Skip to main content

Construction Machinery

  • Reference work entry
Springer Handbook of Mechanical Engineering

Abstract

In this chapter the most common classes of machinery found on construction sites will be presented. For the purpose of this chapter the authors focus on construction machinery and equipment applications in the building and public utility sectors of the construction industry. The classes of machinery and equipment for earth, concreting, assembly, and finishing works described in this chapter are used not only in these two construction industries, but also in road, bridge, and railway building; pile, tunnel, and water foundation; the opening of mines; the building of natural gas and petroleum pipelines; sewerage systems; cooling towers for the power industry; and other industrial building structures.

One should note that specialized equipment ensuring the efficiency, high quality, and safety of work during the realization of structures is used in almost all these kinds of construction. Even a brief description of this equipment would require a separate publication. For example, in road building alone 63 types of machines (see the draft International Standard ISO/FDIS 22242) are used. In the final part of this chapter the state of automation and robotization of construction machinery is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACCS:

automatic cutter control system

ASC:

automatic stability control

CAN:

controller area network

CRT:

cathode ray tube

DfC:

design for construction

DfRC:

design for robotic construction

EPDM:

ethylene propylene diene monomer

ERP:

enterprise resource planning

GPS:

global positioning system

IAARC:

International Association for Automation and Robotics in Construction

ISARC:

International Symposia on Automation and Robotics in Construction

ISO:

International Standards Organization

IT:

information technology

LPG:

petroleum gas

PC:

personal computer

PC:

polycrystalline

PC:

pulverized coal

PLC:

programmable logic controller

PLS:

pre-lining support

PVC:

polyvinyl chloride

RAP:

reclaimed asphalt pavements

SMART:

Shimizu manufacturing system by advanced robotics technology

US:

ultrasonic

W/C:

water/cement

References

  1. O. Bachmann, H.H. Cohrs, T. Whiteman, A. Wislicki: The Clascic Construction Series – The History of Cranes (Giesel, Isernhagen 1997), published by KHL Int. Southfields

    Google Scholar 

  2. A. Wislicki: The History of Excavators and Dredgers up to the Beginning of the Twentieth Century, Editions A.T.M., Vol. 22 (Malakoff, France 1995)

    Google Scholar 

  3. ISO: Technical Report ISO/TR 12603:1996: Building Construction Machinery and Equipment – Classification (ISO, Geneva 1996)

    Google Scholar 

  4. Richtlinie 98/37/EG des Europaeischen Parlaments und des Rates, 22. Juni 1998 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten für Maschinen (1998) ABLI.EG vom 23.07.1998. Nr. 207. p. 1, in German

    Google Scholar 

  5. F. Meier, K. Herrmann, K. Krombholz: Einhundert Jahre für die Landtechnikindustrie (Maschinenbauverlag, Frankfurt 1997), in German

    Google Scholar 

  6. FAO: World reference base for soil resources (Food and Agriculture Organization of the United Nations, Rome 1998)

    Google Scholar 

  7. ISO: ISO 14689-1:2003: Geotechnical Investigation and Testing. Identification and Classification of Rock. Part 1: Identification and Description (ISO, Geneva 2003)

    Google Scholar 

  8. D.G. Rossiter: Lecture Notes Principles of Soil Classification (International Institute for Aerospace Survey and Earth Sciences (ITC), Enschede 2001)

    Google Scholar 

  9. K.T. Renius: Traktoren: Technik und ihre Anwendung (BLV, München 1985)

    Google Scholar 

  10. H.-D. Kutzbach: Allgemeine Grundlagen Ackerschlepper, Fördertechnik. Lehrbuch der Agrartechnik, Vol. 1 (Parey, Berlin 1989), in German

    Google Scholar 

  11. W. Söhne: Druckverteilung im Boden und Bodenverformung unter Schlepperreifen, Grundl. Landtech. 5, 49–63 (1953), in German

    Google Scholar 

  12. H. Schwanghart: 3.3 Reifen – Reifen/Bodenverhalten Tyres – Tyre/Soil-Performance. In: Jahrbuch Agrartechnik – Yearbook Agricultural Engineering, Vol. 16, ed. by H.J. Matthies, F. Meier (Landwirtschaftsverlag, Münster 2004) pp. 67–72, in German

    Google Scholar 

  13. D. Lemser: Radlader sind nicht nur Baumaschinen, Schüttgut 4, 298–309 (2002)

    Google Scholar 

  14. J. Pantermöller: Funktionalität und Design bei Radladern, Tiefbau 113(4), 237–240 (2001), WISSENSPORTAL http://www.baumaschine.de, in German

    Google Scholar 

  15. DIN: DIN 24080: Earth-Moving Machinery (Beuth, Berlin 1979), in German

    Google Scholar 

  16. C. Holländer: Untersuchungen zur Beurteilung und Optimierung von Baggerhydrauliksystemen, Fortschritt-Ber. VDI Reihe 1, Vol. 307 (VDI-Verlag, Düsseldorf 1998), in German

    Google Scholar 

  17. J. Forche: Antriebsmanagement für Hydraulikbagger, Baumaschinentechnik 26, 33–40 (2004), in German

    Google Scholar 

  18. J. Weber, E. Lautner: Intelligente Baumaschinensteuerungen und alternative Antriebssysteme, Baumaschinentechnik 2004, Schriftenreihe der Forschungsvereinigung Bau- und Baustoffmaschinen, Vol. 26 (Frankfurt 2004) pp. 41–48, in German

    Google Scholar 

  19. G. Kunze, H. Göhrung, K. Jacob, M. Scheffler (eds.): Baumaschinen Erdbau- und Tagebaumaschinen (Vieweg, Braunschweig 2003), in German

    Google Scholar 

  20. Hamm AG: Oszillation (Hamm AG, Tirschenreuth 2004), in German

    Google Scholar 

  21. D. Lemser: Maschinen für den Straßenbau. In: Der Elsner - Handbuch für Straßen- und Verkehrswesen, ed. by E. Knoll (Elsner, Berlin 2003), in German

    Google Scholar 

  22. Bomag AG: Grundlagen der Boden- und Asphaltverdichtung. Bomag Anwendungstechnik (Bomag AG, Boppard 2002), in German

    Google Scholar 

  23. M. Buschmann, R. Grundl, H.J. Meyer: Belagfertiger mit leistungsstarker und anpassungsfähiger Technik, Tiefbau 112(12), 772–778 (2000), in German

    Google Scholar 

  24. H.J. Meyer: Anwendung von geodätischen Positionsmesssystemen in Straßenbaumaschinen, Baumaschinentechnik 2003, Vol. 23 (Forschungsvereinigung Bau- und Baustoffmaschinen, Dresden 2003), in German

    Google Scholar 

  25. Wirtgen GmbH: Slipform paver SP 500 Vario – Technical specification (Wirtgen GmbH, Windhagen 2004)

    Google Scholar 

  26. S. Velske: Straßenbautechnik (Werner-Verlag, Düsseldorf 1993), in German

    Google Scholar 

  27. Wirtgen GmbH: Cold Recycling Manual, 2nd edn. (Wirtgen GmbH, Windhagen 2004)

    Google Scholar 

  28. C.F. Goering: Engine and Tractor Power, 3rd edn. (American Society Agricultural Engineers, Michigan 1992)

    Google Scholar 

  29. H. Göhlich, M. Hauck, C. von Holst: 2.5 Ride dynamics – Ride safety – Driverʼs place. In: Jahrbuch Agrartechnik – Yearbook Agricultural Engineering, Vol. 11, ed. by H.J. Matthies, F. Meier (Landwirtschaftsverlag, Münster 1999) pp. 61–69

    Google Scholar 

  30. K.T. Renius, M. Brenninger: Jahrbuch Agrartechnik – Yearbook Agricultural Engineering 2.2, Tractor engines and transmission, Vol. 9 (Landwirtschaftsverlag, Münster 1997) pp. 57–61

    Google Scholar 

  31. ISO: ISO 730-1:1994: Agricultural Wheeled Tractors. Rear-Mounted Three-Point Linkage. Part 1: Categories 1, 2, 3, and 4 (ISO, Geneva 2003)

    Google Scholar 

  32. H. Auernhammer: Elektronik in Traktoren und Maschinen: Einsatzgebiete, Funktion, Entwicklungstendenzen. Vol. 2 (BLV, München 1991), in German

    Google Scholar 

  33. ISO: ISO 11783:2000: Traktors an Machinery for Agriculture and Forestry (ISO, Geneva 2002)

    Google Scholar 

  34. ISO: ISO 11375:1998: Building Construction Machinery and Equipment. Terms and Definitions (ISO, Geneva 1998)

    Google Scholar 

  35. ISO: ISO 18650-1:2004: Building Construction Machinery and Equipment. Concrete Mixers. Part 1: Terminology and Commercial Specifications (ISO, Geneva 2004)

    Google Scholar 

  36. ISO: ISO 11573-1:2006: Building Construction Machinery and Equipment. Concrete pumps. Part 1: Terminology and Commercial Specification (ISO, Geneva 1998)

    Google Scholar 

  37. ISO: ISO 21592:2006: Building Construction Machinery and Equipment. Concrete Spraying Machines. Terminology and Commercial Specification (ISO, Geneva 2006)

    Google Scholar 

  38. ISO: ISO/DIS 18651:2005: Building Construction Machinery and Equipment. Internal Vibrators for Concrete (ISO, Geneva 2005)

    Google Scholar 

  39. ISO: EN 12418:2000: Mansory and Stone Cutting-Off Machines for Job Site-Safety (ISO, Geneva 2000)

    Google Scholar 

  40. ISO: ISO 11375:1998: Building Construction Machinery and Equipment. Terms and Definitions (ISO, Geneva 1998)

    Google Scholar 

  41. G.Y. Frenkel: Application of Robotics and Manipulators in the Construction Industry: Construction and Progress in Science and Technology (Znanye, Moscow 1988) p. 64, in Russian

    Google Scholar 

  42. V. Araksyan, V. Volkov: Mechanization and Automation of Heavy and Labor-Intensive Works (Znanye, Moscow 1985) p. 64, in Russian

    Google Scholar 

  43. G.Y. Frenkel: Robotization of Work Processes in Construction (Stroyizdat, Moscow 1987) p. 174, in Russian

    Google Scholar 

  44. Y.A. Vilman: Fundamentals of Robotization in Construction (Vysshaya Shkola, Moscow 1989) p. 271, in Russian

    Google Scholar 

  45. R. Krom: Robots in the Building Industry (KROM, Sassenheim 1997)

    Google Scholar 

  46. S. Singh: The State-of-the-Art in Automation of Earthmoving (Robotics Institute Carnegie Mellon Univ., Pittsburg 2002)

    Google Scholar 

  47. E. Budny, M. Chłosta, W. Gutkowski: Sensitivity of the Optimum Bucket Trajectory in Controlled Excavation, Automation in Construction (Elsevier, Amsterdam 1999) pp. 99–110

    Google Scholar 

  48. E. Budny, M. Chłosta, W. Gutkowski: Optimal control of an excavator bucket positioning, 19th ISARC Proc. (ISARC, Washington 2002)

    Google Scholar 

  49. E. Budny, M. Chłosta, W. Gutkowski: Load-independent control of a hydraulic excavator, Automat. Constr. 12(3), 245–254 (2003)

    Article  Google Scholar 

  50. E. Budny, M. Chłosta, W. Gutkowski: A bucket discharge control for a backhoe excavator, 21st ISARC Proc. (ISARC, Washington 2004)

    Google Scholar 

  51. P. Vähä, M. Skibniewski: Dynamic model of excavator, ASCE J. Aerosp. Eng. 6(2), 148–158 (1993)

    Article  Google Scholar 

  52. P. Vähä, M. Skibniewski: Cognitive force control of excavators, ASCE J. Aerosp. Eng. 6(2), 159–166 (1993)

    Article  Google Scholar 

  53. Council for Construction Robot Research: Construction Robot System Catalog in Japan (Japan Robot Association, Tokyo 1999)

    Google Scholar 

  54. M. Skibniewski, R. Kunigahalli: Chap. 17: Automation in Concrete Construction. In: Concrete Construction Engineering Handbook (CRC, Boca Raton 1997)

    Google Scholar 

  55. IAARC: Robots and Automated Machines in Construction (Int. Association for Automation and Robotics in Construction (IAARC), Watford 1998)

    Google Scholar 

  56. Fujita Corp.: Robots for Construction (Fujita Corp., Tokyo 2005)

    Google Scholar 

  57. PENTA OCEAN Construction Corp.: Faces on Automatic Oriented Sheltered Building Construction (PENTA OCEAN Construction Corp., Tokyo )

    Google Scholar 

  58. Obayashi Corp.: Big Canopy Automation System for High-rise Reinforced Concrete Buildings, Techn. Res. Inst. Rep., Vol. 640 (Obayashi Corp., Tokyo 2003)

    Google Scholar 

  59. J. Maeda: Development and Application of Automated High-Rise Building Construction System, Vol. 14 (Shimizu Tech. Res. Bull., Tokyo 1995)

    Google Scholar 

  60. M. Skibniewski, C. Hendrickson: Automation and robotics for road construction and maintenance, ASCE J. Transport. Eng. 116(3), 261–271 (1990)

    Article  Google Scholar 

  61. M. Skibniewski, C. Hendrickson: Analysis of robotic surface finishing work, ASCE J. Constr. Eng. Manag. 114(1), 53–68 (1988)

    Article  Google Scholar 

  62. M. Skibniewski: Robotics in Civil Engineering (Van Nostrand Reinhold, Boston 1988) p. 233

    Google Scholar 

  63. Y. Zhou, M. Skibniewski: Construction robot force control in cleaning operations, ASCE J. Aerosp. Eng. 7(1), 33–49 (1994)

    Article  Google Scholar 

  64. M. Skibniewski: Robot Implementation Issues for the Construction Industry. In: Human-Robot Interaction, ed. by M. Rahimi, W. Karwowski (Taylor Francis, New York 1992) pp. 347–366

    Google Scholar 

  65. M. Skibniewski: A framework for decision making on implementing robotics in construction, ASCE J. Comput. Civil Eng. 2(2), 188–201 (1988)

    Article  Google Scholar 

  66. C. Haas, M. Skibniewski, E. Budny: Robotics in civil engineering, Microcomp. Civil Eng. 10(5), 371–381 (1995), Special Issue: Robotics in Civil Engineering

    Article  Google Scholar 

  67. M. Skibniewski, S. Nof: A framework for programmable and flexible construction systems, Robotics Autonom. Syst. 5, 135–150 (1989)

    Article  Google Scholar 

  68. J. Russell, M. Skibniewski: An ergonomic analysis framework for construction tasks, Constr. Manag. Econ. 8(3), 329–338 (1990)

    Google Scholar 

  69. J. Russell, M. Skibniewski, J. Vanegas: A framework for a construction robot fleet management system, ASCE J. Constr. Eng. Manag. 116(3), 448–462 (1990)

    Article  Google Scholar 

  70. M. Skibniewski, J. Russell: Construction robot fleet management system prototype, ASCE J. Comput. Civil Eng. 5(4), 444–463 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eugeniusz Budny Prof. , Mirosław Chłosta Dr. , Henning Jürgen Meyer Prof. or Mirosław J. Skibniewski Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Budny, E., Chłosta, M., Meyer, H.J., Skibniewski, M.J. (2009). Construction Machinery. In: Grote, KH., Antonsson, E. (eds) Springer Handbook of Mechanical Engineering. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30738-9_14

Download citation

Publish with us

Policies and ethics