Skip to main content

Possible Involvement of Basement Membrane Damage by Matrix Metalloproteinases and Serine Proteinases in Skin Aging Process

  • Reference work entry

Abstract

Skin aging can be classified into two types: intrinsic aging and photoaging [1]. Intrinsic aging is the basic biological process common to all living things and is characterized as an age-dependent deterioration of skin functions and structures, such as epidermal atrophy and epidermal–dermal junctional flattening [2]. Photoaging is well known to be a consequence of chronic exposure of the skin to sunlight. Sun-exposed skin, such as face or neck skin, clearly appears to be “prematurely aged” in comparison with the relatively sun-protected skin of the trunk or thigh, and is characterized by various clinical features, including wrinkles, sagging, roughness, sallowness, pigmentary changes, telangiectasis, and neoplasia [3, 4]. The histological features of sun-exposed skin include cellular atypia, loss of polarity, flattening of the dermal–epidermal junctions (DEJ), a decrease in collagen, and dermal elastosis [2, 5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   499.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tagami H. Functional characteristics of the stratum corneum in photoaged skin in comparison with those found in intrinsic aging. Arch Dermatol Res. 2008;300(S1):1–6.

    Article  Google Scholar 

  2. Lavker RM. Structural alterations in exposed and unexposed aged skin. J Invest Dermatol. 1979;73:59–66.

    Article  CAS  PubMed  Google Scholar 

  3. Gilchrest BA. Skin aging and photoaging: an overview. J Am Acad Dermatol. 1989;21:610–613.

    Article  CAS  PubMed  Google Scholar 

  4. Griffiths CE. The clinical identification and quantification of photodamage. Br J Dermatol. 1992;127(41):37–42.

    PubMed  Google Scholar 

  5. Kligman AM, Grove GL, Hirose R, et al. Topical tretinoin for photoaged skin. J Am Acad Dermatol. 1986;15:836–859.

    Article  CAS  PubMed  Google Scholar 

  6. Ryan MC, Christiano AM, Engvall E, et al. The functions of laminins: lessons from in vivo studies. Matrix Biol. 1996;15:369–381.

    Article  CAS  PubMed  Google Scholar 

  7. Bohnert A, Hornung J, Mackenzie IC, et al. Epithelial-mesenchymal interactions control basement membrane production and differentiation in cultured and transplanted mouse keratinocytes. Cell Tissue Res. 1986;244:413–429.

    Article  CAS  PubMed  Google Scholar 

  8. Watt FM. Selective migration of terminally differentiating cells from the basal layer of cultured human epidermis. J Cell Biol. 1984;98:16–21.

    Article  CAS  PubMed  Google Scholar 

  9. Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA. 1987;84:2302–2306.

    Article  CAS  PubMed  Google Scholar 

  10. Hirai Y, Takebe K, Takashina M, et al. Epimorphin: a mesenchymal protein essential for epithelial morphogenesis. Cell. 1992;69:471–481.

    Article  CAS  PubMed  Google Scholar 

  11. Inoue S. Ultrastructure of basement membranes. Int Rev Cytol. 1989;117:57–98.

    Article  CAS  PubMed  Google Scholar 

  12. Aberdam D, Galliano MF, Vailly J, et al. Herlitz’s junctional epidermolysis bullosa is linked to mutations in the gene (LAMC2) for the gamma 2 subunit of nicein/kalinin (LAMININ-5). Nat Genet. 1994;6:299–304.

    Article  CAS  PubMed  Google Scholar 

  13. Amano S, Scott IC, Takahara K, et al. Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 gamma 2 chain. J Biol Chem. 2000;275:22728–22735.

    Article  CAS  PubMed  Google Scholar 

  14. Goldfinger LE, Stack MS, Jones JC. Processing of laminin-5 and its functional consequences: role of plasmin and tissue-type plasminogen activator. J Cell Biol. 1998;141:255–265.

    Article  CAS  PubMed  Google Scholar 

  15. Koshikawa N, Minegishi T, Sharabi A, et al. Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain. J Biol Chem. 2005;280:88–93.

    CAS  PubMed  Google Scholar 

  16. Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol. 1995;7:728–735.

    Article  CAS  PubMed  Google Scholar 

  17. Reynolds JJ. Collagenases and tissue inhibitors of metalloproteinases: a functional balance in tissue degradation. Oral Dis. 1996;2:70–76.

    Article  CAS  PubMed  Google Scholar 

  18. Fassina G, Ferrari N, Brigati C, et al. Tissue inhibitors of metalloproteases: regulation and biological activities. Clin Exp Metastasis. 2000;18:111–120.

    Article  CAS  PubMed  Google Scholar 

  19. Goldberg GI, Marmer BL, Grant GA, et al. Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci USA. 1989;86:8207–8211.

    Article  CAS  PubMed  Google Scholar 

  20. Sato H, Takino T, Okada Y, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994;370:61–65.

    Article  CAS  PubMed  Google Scholar 

  21. Saksela O. Plasminogen activation and regulation of pericellular proteolysis. Biochim Biophys Acta. 1985;823:35–65.

    CAS  PubMed  Google Scholar 

  22. Morioka S, Jensen PJ, Lazarus GS. Human epidermal plasminogen activator. Characterization, localization, and modulation. Exp Cell Res. 1985;161:364–372.

    Article  CAS  PubMed  Google Scholar 

  23. Marschall C, Lengyel E, Nobutoh T, et al. UVB increases urokinase-type plasminogen activator receptor (uPAR) expression. J Invest Dermatol. 1999;113:69–76.

    Article  CAS  PubMed  Google Scholar 

  24. Plow EF, Freaney DE, Plescia J, et al. The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J Cell Biol. 1986;103:2411–2420.

    Article  CAS  PubMed  Google Scholar 

  25. Katsuta Y, Yoshida Y, Kawai E, et al. Urokinase-type plasminogen activator is activated in stratum corneum after barrier disruption. J Dermatol Sci. 2003;32:55–57.

    Article  CAS  PubMed  Google Scholar 

  26. Denda M, Kitamura K, Elias PM, et al. Trans-4-(Aminomethyl)cyclohexane carboxylic acid (T-AMCHA), an anti-fibrinolytic agent, accelerates barrier recovery and prevents the epidermal hyperplasia induced by epidermal injury in hairless mice and humans. J Invest Dermatol. 1997;109:84–90.

    Article  CAS  PubMed  Google Scholar 

  27. Bell E, Ehrlich HP, Buttle DJ, et al. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science. 1981;211:1052–1054.

    Article  CAS  PubMed  Google Scholar 

  28. Amano S, Akutsu N, Matsunaga Y, et al. Importance of balance between extracellular matrix synthesis and degradation in basement membrane formation. Exp Cell Res. 2001;271:249–262.

    Article  CAS  PubMed  Google Scholar 

  29. Tsunenaga M, Adachi E, Amano S, et al. Laminin 5 can promote assembly of the lamina densa in the skin equivalent model. Matrix Biol. 1998;17:603–613.

    Article  CAS  PubMed  Google Scholar 

  30. Tsunenaga M, Kohno Y, Horii I, et al. Growth and differentiation properties of normal and transformed human keratinocytes in organotypic culture. Jpn J Cancer Res. 1994;85:238–244.

    CAS  PubMed  Google Scholar 

  31. Nishiyama T, Amano S, Tsunenaga M, et al. The importance of laminin 5 in the dermal-epidermal basement membrane. J Dermatol Sci. 2000;24:S51–59.

    Article  CAS  PubMed  Google Scholar 

  32. Feldman D, Bryce GF, Shapiro SS. Mitochondrial inclusions in keratinocytes of hairless mouse skin exposed to UVB radiation. J Cutan Pathol. 1990;17:96–100.

    CAS  PubMed  Google Scholar 

  33. Sarret Y, Woodley DT, Goldberg GS, et al. Constitutive synthesis of a 92-kDa keratinocyte-derived type IV collagenase is enhanced by type I collagen and decreased by type IV collagen matrices. J Invest Dermatol. 1992;99:836–841.

    CAS  PubMed  Google Scholar 

  34. Sudbeck BD, Parks WC, Welgus HG, et al. Collagen-stimulated induction of keratinocyte collagenase is mediated via tyrosine kinase and protein kinase C activities. J Biol Chem. 1994;269:30022–30029.

    CAS  PubMed  Google Scholar 

  35. Amano S, Ogura Y, Akutsu N, et al. Protective effect of matrix metalloproteinase inhibitors against epidermal basement membrane damage: skin equivalents partially mimic photoageing process. Br J Dermatol. 2005;153(2):37–46.

    Article  CAS  PubMed  Google Scholar 

  36. Herrmann G, Wlaschek M, Lange TS, et al. UVA irradiation stimulates the synthesis of various matrix-metalloproteinases (MMPs) in cultured human fibroblasts. Exp Dermatol. 1993;2:92–97.

    Article  CAS  PubMed  Google Scholar 

  37. Kawaguchi Y, Tanaka H, Okada T, et al. The effects of ultraviolet A and reactive oxygen species on the mRNA expression of 72-kDa type IV collagenase and its tissue inhibitor in cultured human dermal fibroblasts. Arch Dermatol Res. 1996;288:39–44.

    Article  CAS  PubMed  Google Scholar 

  38. Brenneisen P, Wenk J, Klotz LO, et al. Central role of Ferrous/Ferric iron in the ultraviolet B irradiation-mediated signaling pathway leading to increased interstitial collagenase (matrix-degrading metalloprotease (MMP)-1) and stromelysin-1 (MMP-3) mRNA levels in cultured human dermal fibroblasts. J Biol Chem. 1998;273:5279–5287.

    Article  CAS  PubMed  Google Scholar 

  39. Koivukangas V, Kallioinen M, Autio-Harmainen H, et al. UV irradiation induces the expression of gelatinases in human skin in vivo. Acta Dermatol Venereol. 1994;74:279–282.

    CAS  Google Scholar 

  40. Fisher GJ, Datta SC, Talwar HS, et al. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature. 1996;379:335–339.

    Article  CAS  PubMed  Google Scholar 

  41. Inomata S, Matsunaga Y, Amano S, et al. Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse. J Invest Dermatol. 2003;120:128–134.

    Article  CAS  PubMed  Google Scholar 

  42. Ogura Y, Matsunaga Y, Nishiyama T, et al. Plasmin induces degradation and dysfunction of laminin 332 (laminin 5) and impaired assembly of basement membrane at the dermal-epidermal junction. Br J Dermatol. 2008;159:49–60.

    Article  CAS  PubMed  Google Scholar 

  43. Miralles F, Parra M, Caelles C, et al. UV irradiation induces the murine urokinase-type plasminogen activator gene via the c-Jun N-terminal kinase signaling pathway: requirement of an AP1 enhancer element. Mol Cell Biol. 1998;18:4537–4547.

    CAS  PubMed  Google Scholar 

  44. Scharffetter K, Wlaschek M, Hogg A, et al. UVA irradiation induces collagenase in human dermal fibroblasts in vitro and in vivo. Arch Dermatol Res. 1991;283:506–511.

    Article  CAS  PubMed  Google Scholar 

  45. Fleischmajer R, Schechter A, Bruns M, et al. Skin fibroblasts are the only source of nidogen during early basal lamina formation in vitro. J Invest Dermatol. 1995;105:597–601.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Amano, S. (2010). Possible Involvement of Basement Membrane Damage by Matrix Metalloproteinases and Serine Proteinases in Skin Aging Process. In: Farage, M.A., Miller, K.W., Maibach, H.I. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89656-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89656-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89655-5

  • Online ISBN: 978-3-540-89656-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics