Skip to main content

Plant–Environment Interactions

  • Reference work entry
Book cover Strasburger's Plant Sciences

Abstract

Solar radiation and the supply of water and nutrients are the most important physicochemical drivers of plant life, determining carbon dioxide assimilation, growth, and biomass production. The biochemical and physiological bases of these processes have been discussed in Chap.5 (and also partially in Chaps. 6 and 8). In this chapter, the responses of individual plants, plant communities, and ecosystems to the natural variation in solar radiation, water, and nutrient availability are considered. Biological interactions and anthropogenic influences including land use will be discussed at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballare CL, Scopel AL, Sanchez RA (1989) Photomodulation of axis extension in sparse canopies. Plant Physiol 89:1324–1330

    PubMed  CAS  Google Scholar 

  • Berendse F, Aerts R (1987) Nitrogen-use-efficiency: a biologically meaningful definition? Functional. Ecology 1:293–296

    Google Scholar 

  • Bergametti G, Dulac F (1998) Mineral aerosols: renewed interest for climate forcing and tropospheric chemistry studies. IGBP Newsl 33:19–23

    Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde, 3rd ed. Springer, Wien

    Google Scholar 

  • Brouwer R (1963) Some aspects of the equilibrium between overground and underground plant parts. Jaarboek van het Instituut voor Biologisch en Scheikundig onderzoek aan Landbouwgewassen (IBS), Wageningen, pp 31–39

    Google Scholar 

  • Buckley TN (2005) The control of stomata by water balance. New Phytol 168:275–291

    PubMed  CAS  Google Scholar 

  • Bugmann H, Bigler C (2011) Will the CO2 fertilization effect in forests be offset by reduced tree longevity? Oecologia 165:533–544

    PubMed  Google Scholar 

  • Buringh P, Dudal R (1987) Agricultural land use in space and time. In: Wolman MG, Fournier FGA (eds) Land transformation in agriculture. SCOPE. Wiley, Chichester

    Google Scholar 

  • Caldwell MM, Eissenstat DM, Richards JH, Allen MF (1985) Competition for phosphorus: differential uptake from dual-isotope-labeled soil interspaces between shrub and grass. Science 229:384–386

    PubMed  CAS  Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Google Scholar 

  • Clatworthy JN, Harper JL (1962) The comparative biology of closely related species living in the same area. J Exp Bot 13:307–324

    Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and faciliation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965

    Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Google Scholar 

  • Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870

    PubMed  CAS  Google Scholar 

  • Chapin FS III, Vitousek PM, Van Cleve K (1986) The nature of nutrient limitation in plant communities. Am Nat 127:48–58

    Google Scholar 

  • Chazdon RL, Pearcy RW, Lee DW, Fetcher N (1996) Photosynthetic responses of tropical forest plants to contrasting light environments. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical plant ecophysiology. Chapman & Hall, New York, pp 5–55

    Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Ann Rev Ecol Syst 21:275–297

    Google Scholar 

  • Davis SD, Mooney HA (1986) Water use patterns of four co-occurring chaparral shrubs. Oecologia 70:172–177

    Google Scholar 

  • Duvigneaud P (1971) Productivity of forest ecosystems. Proc Brussels Symp UNESCO, Paris

    Google Scholar 

  • Ehleringer JR, Cerling TE, Dearing MD (eds) (2005) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Springer, New York

    Google Scholar 

  • Ellenberg H (1993) Oekosystemforschung. Springer, Berlin

    Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer und historischer Sicht, 6th edn. Ulmer, Stuttgart

    Google Scholar 

  • Evans JR (1998) Photosynthetic characteristics of fast- and slow growing species. In: Lambers H, Poorter H, Van Vuuren MMI (eds) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys, Leiden, pp 101–119

    Google Scholar 

  • Evans LT, Dunstone RL (1970) Some physiological aspects of evolution in wheat. Aust J Biol Sci 23:725–741

    Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    PubMed  CAS  Google Scholar 

  • Franks P, Brodribb TJ (2005) Stomatal control and water transport in the xylem. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier, Amsterdam, pp 69–89

    Google Scholar 

  • Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning, and yield. Ann Rev Plant Physiol 32:485–509

    CAS  Google Scholar 

  • Gillner V (1960) Vegetations- und Standortsuntersuchungen in den Strandwiesen der schwedischen Westküste. Acta Phyzogeographica Suecica 43, Göteborg

    Google Scholar 

  • Glatzel G (1990) The nitrogen status of Austrian forest ecosystems as influenced by atmospheric deposition, biomass harvesting and lateral organomass exchange. Plant Soil 128:67–74

    CAS  Google Scholar 

  • Gollan T, Passioura JB, Munns R (1986) Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Aust J Plant Physiol 13:459–464

    Google Scholar 

  • Grace J (1997) Toward models of resource allocation by plants. In: Bazzaz FA, Grace J (eds) Plant resource allocation, Physiological ecology – A series of monographs texts and treatises. Academic, San Diego, pp 279–291

    Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Google Scholar 

  • Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH (2002) Forest carbon balance under elevated CO2. Oecologia 131:250–260

    Google Scholar 

  • Hansen J (2000) Überleben in der Kälte – Wie Pflanzen sich vor Froststress schützen. Biologie in unserer Zeit (Wiley) 30:24–34

    CAS  Google Scholar 

  • Hättenschwiler S, Miglietta F, Raschi A, Körner C (1997) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Global Change Biol 3:436–471

    Google Scholar 

  • Heide OM (1994) Control of flowering and reproduction in temperate grassland. New Phytol 128:347–362

    CAS  Google Scholar 

  • Hoch G, Körner C (2012) Global patterns of mobile carbon stores in trees at the high-elevation tree line. Glob Ecol Biogeogr 21:861–871

    Google Scholar 

  • Ingestad T (1982) Relative addition rate and external concentration driving variables used in plant nutrition research. Plant Cell Environ 5:443–453

    CAS  Google Scholar 

  • International Biological Program (1968–1974) Publication series. Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993) Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fertil Soils 16:66–70

    CAS  Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Google Scholar 

  • Kjeldahl J (1883) Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z Analyt Chem 22:366–382

    Google Scholar 

  • Körner C (1989) The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia 81:379–391

    Google Scholar 

  • Körner C (1993) Scaling from species to vegetation: the usefulness of functional groups. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Ecol Studies, Springer, Berlin 99:117–140

    Google Scholar 

  • Körner C (1994) Biomass fractionation in plants: a reconsideration of definitions based on plant functions. In: Roy J, Garnier E (eds) A whole plant perspective on carbon-nitrogen interactions. SPB Acad Publ, The Hague, pp 173–185

    Google Scholar 

  • Körner C (1997) Die biotische Komponente im Energiehaushalt: Lokale und globale Aspekte. Verh Ges dt Naturf Aerzte 119:97–123

    Google Scholar 

  • Körner C (1998) Alpine plants: stressed or adapted? In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell, Oxford, pp 297–311

    Google Scholar 

  • Körner C (1999) Alpine plants: stressed or adapted? In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell, Oxford, pp 297–311

    Google Scholar 

  • Körner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619

    Google Scholar 

  • Körner C (2003a) Carbon limitation in trees. J Ecol 91:4–17

    Google Scholar 

  • Körner C (2003b) Alpine plant life, 2nd edn. Springer, Berlin

    Google Scholar 

  • Körner C (2003c) Slow in, rapid out – carbon flux studies and Kyoto targets. Science 300:1242–1243

    PubMed  Google Scholar 

  • Körner C (2004) Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philos Trans R Soc Lond Ser B-Biol Sci 359:493–498

    Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    PubMed  Google Scholar 

  • Körner C (2009) Responses of humid tropical trees to rising CO2. Ann Rev Ecol Evol Syst 40:61–79

    Google Scholar 

  • Körner C (2012) Alpine treelines. Springer, Basel

    Google Scholar 

  • Körner C, Cochrane PM (1985) Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66:443–455

    Google Scholar 

  • Körner C, Scheel JA, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13:45–82

    Google Scholar 

  • Kraus G (1869–1870) Einige Beobachtungen über den Einfluss des Lichts und der Wärme auf die Stärkeerzeugung im Chlorophyll. Jahrb wiss Bot 7:511–531

    Google Scholar 

  • Krause HH (1982) Nitrate formation and movement before and after clear-cutting of a monitored watershed in central New Brunswick, Canada. Can J For Res 12:922–930

    CAS  Google Scholar 

  • Kutschera L, Lichtenegger E (1997) Wurzeln. Bewurzelung von Pflanzen in verschiedenen Lebensräumen. Vol 5. Stapfia (Linz) 49

    Google Scholar 

  • Lambers H, Poorter H, Van Vuuren MMI (1998a) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys, Leiden

    Google Scholar 

  • Lange OL, Green TGA (2005) Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecologia 142:11–19

    PubMed  Google Scholar 

  • Lange OL, Lösch R, Schulze ED, Kappen L (1971) Responses of stomata to changes in humidity. Planta 100:76–86

    Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin

    Google Scholar 

  • Larigauderie A, Körner C (1995) Acclimation of leaf dark respiration to temperature in alpine and lowland plant species. Ann Bot 76:245–252

    Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Google Scholar 

  • Leuning R, Cromer RN, Rance S (1991) Spatial distribution of foliar nitrogen and phosphorus in crowns of Eucalyptus grandis. Oecologia 88:504–510

    Google Scholar 

  • Leuzinger S, Vogt R, Körner C (2010) Tree surface temperature in an urban environment. Agric Forest Meteorol 150:56–62

    Google Scholar 

  • Lieth H, Whittaker RH (1975) Primary productivity of the biosphere. Ecol Studies 14. Springer, Berlin

    Google Scholar 

  • McVicar TR, Körner C (2012) On the use of elevation, altitude, and height in the ecological and climatological literature. Oecologia. doi:10.1007/s00442-012-2416-7

    Google Scholar 

  • Meinzer FC (1993) Stomatal control of transpiration. Trends Ecol Evol 8:289–294

    PubMed  CAS  Google Scholar 

  • Michelsen A, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant N-15 natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418

    Google Scholar 

  • Miroslavov EA, Kravkina IM (1991) Comparative analysis of chloroplasts and mitochondria in leaf chlorenchyma from mountain plants grown at different altitudes. Ann Bot 68:195–200

    Google Scholar 

  • Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52, see re-edition in: Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95:549–567

    Google Scholar 

  • Morgan JA, Pataki DE, Körner C, Clark H, Del Grosso SJ, Grünzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JB, Nowak RS, Parton WJ, Polley HW, Shaw MR (2004) Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140:11–25

    PubMed  CAS  Google Scholar 

  • Muller B, Pantin F, Genard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715–1729

    PubMed  CAS  Google Scholar 

  • Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181–203

    Google Scholar 

  • Novoplansky A, Cohen D, Sachs T (1990) How portulac seedlings avoid their neighbours. Oecologia 82:490–493

    Google Scholar 

  • Odum HT (1957) Trophic structure and productivity of Silver Springs, Floriad. Ecol Monogr 27:55–112

    Google Scholar 

  • Owensby CE, Ham JM, Knapp AK, Bremer D, Auen LM (1997) Water vapour fluxes and their impact under elevated CO2 in a C4-tallgrass prairie. Glob Change Biol 3:189–195

    Google Scholar 

  • Passioura JB (1988) Root signals control leaf expansion in wheat seedlings growing in drying soil. Aust J Plant Physiol 15:687–693

    Google Scholar 

  • Pedersen O, Sand-Jensen K (1997) Transpiration does not control growth and nutrient supply in the amphibious plant Mentha aquatica. Plant Cell Environ 20:117–123

    CAS  Google Scholar 

  • Petit JR, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    CAS  Google Scholar 

  • Pisek A, Larcher W, Vegis A, Napp-Zinn K (1973) The normal temperature range. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, pp 102–194

    Google Scholar 

  • Poorter H, van der Werf A (1998) Is inherent variation in RGR determined by LAR at low irradiance and NAR at high irradiance? A review of herbaceous species. In: Lambers H, Poorter H, van Vuuren MMI (eds) Inherent variation in plant growth. Backhuys, Leiden, pp 309–336

    Google Scholar 

  • Raich JW, Nadelhoffer KJ (1989) Belowground carbon allocation in forest ecosystems: global trends. Ecology 70:1346–1354

    Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471–482

    Google Scholar 

  • Rosenfeld AH, Romm JJ (1996) Policies to reduce heat islands: magnitudes of benefits and incentives to achieve them. In: Proceedings of the 1996 ACEEE summer study on energy effieciency in buildings, Pacific Grove, p 14

    Google Scholar 

  • Roy J, Mooney HA, Saugier B (2001) Terrestrial global productivity. Academic, San Diego

    Google Scholar 

  • Rozema J, vande Staaij J, Bjorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28

    PubMed  CAS  Google Scholar 

  • Rundel PW (1981) Fire as an ecological factor. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, new series 12A. Physiological plant ecology I. Springer, Berlin, pp 502–538

    Google Scholar 

  • Saugier B, Roy J, Mooney HA (2001) Estimations of global terrestrial productivity: converging toward a single number? In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic, San Diego, pp 543–557

    Google Scholar 

  • Schulze ED, Kelliher FM, Körner C, Lloyd J, Leuning R (1994) Relationships among stomatal conductanve, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Ann Rev Ecol Syst 25:629–660

    Google Scholar 

  • Schulze ED, Lange OL, Buschbom U, Kappen L, Evenari M (1972) Stomatal responses to changes in humidity in plants growing in the desert. Planta 108:259–270

    Google Scholar 

  • Schurr U (1999) Dynamics of nutrient transport from the root to the shoot. Prog Bot 60:234–253

    CAS  Google Scholar 

  • Siegenthaler U, Stocker TF, Monnin E, Luthi D, Schwander J, Stauffer B, Raynaud D, Barnola JM, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the Late Pleistocene. Science 310:1313–1317

    PubMed  CAS  Google Scholar 

  • Specht (1957) In Walter H, Breckle SW (1991) Ökologie der Erde I. Ökologische Grundlagen in globaler Sicht, 2nd edn. Fischer, Stuttgart

    Google Scholar 

  • Stocker O (1935) Assimilation und Atmung westjavanischer Tropenbaume. Planta 24:402–444

    Google Scholar 

  • Stronach NRH, McNaughton SJ (1989) Grassland fire dynamics in the serengeti ecosystem, and a potential method of retrospectively estimating fire energy. J Appl Ecol 26:1025–1103

    Google Scholar 

  • Tanner W, Beevers H (2001) Transpiration, a prerequisite for long-distance transport of minerals in plants? Proc Natl Acad Sci U S A 98:9443–9447

    PubMed  CAS  Google Scholar 

  • Tateno M (2003) Benefit to N-2-fixing alder of extending growth period at the cost of leaf nitrogen loss without resorption. Oecologia 137:338–343

    PubMed  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders I (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Vitousek PM, Turner DR, Parton WJ, Sanford RL (1994) Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models. Ecology 75:418–429

    Google Scholar 

  • Wacker L, Jacomet S, Körner C (2002) Trends in biomass fractionation in wheat and barley from wild ancestors to modern cultivars. Plant Biol 4:258–265

    Google Scholar 

  • Walter H (1960) Grundlagen der Pflanzenverbreitung I., Standortslehre, 2nd edn. Ulmer, Stuttgart

    Google Scholar 

  • Wardlaw IF (1990) Tansley Review No.27. The control of carbon partitioning in plants. New Phytol 116:341–381

    CAS  Google Scholar 

  • Weiner J, Andersen SB, Wille WK-M, Griepentrog HW, Olsen JM (2010) Evolutionary agroecology: the potential for cooperative, high density, weed-suppressing cereals. Evol Appl 3:473–479

    Google Scholar 

  • Zhu Y, Siegwolf RTW, Durka W, Körner C (2010) Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162:853–863

    PubMed  Google Scholar 

Further Reading

  • Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) (2008) Gradients in a tropical mountain ecosystem of Ecuador, vol 198, Ecological studies. Springer, Berlin

    Google Scholar 

  • Canadell JG, Pataki DE, Pitelka LF (2007b) Terrestrial ecosystems in a changing world, The IGBP series. Springer, Berlin

    Google Scholar 

  • Chabot BF, Mooney HA (1985) Physiological ecology of North American plant communities. Chapman & Hall, London

    Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2006) Physiology of crop production. Harworth, Binghamton

    Google Scholar 

  • Fitter AH, Hay RKM (2002) Environmental physiology of plants, 3rd edn. Academic, San Diego

    Google Scholar 

  • Givnish TJ (1986) On the economy of plant form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Goldammer JG, Furyaev V (1996) Fire in ecosystems of boreal Eurasia. Kluwer, Dordrecht

    Google Scholar 

  • Gregory PJ (2006) Plant roots. Growth, activity and interaction with soils. Blackwell, Oxford

    Google Scholar 

  • Hall AE (2001) Crop responses to environment. CRC Press, Boca Raton

    Google Scholar 

  • Johnson EA, Miyanishi K (2001) Forest fires: behavior and ecological effects. Academic, London

    Google Scholar 

  • Jones HG (1992) Plants and microclimate. Cambridge University Press, Cambridge

    Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998b) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Lambers H, Poorter H, VanVuren MMI (1998c) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys, Leiden

    Google Scholar 

  • Lange OL, Nobel PS, Osmond CB, Ziegler H (1981–1983) Physiological plant ecology. In: Encyclopedia of plant physiology, new series, vols 12A–D. Springer, Berlin

    Google Scholar 

  • Loomis RS, Connor DJ (1992) Crop ecology: productivity and management in agricultural systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Lüttge U (1997) Physiological ecology of tropical plants. Springer, Berlin

    Google Scholar 

  • Malhi Y, Phillips OL (2005) Tropical forests & global atmospheric change. Blackwell, Oxford

    Google Scholar 

  • Mooney HA, Rundel PW (1989) Plant physiological ecology. Chapman & Hall, London

    Google Scholar 

  • Morison JIL, Morecroft MD (2006) Plant growth and climate change. Blackwell, Oxford

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress, vol 62, Ecological studies. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Körner .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Körner, C. (2013). Plant–Environment Interactions. In: Strasburger's Plant Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15518-5_12

Download citation

Publish with us

Policies and ethics