richards FM, Alderton WK, Kimber GM, Liu Z, Strang I, Redfern WS, Valentin J-P, Winter MJ, Hutchinson TH (2008a) Validation of the use of zebrafish larvae in visual safety assessment. J Pharmacol Toxicol Methods 58:50–58

    CAS  PubMed  Google Scholar 

  • Zou SQ, Yin W, Zhang MJ, Hu CR, Huang YB, Hu B (2010) Using the optokinetic response to study visual function of zebrafish. J Vis Exp 36. pii: 1742

    Google Scholar 

  • Zou S, Tian C, Ge S, Hu B (2013) Neurogenesis of retinal ganglion cells is not essential to visual functional recovery after optic nerve injury in adult zebrafish. PLoS One 8:e57280

    CAS  PubMed Central  PubMed  Google Scholar 

Optokinetic Reflex (OKR)

  • Bilotta J, Saszik S, Givin CM, Hardesty HR, Sutherland SE (2002c) Effects of embryonic exposure to ethanol on zebrafish visual function. Neurotoxicol Teratol 24:759–766

    CAS  PubMed  Google Scholar 

  • Brockerhoff SE (2006) Measuring the optokinetic response of zebrafish larvae. Nat Protoc 1:2448–2451

    CAS  PubMed  Google Scholar 

  • Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE (1995a) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci U S A 92:10545–10549

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron DJ, Rassamdana F, Tam P, Dang K, Yanez C, Ghaemmaghami S, Dehkordi MI (2013) The optokinetic response as a quantitative measure of visual acuity in zebrafish. J Vis Exp 80

    Google Scholar 

  • Deeti S, O’Farrell S, Kennedy BN (2014b) Early safety assessment of human oculotoxic drugs using the zebrafish visualmotor response. J Pharmacol Toxicol Methods 69:1–8

    CAS  PubMed  Google Scholar 

  • Emran F, Rihel J, Adolph AR, Wong KY, Kraves S, Dowling JE (2007b) OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci U S A 104:19126–19131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huber-Reggi SP, Mueller KP, Neuhauss SCF (2013) Analysis of optokinetic response in zebrafish by computer-based eye tracking. Methods Mol Biol Clifton NJ 935:139–160

    CAS  Google Scholar 

  • Mueller KP, Neuhauss SCF (2010) Quantitative measurements of the optokinetic response in adult fish. J Neurosci Methods 186:29–34

    PubMed  Google Scholar 

  • Mueller KP, Schnaedelbach ODR, Russig HD, Neuhauss SCF (2011) VisioTracker, an innovative automated approach to oculomotor analysis. J Vis Exp 56. pii: 3556

    Google Scholar 

  • Neuhauss SC, Biehlmaier O, Seeliger MW, Das T, Kohler K, Harris WA, Baier H (1999) Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci 19:8603–8615

    CAS  PubMed  Google Scholar 

  • Richards FM, Alderton WK, Kimber GM, Liu Z, Strang I, Redfern WS, Valentin J-P, Winter MJ, Hutchinson TH (2008b) Validation of the use of zebrafish larvae in visual safety assessment. J Pharmacol Toxicol Methods 58:50–58

    CAS  PubMed  Google Scholar 

  • Tappeiner C, Gerber S, Enzmann V, Balmer J, Jazwinska A, Tschopp M (2012) Visual acuity and contrast sensitivity of adult zebrafish. Front Zool 9:10

    PubMed Central  PubMed  Google Scholar 

  • Zou SQ, Yin W, Zhang MJ, Hu CR, Huang YB, Hu B (2010) Using the optokinetic response to study visual function of zebrafish. J Vis Exp 36. pii: 1742

    Google Scholar 

Electroretinogram (ERG)

  • Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE (1995b) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci U S A 92:10545–10549

    CAS  PubMed Central  PubMed  Google Scholar 

  • Emran F, Rihel J, Adolph AR, Wong KY, Kraves S, Dowling JE (2007c) OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci U S A 104:19126–19131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Emran F, Rihel J, Adolph AR, Dowling JE (2010b) Zebrafish larvae lose vision at night. Proc Natl Acad Sci U S A 107:6034–6039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fleisch VC, Jametti T, Neuhauss SCF (2008) Electroretinogram (ERG) measurements in larval zebrafish. CSH Protoc 2008:pdb.prot4973

    PubMed  Google Scholar 

  • Li L, Dowling JE (1997) A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. Proc Natl Acad Sci U S A 94:11645–11650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seeliger MW, Rilk A, Neuhauss SCF (2002) Ganzfeld ERG in zebrafish larvae. Doc Ophthalmol 104:57–68

    PubMed  Google Scholar 

  • Wong KY, Gray J, Hayward CJC, Adolph AR, Dowling JE (2004) Glutamatergic mechanisms in the outer retina of larval zebrafish: analysis of electroretinogram b- and d-waves using a novel preparation. Zebrafish 1:121–131

    CAS  PubMed  Google Scholar 

Acoustic Startle

  • Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA (2014) Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry. doi:10.1038/mp.2014.106

    Google Scholar 

  • Best JD, Berghmans S, Hunt JJFG, Clarke SC, Fleming A, Goldsmith P, Roach AG (2008a) Non-associative learning in larval zebrafish. Neuropsychopharmacology 33:1206–1215

    CAS  PubMed  Google Scholar 

  • Bhandiwad AA, Zeddies DG, Raible DW, Rubel EW, Sisneros JA (2013) Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. J Exp Biol 216:3504–3513

    PubMed Central  PubMed  Google Scholar 

  • Burgess HA, Granato M (2007b) Sensorimotor gating in larval zebrafish. J Neurosci 27:4984–4994

    CAS  PubMed  Google Scholar 

  • Hedrick TL (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 3:034001

    PubMed  Google Scholar 

  • Preuss T, Faber DS (2003) Central cellular mechanisms underlying temperature-dependent changes in the goldfish startle-escape behavior. J Neurosci 23:5617–5626

    CAS  PubMed  Google Scholar 

  • Roberts AC, Reichl J, Song MY, Dearinger AD, Moridzadeh N, Lu ED, Pearce K, Esdin J, Glanzman DL (2011a) Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One 6:e29132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolman MA, Jain RA, Liss L, Granato M (2011a) Chemical modulation of memory formation in larval zebrafish. Proc Natl Acad Sci U S A 108:15468–15473

    CAS  PubMed Central  PubMed  Google Scholar 

Olfactory Explants

  • Blumhagen F, Zhu P, Shum J, Schärer Y-PZ, Yaksi E, Deisseroth K, Friedrich RW (2011) Neuronal filtering of multiplexed odour representations. Nature 479:493–498

    CAS  PubMed  Google Scholar 

  • Bundschuh ST, Zhu P, Schärer Y-PZ, Friedrich RW (2012) Dopaminergic modulation of mitral cells and odor responses in the zebrafish olfactory bulb. J Neurosci 32:6830–6840

    CAS  PubMed  Google Scholar 

  • Friedrich RW (2014) Calcium imaging in the intact olfactory system of zebrafish and mouse. Cold Spring Harb Protoc 2014:310–316

    PubMed  Google Scholar 

  • Friedrich RW, Korsching SI (1997) Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18:737–752

    CAS  PubMed  Google Scholar 

  • Friedrich RW, Laurent G (2001) Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291:889–894

    CAS  PubMed  Google Scholar 

  • Friedrich RW, Habermann CJ, Laurent G (2004) Multiplexing using synchrony in the zebrafish olfactory bulb. Nat Neurosci 7:862–871

    CAS  PubMed  Google Scholar 

  • Mathieson WB, Maler L (1988) Morphological and electrophysiological properties of a novel in vitro preparation: the electrosensory lateral line lobe brain slice. J Comp Physiol A 163:489–506

    CAS  PubMed  Google Scholar 

  • Schärer Y-PZ, Shum J, Moressis A, Friedrich RW (2012) Dopaminergic modulation of synaptic transmission and neuronal activity patterns in the zebrafish homolog of olfactory cortex. Front Neural Circ 6:76

    Google Scholar 

  • Tabor R, Friedrich RW (2008) Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb. PLoS One 3:e1416

    PubMed Central  PubMed  Google Scholar 

  • Tabor R, Yaksi E, Friedrich RW (2008) Multiple functions of GABA A and GABA B receptors during pattern processing in the zebrafish olfactory bulb. Eur J Neurosci 28:117–127

    PubMed  Google Scholar 

  • Yaksi E, Friedrich RW (2006) Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat Methods 3:377–383

    CAS  PubMed  Google Scholar 

  • Yaksi E, von Saint Paul F, Niessing J, Bundschuh ST, Friedrich RW (2009) Transformation of odor representations in target areas of the olfactory bulb. Nat Neurosci 12:474–482

    CAS  PubMed  Google Scholar 

  • Zhu P, Frank T, Friedrich RW (2013) Equalization of odor representations by a network of electrically coupled inhibitory interneurons. Nat Neurosci 16:1678–1686

    CAS  PubMed  Google Scholar 

Larval Short Term Tracking

  • Bichara D, Calcaterra NB, Arranz S, Armas P, Simonetta SH (2014) Set-up of an infrared fast behavioral assay using zebrafish (Danio rerio) larvae, and its application in compound biotoxicity screening. J Appl Toxicol 34:214–219

    CAS  PubMed  Google Scholar 

  • Duan J, Yu Y, Shi H, Tian L, Guo C, Huang P, Zhou X, Peng S, Sun Z (2013) Toxic effects of silica nanoparticles on zebrafish embryos and larvae. PLoS One 8:e74606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grillner S, Manira AE (2015) The intrinsic operation of the networks that make us locomote. Curr Opin Neurobiol 31C:244–249

    Google Scholar 

  • Irons TD, MacPhail RC, Hunter DL, Padilla S (2010) Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol 32:84–90

    CAS  PubMed  Google Scholar 

  • Irons TD, Kelly PE, Hunter DL, Macphail RC, Padilla S (2013) Acute administration of dopaminergic drugs has differential effects on locomotion in larval zebrafish. Pharmacol Biochem Behav 103:792–813

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD, Padilla S (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30:52–58

    CAS  PubMed  Google Scholar 

  • Mirat O, Sternberg JR, Severi KE, Wyart C (2013a) ZebraZoom: an automated program for high-throughput behavioral analysis and categorization. Front Neural Circ 7:107

    Google Scholar 

  • Renier C, Faraco JH, Bourgin P, Motley T, Bonaventure P, Rosa F, Mignot E (2007b) Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet Genomics 17:237–253

    CAS  PubMed  Google Scholar 

Head Embedded, Tail Free Swimming

  • Bianco IH, Kampff AR, Engert F (2011) Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front Syst Neurosci 5:101

    PubMed Central  PubMed  Google Scholar 

  • Brustein E, Drapeau P (2005a) Serotoninergic modulation of chloride homeostasis during maturation of the locomotor network in zebrafish. J Neurosci 25:10607–10616

    CAS  PubMed  Google Scholar 

  • Brustein E, Chong M, Holmqvist B, Drapeau P (2003a) Serotonin patterns locomotor network activity in the developing zebrafish by modulating quiescent periods. J Neurobiol 57:303–322

    CAS  PubMed  Google Scholar 

  • Budick SA, O’Malley DM (2000) Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J Exp Biol 203:2565–2579

    CAS  PubMed  Google Scholar 

  • Mirat O, Sternberg JR, Severi KE, Wyart C (2013b) ZebraZoom: an automated program for high-throughput behavioral analysis and categorization. Front Neural Circ 7:107

    Google Scholar 

  • O’Malley DM, Sankrithi NS, Borla MA, Parker S, Banden S, Gahtan E, Detrich HW (2004) Optical physiology and locomotor behaviors of wild-type and nacre zebrafish. Methods Cell Biol 76:261–284

    PubMed  Google Scholar 

  • Portugues R, Engert F (2011) Adaptive locomotor behavior in larval zebrafish. Front Syst Neurosci 5:72

    PubMed Central  PubMed  Google Scholar 

  • Portugues R, Feierstein CE, Engert F, Orger MB (2014) Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 81:1328–1343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Severi KE, Portugues R, Marques JC, O’Malley DM, Orger MB, Engert F (2014) Neural control and modulation of swimming speed in the larval zebrafish. Neuron 83:692–707

    CAS  PubMed  Google Scholar 

  • Wyart C, Bene FD, Warp E, Scott EK, Trauner D, Baier H, Isacoff EY (2009) Optogenetic dissection of a behavioral module in the vertebrate spinal cord. Nature 461:407–410

    CAS  PubMed Central  PubMed  Google Scholar 

Larval Fictive Swimming

  • Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F, Portugues R (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485:471–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brustein E, Drapeau P (2005b) Serotoninergic modulation of chloride homeostasis during maturation of the locomotor network in zebrafish. J Neurosci 25:10607–10616

    CAS  PubMed  Google Scholar 

  • Brustein E, Chong M, Holmqvist B, Drapeau P (2003b) Serotonin patterns locomotor network activity in the developing zebrafish by modulating quiescent periods. J Neurobiol 57:303–322

    CAS  PubMed  Google Scholar 

  • Buss RR, Drapeau P (2001) Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. J Neurophysiol 86:197–210

    CAS  PubMed  Google Scholar 

  • Drapeau P, Ali DW, Buss RR, Saint-Amant L (1999) In vivo recording from identifiable neurons of the locomotor network in the developing zebrafish. J Neurosci Methods 88:1–13

    CAS  PubMed  Google Scholar 

  • Knogler LD, Drapeau P (2014) Sensory gating of an embryonic zebrafish interneuron during spontaneous motor behaviors. Front Neural Circ 8:121

    Google Scholar 

  • Knogler LD, Liao M, Drapeau P (2010) Synaptic scaling and the development of a motor network. J Neurosci 30:8871–8881

    CAS  PubMed  Google Scholar 

  • Knogler LD, Ryan J, Saint-Amant L, Drapeau P (2014) A hybrid electrical/chemical circuit in the spinal cord generates a transient embryonic motor behavior. J Neurosci 34:9644–9655

    PubMed  Google Scholar 

  • Masino MA, Fetcho JR (2005) Fictive swimming motor patterns in wild type and mutant larval zebrafish. J Neurophysiol 93:3177–3188

    PubMed  Google Scholar 

  • Trapani JG, Nicolson T (2010) Physiological recordings from zebrafish lateral-line hair cells and afferent neurons. Methods Cell Biol 100:219–231

    CAS  PubMed  Google Scholar 

  • Vladimirov N, Mu Y, Kawashima T, Bennett DV, Yang C-T, Looger LL, Keller PJ, Freeman J, Ahrens MB (2014) Light-sheet functional imaging in fictively behaving zebrafish. Nat Methods 11:883–884

    CAS  PubMed  Google Scholar 

Long Term Tracking: Sleep

  • Cahill GM, Hurd MW, Batchelor MM (1998) Circadian rhythmicity in the locomotor activity of larval zebrafish. Neuroreport 9:3445–3449

    CAS  PubMed  Google Scholar 

  • Gandhi AV, Mosser EA, Oikonomou G, Prober DA (2015) Melatonin is required for the circadian regulation of sleep. Neuron 85:1193–1199

    CAS  PubMed  Google Scholar 

  • Hurd MW, Cahill GM (2002) Entraining signals initiate behavioral circadian rhythmicity in larval zebrafish. J Biol Rhythms 17:307–314

    PubMed  Google Scholar 

  • Prober DA, Rihel J, Onah AA, Sung R-J, Schier AF (2006) Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 26:13400–13410

    CAS  PubMed  Google Scholar 

  • Rihel J, Schier AF (2012b) Behavioral screening for neuroactive drugs in zebrafish. Dev Neurobiol 72:373–385

    CAS  PubMed  Google Scholar 

  • Rihel J, Prober DA, Schier AF (2010a) Monitoring sleep and arousal in zebrafish. Methods Cell Biol 100:281–294

    CAS  PubMed  Google Scholar 

  • Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT et al (2010b) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sigurgeirsson B, Thornorsteinsson H, Sigmundsdóttir S, Lieder R, Sveinsdóttir HS, Sigurjónsson ÓE, Halldórsson B, Karlsson K (2013) Sleep-wake dynamics under extended light and extended dark conditions in adult zebrafish. Behav Brain Res 256:377–390

    PubMed  Google Scholar 

  • Yokogawa T, Marin W, Faraco J, Pézeron G, Appelbaum L, Zhang J, Rosa F, Mourrain P, Mignot E (2007) Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 5:e277

    PubMed Central  PubMed  Google Scholar 

  • Zhdanova IV, Wang SY, Leclair OU, Danilova NP (2001) Melatonin promotes sleep-like state in zebrafish. Brain Res 903:263–268

    CAS  PubMed  Google Scholar 

Novel Tank and Anxiety

  • Ahmad F, Richardson MK (2013) Exploratory behaviour in the open field test adapted for larval zebrafish: impact of environmental complexity. Behav Processes 92:88–98

    PubMed  Google Scholar 

  • Amir-Zilberstein L, Blechman J, Sztainberg Y, Norton WHJ, Reuveny A, Borodovsky N, Tahor M, Bonkowsky JL, Bally-Cuif L, Chen A, Levkowitz G (2012) Homeodomain protein otp and activity-dependent splicing modulate neuronal adaptation to stress. Neuron 73(2):279–291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bencan Z, Sledge D, Levin ED (2009) Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 94(1):75–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blaser RE, Chadwick L, McGinnis GC (2010) Behavioral measures of anxiety in zebrafish (Danio rerio). Behav Brain Res 208(1):56–62

    CAS  PubMed  Google Scholar 

  • Cachat J et al (2010) Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5(11):1786–1799

    CAS  PubMed  Google Scholar 

  • Cachat J, Kyzar EJ, Collins C, Gaikwad S, Green J, Roth A, El-Ounsi M, Davis A, Pham M, Landsman S, Stewart AM, Kalueff AV (2013a) Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research. Behav Brain Res 236(1):258–269

    CAS  PubMed  Google Scholar 

  • Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, Wong K, Elegante M, Elkhayat S, Tan J et al (2010a) Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 214:277–284

    CAS  PubMed  Google Scholar 

  • Kyzar EJ, Collins C, Gaikwad S, Green J, Roth A, Monnig L, El-Ounsi M, Davis A, Freeman A, Capezio N, Stewart AM, Kalueff AV (2012b) Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology. Prog Neuropsychopharmacol Biol Psychiatry 37(1):194–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levin ED, Bencan Z, Cerutti DT (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90(1):54–58

    CAS  PubMed  Google Scholar 

  • Maximino C, de Brito TM, Colmanetti R, Pontes AAA, de Castro HM, de Lacerda RIT, Morato S, Gouveia A (2010a) Parametric analyses of anxiety in zebrafish scototaxis. Behav Brain Res 210(1):1–7

    PubMed  Google Scholar 

  • Maximino C, Marques de Brito T, Dias CA, Gouveia G, Morato S (2010b) Scototaxis as anxiety-like behavior in fish. Nat Protoc 5(2):209–216

    CAS  PubMed  Google Scholar 

  • Schnörr SJ, Steenbergen PJ, Richardson MK, Champagne DL (2012) Measuring thigmotaxis in larval zebrafish. Behav Brain Res 228(2):367–374

    PubMed  Google Scholar 

  • Ziv L, Muto A, Schoonheim PJ, Meijsing SH, Strasser D, Ingraham HA, Schaaf MJM, Yamamoto KR, Baier H (2013) An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Mol Psychiatry 18(6):681–691

    CAS  PubMed Central  PubMed  Google Scholar 

Electrophysiology

  • Afrikanova T, Serruys A-SK, Buenafe OEM, Clinckers R, Smolders I, de Witte PAM, Crawford AD, Esguerra CV (2013a) Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PLoS One 8:e54166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baraban SC, Taylor MR, Castro PA, Baier H (2005a) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131:759–768

    CAS  PubMed  Google Scholar 

  • Baraban SC, Dinday MT, Castro PA, Chege S, Guyenet S, Taylor MR (2007) A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia 48:1151–1157

    PubMed Central  PubMed  Google Scholar 

  • Baraban SC, Dinday MT, Hortopan GA (2013a) Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 4:2410

    PubMed Central  PubMed  Google Scholar 

  • Grone BP, Baraban SC (2015a) Animal models in epilepsy research: legacies and new directions. Nat Neurosci 18:339–343

    CAS  PubMed  Google Scholar 

  • Mahmood F, Mozere M, Zdebik AA, Stanescu HC, Tobin J, Beales PL, Kleta R, Bockenhauer D, Russell C (2013) Generation and validation of a zebrafish model of EAST (epilepsy, ataxia, sensorineural deafness and tubulopathy) syndrome. Dis Model Mech 6:652–660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramirez IB-R, Pietka G, Jones DR, Divecha N, Alia A, Baraban SC, Hurlstone AFL, Lowe M (2012) Impaired neural development in a zebrafish model for Lowe syndrome. Hum Mol Genet 21:1744–1759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zdebik AA, Mahmood F, Stanescu HC, Kleta R, Bockenhauer D, Russell C (2013a) Epilepsy in kcnj10 morphant zebrafish assessed with a novel method for long-term EEG recordings. PLoS One 8:e79765

    PubMed Central  PubMed  Google Scholar 

Electroencephalogram

  • Afrikanova T, Serruys A-SK, Buenafe OEM, Clinckers R, Smolders I, de Witte PAM, Crawford AD, Esguerra CV (2013b) Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PLoS One 8:e54166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zdebik AA, Mahmood F, Stanescu HC, Kleta R, Bockenhauer D, Russell C (2013b) Epilepsy in kcnj10 morphant zebrafish assessed with a novel method for long-term EEG recordings. PLoS One 8:e79765

    PubMed Central  PubMed  Google Scholar 

Seizure Behavior

  • Afrikanova T, Serruys A-SK, Buenafe OEM, Clinckers R, Smolders I, de Witte PAM, Crawford AD, Esguerra CV (2013c) Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PLoS One 8:e54166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baraban SC, Taylor MR, Castro PA, Baier H (2005b) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131:759–768

    CAS  PubMed  Google Scholar 

  • Baraban SC, Dinday MT, Hortopan GA (2013b) Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 4:2410

    PubMed Central  PubMed  Google Scholar 

  • Baxendale S, Holdsworth CJ, Meza Santoscoy PL, Harrison MRM, Fox J, Parkin CA, Ingham PW, Cunliffe VT (2012) Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis Model Mech 5:773–784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berghmans S, Hunt J, Roach A, Goldsmith P (2007) Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res 75:18–28

    CAS  PubMed  Google Scholar 

  • Grone BP, Baraban SC (2015b) Animal models in epilepsy research: legacies and new directions. Nat Neurosci 18:339–343

    CAS  PubMed  Google Scholar 

  • Koseki N, Deguchi J, Yamashita A, Miyawaki I, Funabashi H (2014) Establishment of a novel experimental protocol for drug-induced seizure liability screening based on a locomotor activity assay in zebrafish. J Toxicol Sci 39:579–600

    CAS  PubMed  Google Scholar 

  • Wong K, Stewart A, Gilder T, Wu N, Frank K, Gaikwad S, Suciu C, Dileo J, Utterback E, Chang K et al (2010a) Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafish. Brain Res 1348:209–215

    CAS  PubMed  Google Scholar 

Nonassociative Learning

  • Best JD, Berghmans S, Hunt JJFG, Clarke SC, Fleming A, Goldsmith P, Roach AG (2008b) Non-associative learning in larval zebrafish. Neuropsychopharmacology 33:1206–1215

    CAS  PubMed  Google Scholar 

  • Blaser RE, Vira DG (2014a) Experiments on learning in zebrafish (Danio rerio): a promising model of neurocognitive function. Neurosci Biobehav Rev 42:224–231

    CAS  PubMed  Google Scholar 

  • Burgess HA, Granato M (2007c) Sensorimotor gating in larval zebrafish. J Neurosci 27:4984–4994

    CAS  PubMed  Google Scholar 

  • Burgess HA, Granato M (2007d) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210:2526–2539

    PubMed  Google Scholar 

  • Eddins D, Cerutti D, Williams P, Linney E, Levin ED (2010) Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol Teratol 32:99–108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts AC, Reichl J, Song MY, Dearinger AD, Moridzadeh N, Lu ED, Pearce K, Esdin J, Glanzman DL (2011b) Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One 6:e29132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts AC, Bill BR, Glanzman DL (2013) Learning and memory in zebrafish larvae. Front Neural Circ 7:126

    Google Scholar 

  • Wolman MA, Jain RA, Liss L, Granato M (2011b) Chemical modulation of memory formation in larval zebrafish. Proc Natl Acad Sci U S A 108:15468–15473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong K, Elegante M, Bartels B, Elkhayat S, Tien D, Roy S, Goodspeed J, Suciu C, Tan J, Grimes C et al (2010b) Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res 208:450–457

    CAS  PubMed  Google Scholar 

Associative Learning-Classical Conditioning

  • Agetsuma M, Aizawa H, Aoki T, Nakayama R, Takahoko M, Goto M, Sassa T, Amo R, Shiraki T, Kawakami K et al (2010) The habenula is crucial for experience-dependent modification of fear responses in zebrafish. Nat Neurosci 13:1354–1356

    CAS  PubMed  Google Scholar 

  • Aizenberg M, Schuman EM (2011) Cerebellar-dependent learning in larval zebrafish. J Neurosci 31:8708–8712

    CAS  PubMed  Google Scholar 

  • Blaser RE, Vira DG (2014b) Experiments on learning in zebrafish (Danio rerio): a promising model of neurocognitive function. Neurosci Biobehav Rev 42:224–231

    CAS  PubMed  Google Scholar 

  • Braubach OR, Wood H-D, Gadbois S, Fine A, Croll RP (2009) Olfactory conditioning in the zebrafish (Danio rerio). Behav Brain Res 198:190–198

    PubMed  Google Scholar 

  • Cerutti DT, Jozefowiez J, Staddon JER (2013) Rapid, accurate time estimation in zebrafish (Danio rerio). Behav Processes 99:21–25

    CAS  PubMed  Google Scholar 

  • Darland T, Dowling JE (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci U S A 98:11691–11696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall D, Suboski MD (1995a) Visual and olfactory stimuli in learned release of alarm reactions by zebra danio fish (Brachydanio rerio). Neurobiol Learn Mem 63:229–240

    CAS  PubMed  Google Scholar 

  • Hall D, Suboski MD (1995b) Sensory preconditioning and secord-order conditioning of alarm reactions in zebra danio fish (Brachydanio rerio). J Comp Psychol 109:76–84

    Google Scholar 

  • Kily LJM, Cowe YCM, Hussain O, Patel S, McElwaine S, Cotter FE, Brennan CH (2008) Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol 211:1623–1634

    CAS  PubMed  Google Scholar 

  • Lau B, Bretaud S, Huang Y, Lin E, Guo S (2006) Dissociation of food and opiate preference by a genetic mutation in zebrafish. Genes Brain Behav 5:497–505

    CAS  PubMed  Google Scholar 

  • Mathur P, Berberoglu MA, Guo S (2011) Preference for ethanol in zebrafish following a single exposure. Behav Brain Res 217:128–133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ninkovic J, Bally-Cuif L (2006) The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39:262–274

    CAS  PubMed  Google Scholar 

  • Valente A, Huang K-H, Portugues R, Engert F (2012a) Ontogeny of classical and operant learning behaviors in zebrafish. Learn Mem 19:170–177

    PubMed Central  PubMed  Google Scholar 

  • Webb KJ, Norton WH, Trümbach D, Meijer AH, Ninkovic J, Topp S, Heck D, Marr C, Wurst W, Theis FJ et al (2009) Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biol 10:R81

    PubMed Central  PubMed  Google Scholar 

Associative Learning: Operant Conditioning

  • Al-Imari L, Gerlai R (2008) Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behav Brain Res 189:216–219

    PubMed  Google Scholar 

  • Bilotta J, Saszik S, Givin CM, Hardesty HR, Sutherland SE (2002d) Effects of embryonic exposure to ethanol on zebrafish visual function. Neurotoxicol Teratol 24:759–766

    CAS  PubMed  Google Scholar 

  • Blank M, Guerim LD, Cordeiro RF, Vianna MRM (2009) A one-trial inhibitory avoidance task to zebrafish: rapid acquisition of an NMDA-dependent long-term memory. Neurobiol Learn Mem 92:529–534

    CAS  PubMed  Google Scholar 

  • Colwill RM, Raymond MP, Ferreira L, Escudero H (2005) Visual discrimination learning in zebrafish (Danio rerio). Behav Processes 70:19–31

    PubMed  Google Scholar 

  • Gleason PE, Weber PG, Weber SP (1977) Effect of group size on avoidance learning in zebra fish, Brachydanio rerio (Pisces: Cyprinidae). Anim Learn Behav 5:213–216

    Google Scholar 

  • Karnik I, Gerlai R (2012) Can zebrafish learn spatial tasks? An empirical analysis of place and single CS-US associative learning. Behav Brain Res 233:415–421

    PubMed Central  PubMed  Google Scholar 

  • Lee A, Mathuru AS, Teh C, Kibat C, Korzh V, Penney TB, Jesuthasan S (2010) The habenula prevents helpless behavior in larval zebrafish. Curr Biol 20:2211–2216

    CAS  PubMed  Google Scholar 

  • Mueller KP, Neuhauss SCF (2012) Automated visual choice discrimination learning in zebrafish (Danio rerio). J Integr Neurosci 11:73–85

    PubMed  Google Scholar 

  • Parker MO, Gaviria J, Haigh A, Millington ME, Brown VJ, Combe FJ, Brennan CH (2012) Discrimination reversal and attentional sets in zebrafish (Danio rerio). Behav Brain Res 232:264–268

    PubMed Central  PubMed  Google Scholar 

  • Pather S, Gerlai R (2009) Shuttle box learning in zebrafish (Danio rerio). Behav Brain Res 196:323–327

    PubMed Central  PubMed  Google Scholar 

  • Pradel G, Schachner M, Schmidt R (1999) Inhibition of memory consolidation by antibodies against cell adhesion molecules after active avoidance conditioning in zebrafish. J Neurobiol 39:197–206

    CAS  PubMed  Google Scholar 

  • Valente A, Huang K-H, Portugues R, Engert F (2012b) Ontogeny of classical and operant learning behaviors in zebrafish. Learn Mem 19:170–177

    PubMed Central  PubMed  Google Scholar 

  • Williams FE, White D, Messer WS (2002) A simple spatial alternation task for assessing memory function in zebrafish. Behav Processes 58:125–132

    PubMed  Google Scholar 

  • Xu X, Scott-Scheiern T, Kempker L, Simons K (2007) Active avoidance conditioning in zebrafish (Danio rerio). Neurobiol Learn Mem 87:72–77

    CAS  PubMed  Google Scholar 

  • Yang S, Kim W, Choi B, Koh H, Lee C (2003) Alcohol impairs learning of T-maze task but not active avoidance task in zebrafish. Korean J Biol Sci 7:303–307

    Google Scholar 

Aggression: Mirror

  • Cachat J, Kyzar EJ, Collins C, Gaikwad S, Green J, Roth A, El-Ounsi M, Davis A, Pham M, Landsman S et al (2013b) Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research. Behav Brain Res 236:258–269

    CAS  PubMed  Google Scholar 

  • Desjardins JK, Fernald RD (2010) What do fish make of mirror images? Biol Lett 6:744–747

    PubMed Central  PubMed  Google Scholar 

  • Oliveira RF (2013) Mind the fish: zebrafish as a model in cognitive social neuroscience. Front Neural Circ 7:131

    Google Scholar 

  • Oliveira RF, Canário AVM (2011) Nemo through the looking-glass: a commentary on Desjardins & Fernald. Biol Lett 7:487–488

    PubMed Central  PubMed  Google Scholar 

  • Oliveira RF, Carneiro LA, Canário AVM (2005) Behavioural endocrinology: no hormonal response in tied fights. Nature 437:207–208

    CAS  PubMed  Google Scholar 

  • Paull GC, Filby AL, Giddins HG, Coe TS, Hamilton PB, Tyler CR (2010a) Dominance hierarchies in zebrafish (Danio rerio) and their relationship with reproductive success. Zebrafish 7:109–117

    CAS  PubMed  Google Scholar 

  • Pham M, Raymond J, Hester J, Kyzar E, Gaikwad S, Bruce I, Fryar C, Chanin S, Enriquez J, Bagawandoss S, et al (2012) Assessing social behavior phenotypes in adult zebrafish: shoaling, social preference, and mirror biting tests. In Zebrafish Protocols for Neurobehavioral Research, (Humana Press), pp 231–246

    Google Scholar 

  • Teles MC, Dahlbom SJ, Winberg S, Oliveira RF (2013a) Social modulation of brain monoamine levels in zebrafish. Behav Brain Res 253:17–24

    CAS  PubMed  Google Scholar 

  • Toms CN, Echevarria DJ (2014) Back to basics: searching for a comprehensive framework for exploring individual differences in zebrafish (Danio rerio) behavior. Zebrafish 11:325–340

    PubMed  Google Scholar 

  • Way GP, Ruhl N, Snekser JL, Kiesel AL, McRobert SP (2015) A comparison of methodologies to test aggression in zebrafish. Zebrafish 12:144–151

    PubMed  Google Scholar 

  • Weber DN, Ghorai JK (2013) Experimental design affects social behavior outcomes in adult zebrafish developmentally exposed to lead. Zebrafish 10:294–302

    CAS  PubMed  Google Scholar 

Conspecific Aggression

  • Colman JR, Baldwin D, Johnson LL, Scholz NL (2009a) Effects of the synthetic estrogen, 17alpha-ethinylestradiol, on aggression and courtship behavior in male zebrafish (Danio rerio). Aquat Toxicol 91:346–354

    CAS  PubMed  Google Scholar 

  • Larson ET, O’Malley DM, Melloni RH (2006) Aggression and vasotocin are associated with dominant-subordinate relationships in zebrafish. Behav Brain Res 167:94–102

    CAS  PubMed  Google Scholar 

  • Oliveira RF, Silva JF, Simões JM (2011) Fighting zebrafish: characterization of aggressive behavior and winner-loser effects. Zebrafish 8:73–81

    PubMed  Google Scholar 

  • Teles MC, Dahlbom SJ, Winberg S, Oliveira RF (2013b) Social modulation of brain monoamine levels in zebrafish. Behav Brain Res 253:17–24

    CAS  PubMed  Google Scholar 

Competitive Spawning

  • Coe TS, Hamilton PB, Hodgson D, Paull GC, Stevens JR, Sumner K, Tyler CR (2008) An environmental estrogen alters reproductive hierarchies, disrupting sexual selection in group-spawning fish. Environ Sci Technol 42:5020–5025

    CAS  PubMed  Google Scholar 

  • Coe TS, Hamilton PB, Hodgson D, Paull GC, Tyler CR (2009) Parentage outcomes in response to estrogen exposure are modified by social grouping in zebrafish. Environ Sci Technol 43:8400–8405

    CAS  PubMed  Google Scholar 

  • Colman JR, Baldwin D, Johnson LL, Scholz NL (2009b) Effects of the synthetic estrogen, 17alpha-ethinylestradiol, on aggression and courtship behavior in male zebrafish (Danio rerio). Aquat Toxicol 91:346–354

    CAS  PubMed  Google Scholar 

  • Danzmann RG (1997) PROBMAX: a computer program for assigning unknown parentage in pedigree analysis from known genotypic pools of parents and progeny. J Hered 88:333

    Google Scholar 

  • Delaney M, Follet C, Ryan N, Hanney N, Lusk-Yablick J, Gerlach G (2002) Social interaction and distribution of female zebrafish (Danio rerio) in a large aquarium. Biol Bull 203:240–241

    PubMed  Google Scholar 

  • Filby AL, Paull GC, Searle F, Ortiz-Zarragoitia M, Tyler CR (2012) Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: a mechanistic analysis. Environ Sci Technol 46:3472–3479

    CAS  PubMed  Google Scholar 

  • Paull GC, Van Look KJW, Santos EM, Filby AL, Gray DM, Nash JP, Tyler CR (2008) Variability in measures of reproductive success in laboratory-kept colonies of zebrafish and implications for studies addressing population-level effects of environmental chemicals. Aquat Toxicol 87:115–126

    CAS  PubMed  Google Scholar 

  • Paull GC, Filby AL, Giddins HG, Coe TS, Hamilton PB, Tyler CR (2010b) Dominance hierarchies in zebrafish (Danio rerio) and their relationship with reproductive success. Zebrafish 7:109–117

    CAS  PubMed  Google Scholar 

  • Spence R (2006) Mating preference of female zebrafish, Danio rerio, in relation to male dominance. Behav Ecol 17:779–783

    Google Scholar 

  • Spence R, Smith C (2005) Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish. Anim Behav 69:1317–1323

    Google Scholar 

Social Preference

  • Abaid N, Bartolini T, Macrì S, Porfiri M (2012) Zebrafish responds differentially to a robotic fish of varying aspect ratio, tail beat frequency, noise, and color. Behav Brain Res 233:545–553

    PubMed  Google Scholar 

  • Braida D, Donzelli A, Martucci R, Capurro V, Busnelli M, Chini B, Sala M (2012) Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish. Psychopharmacology (Berl) 220:319–330

    CAS  Google Scholar 

  • Engeszer RE, Ryan MJ, Parichy DM (2004) Learned social preference in zebrafish. Curr Biol 14:881–884

    CAS  PubMed  Google Scholar 

  • Fernandes Y, Gerlai R (2009b) Long-term behavioral changes in response to early developmental exposure to ethanol in zebrafish. Alcohol Clin Exp Res 33:601–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, Wong K, Elegante M, Elkhayat S, Tan J et al (2010b) Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 214:277–284

    CAS  PubMed  Google Scholar 

  • Moretz JA, Martins EP, Robison BD (2006) The effects of early and adult social environment on zebrafish (Danio rerio) behavior. Environ Biol Fishes 80:91–101

    Google Scholar 

  • Pitcher TJ (1993) Behaviour of teleost fishes. London, UK: Chapman and Hall

    Google Scholar 

  • Riehl R, Kyzar E, Allain A, Green J, Hook M, Monnig L, Rhymes K, Roth A, Pham M, Razavi R et al (2011a) Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol Teratol 33:658–667

    CAS  PubMed  Google Scholar 

  • Saverino C, Gerlai R (2008) The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res 191:77–87

    PubMed Central  PubMed  Google Scholar 

  • Savio LEB, Vuaden FC, Piato AL, Bonan CD, Wyse ATS (2012) Behavioral changes induced by long-term proline exposure are reversed by antipsychotics in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 36:258–263

    CAS  PubMed  Google Scholar 

  • Seibt KJ, Piato AL, da Luz Oliveira R, Capiotti KM, Vianna MR, Bonan CD (2011) Antipsychotic drugs reverse MK-801-induced cognitive and social interaction deficits in zebrafish (Danio rerio). Behav Brain Res 224:135–139

    CAS  PubMed  Google Scholar 

  • Sison M, Gerlai R (2011) Behavioral performance altering effects of MK-801 in zebrafish (Danio rerio). Behav Brain Res 220:331–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spence R, Smith C (2007) The role of early learning in determining shoaling preferences based on visual cues in the zebrafish, Danio rerio. Ethology 113:62–67

    Google Scholar 

  • Wright D, Rimmer LB, Pritchard VL, Krause J, Butlin RK (2003) Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Naturwissenschaften 90:374–377

    CAS  PubMed  Google Scholar 

  • Xia J, Niu C, Pei X (2010) Effects of chronic exposure to nonylphenol on locomotor activity and social behavior in zebrafish (Danio rerio). J Environ Sci (China) 22:1435–1440

    CAS  Google Scholar 

Shoaling

  • Buske C, Gerlai R (2011b) Early embryonic ethanol exposure impairs shoaling and the dopaminergic and serotoninergic systems in adult zebrafish. Neurotoxicol Teratol 33:698–707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cachat J, Kyzar EJ, Collins C, Gaikwad S, Green J, Roth A, El-Ounsi M, Davis A, Pham M, Landsman S et al (2013c) Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research. Behav Brain Res 236:258–269

    CAS  PubMed  Google Scholar 

  • Dolado R, Gimeno E, Beltran FS, Quera V, Pertusa JF (2014) A method for resolving occlusions when multitracking individuals in a shoal. Behav Res Methods, Oct 8

    Google Scholar 

  • Green J, Collins C, Kyzar EJ, Pham M, Roth A, Gaikwad S, Cachat J, Stewart AM, Landsman S, Grieco F et al (2012) Automated high-throughput neurophenotyping of zebrafish social behavior. J Neurosci Methods 210:266–271

    PubMed  Google Scholar 

  • Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, Wong K, Elegante M, Elkhayat S, Tan J et al (2010c) Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 214:277–284

    CAS  PubMed  Google Scholar 

  • Maaswinkel H, Zhu L, Weng W (2013a) Assessing social engagement in heterogeneous groups of zebrafish: a new paradigm for autism-like behavioral responses. PLoS One 8:e75955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maaswinkel H, Le X, He L, Zhu L, Weng W (2013b) Dissociating the effects of habituation, black walls, buspirone and ethanol on anxiety-like behavioral responses in shoaling zebrafish. A 3D approach to social behavior. Pharmacol Biochem Behav 108:16–27

    CAS  PubMed  Google Scholar 

  • Martineau PR, Mourrain P (2013) Tracking zebrafish larvae in group–status and perspectives. Methods 62:292–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller N, Greene K, Dydinski A, Gerlai R (2013) Effects of nicotine and alcohol on zebrafish (Danio rerio) shoaling. Behav Brain Res 240:192–196

    CAS  PubMed  Google Scholar 

  • Parker MO, Brock AJ, Millington ME, Brennan CH (2013) Behavioural phenotyping of casper mutant and 1-pheny-2-thiourea treated adult zebrafish. Zebrafish 10:466–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, de Polavieja GG (2014) idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat Methods 11:743–748

    PubMed  Google Scholar 

  • Riehl R, Kyzar E, Allain A, Green J, Hook M, Monnig L, Rhymes K, Roth A, Pham M, Razavi R et al (2011b) Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol Teratol 33:658–667

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Rihel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rihel, J., Ghosh, M. (2015). Zebrafish. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_135-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_135-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics