Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Turbulent wall-bounded flows (i.e., boundary layer, pipe and channel flows) present additional measurement challenges relative to those in, say, free shear turbulent flows or grid turbulence. The physical presence of the wall and the limitations and influences it presents on the implementation of sensing technologies creates some of these challenges. Other, often more-subtle issues, however, relate to the effect that the wall has on the inherent flow dynamics. Such effects are reflected in the steep mean velocity gradient(s) in the vicinity of the surface, as well as the length and time scales of the turbulence local to the near-wall region. Regarding the latter, primary challenges are associated with the high frequencies and small scales of near-wall turbulence relative to free shear flows.

In previous Chaps. (5.2, 5.3 and 5.5.3), relatively broad discussions were provided regarding the requirements and considerations for accurate measurements of both mean and fluctuating quantities in turbulent flows. The present chapter constitutes an extension of these more-generic considerations relative to the specific case of wall-bounded turbulent flows. For the purposes of providing a background context, the initial subsection below presents a brief overview of concepts and considerations specific to wall flows. Owing to its central role in the study of the turbulent wall flows, the next subsection addresses the measurement of the wall shear stress for ca nonical boundary layer, pipe and channel flows. Considerations relative to transitional and non-canonical wall flows are presented in subsequent subsections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

4-D MRV:

4-D magnetic resonance velocimetry

CCD:

charge-coupled device

DNS:

direct numerical simulation

IRT:

infrared thermography

LDA:

laser Doppler anemometry

LDV:

laser Doppler velocimetry

MEMS:

microelectromachined sensors

MRI:

magnetic resonance imaging

MTV:

molecular tagging velocimetry

PIV:

particle image velocimetry

PSP:

pressure-sensitive paint

RANS:

Reynolds-averaged Navier–Stokes equations

RMS:

root-mean-square

TSP:

temperature-sensitive paint

References

  1. H. Schlichting, K. Gersten: Boundary Layer Theory (Springer, Berlin-Heidelberg 2000)

    MATH  Google Scholar 

  2. H. Tennekes, J. Lumley: A First Course in Turbulence (MIT Press, Boston 1972)

    Google Scholar 

  3. S.B. Pope: Turbulent Flow (Cambridge Univ. Press, Cambridge 2000)

    Google Scholar 

  4. A. Sahay: The Mean Velocity and the Reynolds Shear Stress in Turbulent Channel and Pipe Flow (Yale Univ. Press, Cambridge 1997)

    Google Scholar 

  5. J.C. Klewicki, R.E. Falco: On accurately measuring statistics associated with small scale structure in turbulent boundary layers using hot-wire probes, J. Fluid Mech. 219, 119–142 (1990)

    Google Scholar 

  6. R.D. Moser, J. Kim, N.N. Mansour: Direct numerical simulation of turbulent channel flow up to R τ  = 590, Phys. Fluids 11, 943–954 (1999)

    MATH  Google Scholar 

  7. T. Wei, P. Fife, J. Klewicki, P. McMurtry: Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows, J. Fluid Mech. 522, 303–327 (2005)

    MATH  MathSciNet  Google Scholar 

  8. A.A. Townsend: The Structure of Turbulent Shear Flow (Cambridge Univ. Press, Cambridge 1976)

    MATH  Google Scholar 

  9. R.W. Fox, A.T. McDonald: Introduction to Fluid Mechanics (Wiley, New York 2000)

    Google Scholar 

  10. P. Fife, T. Wei, J. Klewicki, P. McMurtry: Stress gradient balance layers and scale hierarchies in wall-bounded turbulent flows, J. Fluid Mech. 532, 165–189 (2005)

    MATH  MathSciNet  Google Scholar 

  11. A.V. Johansson, P.H. Alfredsson: Effects of imperfect spatial resolution on measurements of wall-bounded turbulent shear flows, J. Fluid Mech. 137, 409–421 (1983)

    Google Scholar 

  12. P. Ligrani, P. Bradshaw: Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes, Exp. Fluids 5, 407–417 (1987)

    Google Scholar 

  13. D.B. DeGraaff, J.K. Eaton: Reynolds number scaling of the flat plate turbulent boundary layer, J. Fluid Mech. 422, 319–346 (2000)

    MATH  Google Scholar 

  14. S.-R. Park, J.M. Wallace: The influence of instantaneous velocity gradients on turbulence properties measured with multi-sensor hot-wire probes, Exp. Fluids 16, 17–26 (1993)

    Google Scholar 

  15. R.A. Antonia, Y. Zhu, J. Kim: On the measurement of lateral velocity derivatives in turbulent flows, Exp. Fluids 15, 65–69 (1993)

    Google Scholar 

  16. A.B. Folz: An Experimental Study of the Near-Surface Turbulence in the Atmospheric Boundary Layer (Univ. of Maryland, College Park 1997)

    Google Scholar 

  17. C.G. Lomas: Fundamentals of Hot Wire Anemometry (Cambridge Univ. Press, Cambridge 1986)

    Google Scholar 

  18. H.-E. Albrecht, N. Damaschke, M. Borys, C. Tropea: Laser Doppler and Phase Doppler Measurement Techniques (Springer, Berlin-Heidelberg 2003)

    Google Scholar 

  19. M. Raffel, C. Willert, J. Kompenhans: Particle Image Velocimetry: A Practical Guide (Springer, Berlin-Heidelberg 2001)

    Google Scholar 

  20. L.H. Tanner, L.G. Blows: A study of the motion of oil films on surfaces in air flow, with application to the measurement of skin friction, J. Phys. E. 9, 194–202 (1976)

    Google Scholar 

  21. J.W. Naughton, M. Sheplak: Modern developments in shear-stress measurement, Prog. Aerospace Sci. 38, 515–570 (2002)

    Google Scholar 

  22. J.D. Ruedi, H. Nagib, J. Osterlund, P. Monkewitz: Evaluation of three techniques for wall-shear measurements in three-dimensional flows, Expts. Fluids 35, 389–396 (2003)

    Google Scholar 

  23. G.G. Zilliac: Further developments of the fringe-imaging skin friction technique, NASA CR-1100425 (NASA, Washington 1996)

    Google Scholar 

  24. J.L. Brown and J.W. Naughton: The thin-oil-film equation, NASA/TM 1999-208767 (NASA, Washington 1999)

    Google Scholar 

  25. H.H. Fernholz, G. Janke, M. Schober, P.M. Wagner, D. Warnack: New developments and applications of skin-friction measuring techniques, Meas. Sci. Technol. 7, 1396–1409 (1996)

    Google Scholar 

  26. D.J. Monson, H. Higuchi: Skin friction measurement by a dual-laser-beam interferometer technique, AIAA J. 19, 739–744 (1981)

    Google Scholar 

  27. J.D. Murphy, R.V. Westphal: The laser interferometer skin-friction meter: a numerical and experimental study, J. Phys. E. 19, 744–751 (1986)

    Google Scholar 

  28. K.-S. Kim, G.S. Settles: Skin friction measurements by laser interferometry in shock/boundary-layer interactions, AIAA J. 28, 133–139 (1990)

    Google Scholar 

  29. J.H. Harotinidis: The measurement of wall shear stress. In: In: Advances in Fluid Mechanics, ed. by M. Gad-el-Hak (Springer, Berlin-Heidelber 1989) pp. 229–261

    Google Scholar 

  30. K. Lien, J. Monty, M.S. Chong, A. Ooi: The entrance length for fully developed turbulent channel flow. In: Proceedings of the 15th Australasian Fluid Mechanics Conference, ed. by M. Behnia, W. Lin, G. McBain (University of Sydney, Sydney 2004)

    Google Scholar 

  31. F.M. White: Viscous Flow (McGraw Hill, New York 2002)

    Google Scholar 

  32. A.V. Boiko, G.R. Grek, A.V. Dovgal, V.V. Kozlov: The Origin of Turbulence in Near-Wall Flows (Springer, Berlin-Heidelberg 2002)

    MATH  Google Scholar 

  33. R. Shaw: The influence of hole dimensions on static pressure measurements, J. Fluid Mech. 7, 550–564 (1960)

    MATH  Google Scholar 

  34. R.E. Franklin, J.M. Wallace: Absolute measurements of static-hole error using flush transducers, J. Fluid Mech. 42, 33–48 (1970)

    Google Scholar 

  35. C. Ducruet, A. Dyment: The pressure hole problem, J. Fluid Mech. 142, 251–267 (1984)

    Google Scholar 

  36. B.J. McKeon, A.J. Smits: Static pressure correction in high Reynolds number fully developed turbulent pipe flow, Meas. Sci. Tech. 13, 1608–1614 (2002)

    Google Scholar 

  37. B.J. McKeon: High Reynolds Number Turbulent Pipe Flow (Princeton Univ. Press, Princeton 2003)

    Google Scholar 

  38. M.J. Walsh: Riblets. In: In: Viscous Drag Reduction in Boundary Layers, ed. by D.M. Bushnell, J.N. Hefner (AIAA Progress in Astronautics and Aeronautics, Reston 1989) pp. 203–254

    Google Scholar 

  39. J.H. Preston: The determination of turbulent skin friction by means of Pitot tubes, J. R. Aeronaut. Soc. 58, 109–121 (1953)

    Google Scholar 

  40. V.C. Patel: Calibration of the Preston tube limitation on its use in pressure gradients, J. Fluid Mech. 23, 185–208 (1965)

    Google Scholar 

  41. M.R. Head, V.V. Ram: Simplified presentation of Preston tube calibration, Aeronaut. Q. 22, 295–300 (1971)

    Google Scholar 

  42. T.J. Hanratty, J.A. Campbell: Measurement of wall shear stress. In: Fluid Mechanics Measurements, ed. by R.J. Goldstein (Taylor Francis, 1996)

    Google Scholar 

  43. T.G. Johansson and L. Castillo: Near-wall measurements in turbulent boundary layers using laser Doppler anemometry, ASME FEDSM2002-31070 (ASME, Metals Park 2002)

    Google Scholar 

  44. H.M. Nagib and K.A. Chauhan and P.A. Monkewitz: Scaling of high Reynolds number boundary layers revisited, AIAA 2005-4810 (2005)

    Google Scholar 

  45. F.H. Clauser: Turbulent boundary layers in adverse pressure gradients, J. Aeronaut. Sci. 21, 91–108 (1954)

    Google Scholar 

  46. H. Nagib and C. Christophorou and J.-D. Reidi and P. Monkewitz and J. Osterlund and S. Gravante: Can we ever rely on results from wall-bounded turbulent flows without direct measurements of wall shear stress?, AIAA 2004-392 (2004)

    Google Scholar 

  47. D. Coles: Turbulent Boundary Layers in Pressure Gradients: A Survey Lecture. In: Proceedings of the 1968 AFOSR-IFP-Stanford Conference on Computation of Turbulent Boundary Layers, ed. by D. Coles, H. Hirst (Stanford University, Stanford 1969)

    Google Scholar 

  48. F.S. Sherman: Viscous Flow (McGraw-Hill, New York 1990)

    MATH  Google Scholar 

  49. I. Wygnanski, Y. Katz, E. Horev: On the applicability of various scaling laws to the turbulent wall-jet, J. Fluid Mech. 234, 669–690 (1992)

    Google Scholar 

  50. A.E. Perry, J.D. Li: Experimental support for the attached-eddy hypothesis in zero-pressure gradient turbulent boundary layers, J. Fluid Mech. 218, 405–438 (1990)

    Google Scholar 

  51. D. Coles: The law of the wake in the turbulent boundary layer, J. Fluid Mech. 1, 191–226 (1956)

    MATH  MathSciNet  Google Scholar 

  52. A. Cenedese, G.P. Romano, R.A. Antonia: A comment on the ``linearʼʼ law of the wall for fully developed turbulent channel flow, Exp. Fluids 25, 165–170 (1998)

    Google Scholar 

  53. F. Durst, J. Jovanovic, J. Sender: LDA measurements in the near-wall region of a turbulent pipe flow, J. Fluid Mech. 295, 305–335 (1995)

    Google Scholar 

  54. N. Hutchins, K.-S. Choi: Accurate measurements of local skin friction coefficient using hot-wire anemometry, Prog. Aerospace Sci. 38, 421–446 (2002)

    Google Scholar 

  55. Y.T. Chew, B.C. Koo, G.L. Li: An investigation of wall effects on hot-wire measurements using a bent sublayer probe, Meas. Sci. Technol. 9, 67–85 (1994)

    Google Scholar 

  56. Y.T. Chew, B.C. Koo, G.L. Li: A time-resolved hot-wire shear stress probe for turbulent flow: Use of laminar flow calibration, Exp. Fluids 17, 75–83 (1994)

    Google Scholar 

  57. Z. Yue, T.G. Malmstrom: A simple method for low-speed hot-wire anemometer calibration, Meas. Sci. Technol. 9, 1506–1510 (1998)

    Google Scholar 

  58. J.M. Allen: Systematic study of error sources in supersonic skin-friction balance measurements, NASA TN D-8291 (1976)

    Google Scholar 

  59. K.G. Winter: An outline of the techniques available for the measurement of skin friction in turbulent boundary layers, Prog. Aerospace Sci. 18, 1–57 (1977)

    MathSciNet  Google Scholar 

  60. J.M. Allen: Experimental study of error sources in skin friction balance measurements, J. Fluids Eng. 99, 197–204 (1977)

    Google Scholar 

  61. M. Acharya: Development of a floating element for measurement of surface shear stress, AIAA J. 23, 410–415 (1985)

    Google Scholar 

  62. D. Frei, H. Thomann: Direct measurements of skin friction in a turbulent boundary layer with strong adverse pressure gradient, J. Fluid Mech. 101, 79–95 (1980)

    Google Scholar 

  63. M.A. Schmidt, R.T. Howe, S.D. Senturia, J.H. Haritonidis: Design and calibration of a microfabricated floating-element shear-stress sensor, IEEE Trans. Electron. Dev. 35, 750–757 (1988)

    Google Scholar 

  64. L. Lofdahl, M. Gad-el-Hak: MEMS-based pressure and shear stress sensors for turbulent flows, Meas. Sci. Technol. 10, 665–686 (1999)

    Google Scholar 

  65. W. Heuer, I. Marusic: Turbulence wall-shear stress sensor for the atmospheric surface layer, Meas. Sci. Technol. 16, 1644–1649 (2005)

    Google Scholar 

  66. P.H. Alfredsson, A.V. Johansson, J.H. Haritonidis, H. Eckelmann: The fluctuating wall-shear stress and the velocity field in the viscous sublayer, Phys. Fluids 31, 1026–1033 (1988)

    Google Scholar 

  67. V.A. Sanborn: Resistance Temperature Transducers (Metrology, Fort Collins 1972)

    Google Scholar 

  68. K. Collela, W. Keith: Measurements and scaling of wall shear stress fluctuations, Experiments in Fluids 34, 253–260 (2003)

    Google Scholar 

  69. A.N. Menendez, B.R. Ramaprian: The use of flush-mounted hot-film gages to measure skin friction in unsteady boundary layers, J. Fluid Mech. 161, 139–159 (1985)

    MATH  Google Scholar 

  70. D.B. DeGraaff, J.K. Eaton: A high-resolution laser Doppler anemometer: Design, qualification and uncertainty, Exp. Fluids 30, 522–530 (2000)

    Google Scholar 

  71. F. Durst, M. Fischer, J. Jovanovic, H. Kikura: Methods to set up and investigate low Reynolds number, fully developed turbulent plane channel flows, J. Fluid Eng. 120, 496–503 (1998)

    Google Scholar 

  72. R.B. Hill, J.C. Klewicki: Data reduction methods for flow tagging velocity measurements, Expts. Fluids 20, 142–151 (1996)

    Google Scholar 

  73. J.C. Klewicki, R.B. Hill: Spatial structure of negative ∂u/∂y in a low R θ turbulent boundary layer, J. Fluid Eng. 120, 773–785 (1998)

    Google Scholar 

  74. E.M. Thurlow, J.C. Klewicki: An experimental study of turbulent Poiseuille-Couette flow, Phys. Fluids 12, 865–875 (2000)

    MATH  Google Scholar 

  75. C.P. Gendrich, M.M. Koochesfahani, D.G. Nocera: Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule, Exp. Fluids 23, 361–372 (1997)

    Google Scholar 

  76. M.M. Koochesfahani: Molecular tagging velocimetry: Progress and applications, AIAA paper no. 1999-3786 (1999)

    Google Scholar 

  77. D.G. Bohl, M.M. Koochesfahani: Molecular tagging velocimetry measurements of axial flow in a concentrated vortex core, Phys. Fluids 16, 4185–4191 (2004)

    Google Scholar 

  78. M.V. Morkovin: On the many faces of transition. In: Viscous Drag Reduction, ed. by C.S. Wells (Plenum, New York 1969)

    Google Scholar 

  79. H.L. Reed, W.S. Saric, D. Arnal: Linear Stability Theory Applied to Boundary Layers, Ann. Rev. Fluid Mech. 28, 389–428 (1996)

    MathSciNet  Google Scholar 

  80. P.G. Drazin: Introduction to Hydrodynamic Stability (Cambridge Univ. Press, Cambridge 2002)

    MATH  Google Scholar 

  81. W.O. Criminale, T.L. Jackson, R.D. Joslin: Theory and Computation in Hydrodynamic Stability (Cambridge Univ. Press, Cambridge 2003)

    Google Scholar 

  82. E. Reshotko: Boundary-layer stability and transition, Ann. Rev. Fluid Mech. 8, 311 (1976)

    Google Scholar 

  83. E. Reshotko: Boundary layer instability, transition, and control, AIAA 94-0001 (1994)

    Google Scholar 

  84. E. Reshotko: A Program for Transition Research, AIAA J. 13, 261–265 (1975)

    Google Scholar 

  85. G.B. Schubauer, H.K. Skramstad: Laminar boundary-layer oscillations and transition on a flat plate. J. Res. Natʼl. Bur. Stand. 38 (1947) 251

    Google Scholar 

  86. P.S. Klebanoff, K.D. Tidstrom, L.M. Sargent: The three-dimensional nature of boundary-layer instability, J. Fluid Mech. 12, 1 (1962)

    MATH  Google Scholar 

  87. W.S. Saric, G.A. Reynolds: Experiments on the nonlinear stability of waves in a boundary layer. In: Laminar-Turbulent Transition, Vol. I, ed. by R. Eppler, H. Fasel (Springer, Berlin-Heidelberg 1980)

    Google Scholar 

  88. N. Lin, H.L. Reed, W.S. Saric: Effect of leading edge geometry on boundary-layer receptivity to freestream sound. In: Stability, Transition and Turbulence, ed. by M.Y. Hussaini, A. Kumar, C.L. Street (Springer, New York 1992)

    Google Scholar 

  89. W.S. Saric, W. Wei, B.K. Rasmussen: Effect of leading edge on sound receptivity. In: Laminar-Turbulent Transition Vol. IV, ed. by R. Kobayashi (Proc. IUTAM Symp., Sendai, Japan 1995)

    Google Scholar 

  90. W.S. Saric, E. White: Influence of High-Amplitude Noise on Boundary-Layer Transition to Turbulence, AIAA 98-2645 (1998)

    Google Scholar 

  91. T. Herbert: Three-dimensional phenomena in the transitional flat-plate boundary layer, AIAA 85-0489 (1985)

    Google Scholar 

  92. B.G.B. Klingmann, A.V. Boiko, K.J.A. Westin, V.V. Kozlov, P.H. Alfredsson: Experiments on the stability of Tollmien-Schlichting waves, Eur. J. Mech. B Fluids 12, 493 (1993)

    Google Scholar 

  93. F.P. Bertolotti, T. Herbert, P.R. Spalart: Linear and nonlinear stability of the Blasius boundary layer, J. Fluid Mech. 242, 44 (1992)

    MathSciNet  Google Scholar 

  94. W.S. Saric: Low-speed experiments: Requirements for stability measurements. In: Instability and Transition, Vol. I, ed. by Y. Hussaini (Springer, Berlin-Heidelberg 1990) p. 174

    Google Scholar 

  95. J.A. Ross, F.H. Barnes, J.G. Burns, M.A.S. Ross: The flat plate boundary layer, Part 3 Comparison of theory with experiment, J. Fluid Mech. 43, 819 (1970)

    MATH  Google Scholar 

  96. B. Müller, H. Bippes: Experimental Study of Instability Modes in a Three-Dimensional Boundary Layer, In Fluid Dynamics of Three-Dimensional Turbulent Shear Flows and Transition, AGARD CP 438 (1988) 13-1 - 13-15

    Google Scholar 

  97. A.M. Naguib, S.P. Gravante, C.E. Wark: Extraction of turbulent wall-pressure time-series using an optimal filtering scheme, Exp. Fluids 22, 14–22 (1996)

    Google Scholar 

  98. W.S. Saric, E. Reshotko: Review of Flow Quality Issues in Wind Tunnel Testing, AIAA 98-2613 (1998)

    Google Scholar 

  99. W.S. Saric, S. Takagi, M.C. Mousseux: The ASU Unsteady Wind Tunnel and fundamental requirements for freestream turbulence measurements, AIAA 88-0053 (1988)

    Google Scholar 

  100. J.M. Kendall: Boundary layer receptivity to freestream turbulence, AIAA 90-1504 (1990)

    Google Scholar 

  101. W.S. Saric, A.S.W. Thomas: Experiments on the subharmonic route to turbulence in boundary layers. In: Turbulence and Chaotic Phenomena in Fluids, ed. by T. Tatsumi (North-Holland, Amsterdam 1984)

    Google Scholar 

  102. T.C. Corke, R.A. Mangano: Resonant growth of three-dimensional modes in transitioning Blasius boundary layers, J. Fluid Mech. 209, 93 (1989)

    Google Scholar 

  103. M. Nishioka, S. Iida, Y. Ichikawa: An experimental investigation of the stability of plane Poiseuille flow, J. Fluid Mech. 72, 731 (1975)

    Google Scholar 

  104. J.B. Anders, R.F. Blackwelder: Longitudinal Vortices in a Transitioning Boundary Layer. In: Laminar-Turbulent Transition Vol. I., ed. by R. Eppler, H. Fase (Springer, Berlin-Heidelberg 1980)

    Google Scholar 

  105. B.A. Singer, H.L. Reed, J.H. Ferziger: Effect of streamwise vortices on transition in plane channel flow, Phys. Fluids A 1, 1960 (1989)

    Google Scholar 

  106. W.S. Saric, J.A. Hoos, R.H. Radeztsky Jr: Boundary-layer receptivity of sound with roughness. In: Boundary Layer Stability and Transition FED-Vol. 114, ed. by D.C. Reda, H.L. Reed, R. Kobayashi (ASME, New York 1991)

    Google Scholar 

  107. C.F. Knapp, P.J. Roache: A combined visual and hot-wire anemometer investigation of boundary-layer transition, AIAA J. 6, 29 (1968)

    Google Scholar 

  108. K.R. Sreenivasan, S. Raghu, B.T. Chu: The control of pressure oscillations in combustion and fluid dynamical systems, AIAA 85-0540 (1985)

    Google Scholar 

  109. Yu.S. Kachanov, V.Ya. Levchenko: Resonant interactions of disturbances in transition to turbulence in a boundary layer, J. Fluid Mech. 138, 209 (1984)

    Google Scholar 

  110. L.M. Mack: Line sources of instability waves in a Blasius boundary layer, AIAA 84-0168 (1984)

    Google Scholar 

  111. P.T. Pupator, W.S. Saric: Control of Random Disturbances in a Boundary Layer, AIAA 89-1007 (1989)

    Google Scholar 

  112. R.W. Wlezien and D.E. Parekh and T.C. Island: Measurement of acoustic receptivity at leading edges and porous strips, Appl. Mech. Rev., 43:S167 (1990)

    Google Scholar 

  113. W.S. Saric, H.L. Reed, E.J. Kerschen: Boundary-Layer Receptivity to Freestream Disturbances, Ann. Rev. Fluid Mech. Vol. 34, 291–319 (2002)

    MathSciNet  Google Scholar 

  114. E.B. White, W.S. Saric, R.H. Radeztsky Jr: Leading-Edge Acoustic Receptivity Measurements Using a Pulsed-Sound Technique. In: Laminar-Turbulent Transition, Vol. V, ed. by W. Saric, H. Fasel (Springer, Berlin-Heidelberg 2000) pp. 103–108

    Google Scholar 

  115. R.H. Radeztsky Jr., M.S. Reibert, S. Takagi: A software solution to temperature-induced hot-wire voltage drift, Proc. 3rd International Symposium on Thermal Anemometry, ASME-FED (June 1993)

    Google Scholar 

  116. J.R. Dagenhart, W.S. Saric, M.C. Mousseux, J.P. Stack: Crossflow-vortex instability and transition on a 45-degree swept wing, AIAA 89-1892 (1989)

    Google Scholar 

  117. S.M. Mangalam, D.V. Maddalon, W.S. Saric, N.K. Agarwal: Measurements of crossflow vortices, attachment-line flow, and transition using microthin hot films, AIAA 90-1636 (1990)

    Google Scholar 

  118. H. Deyhle, G. Höhler, H. Bippes: Experimental investigation of instability wave-propagation in a 3-D boundary-layer flow, AIAA J. 31, 637 (1993)

    Google Scholar 

  119. T.C. Corke, D Koga, R. Drubka, H. Nagib: A new technique for introducing controlled sheets of smoke streaklines in wind tunnels, Proc. Intʼl Congress on Instrumentation in Aerospace Simulation Facilities, IEEE Pub. 77 (1974) CH 1250-8, AES

    Google Scholar 

  120. W.S. Saric: Visualization of different transition mechanisms, Phys. Fluids 29, 2770 (1986)

    Google Scholar 

  121. D.C. Reda: Observations of dynamic stall phenomena using liquid crystal coating, AIAA J. 29, 308 (1991)

    Google Scholar 

  122. W.S. Saric, H.L. Reed, D.W. Banks: Flight Testing of Laminar Flow Control in High-Speed Boundary Layers, RTO-MP-AVT-111/RSM (2005)

    Google Scholar 

  123. S. Zuccher, W.S. Saric: Infrared Thermography Investigations in Transitional Supersonic Boundary Layers. Exps. Fluids. In Press (2006)

    Google Scholar 

  124. R.H. Radeztsky, Jr, M.S. Reibert, W.S. Saric: Development of stationary crossflow vortices on a swept wing, AIAA 94-2374 (1994)

    Google Scholar 

  125. R.H. Radeztsky, Jr, M.S. Reibert, W.S. Saric, S. Takagi: Effect of micron-sized roughness on transition in swept-wing flows, AIAA 93-0076 (1993)

    Google Scholar 

  126. J.K. Eaton: Effects of mean flow three dimensionality on turbulent boundary layer structure, AIAA J. 33, 2020–2025 (1995)

    Google Scholar 

  127. R.L. Simpson: Turbulent boundary layer separation, Annu. Rev. Fluid Mech. 21, 205–234 (1989)

    Google Scholar 

  128. S.H. Chue: Pressure probes for fluid measurements, Prog. Aerospace Sci. 16, 147–223 (1975)

    Google Scholar 

  129. D.W. Bryer, R.C. Pankhurst: Pressure-probe methods for determining wind speed and flow direction (National Physical Laboratory, Teddington 1971)

    Google Scholar 

  130. R.G. Dominy, H.P. Hodson: An investigation of factors influencing the calibration of five-hole probes for three-dimensional flow measurements, J. Turbomach. 115, 513–519 (1993)

    Google Scholar 

  131. G.G. Zilliac: Modelling, calibration and error analysis of seven-hole pressure probes, Exp. Fluids 14, 104–120 (1993)

    Google Scholar 

  132. O.K. Rediniotis, R. Vijayagopal: Miniature multihole pressure probes and their neural-network-based calibration, AIAA J. 37, 666–674 (1999)

    Google Scholar 

  133. C.W. Wenger, W.J. Devenport: Seven-hole pressure probe calibration method utilizing look-up error tables, AIAA J. 37, 675–679 (1999)

    Google Scholar 

  134. A.J. Pisasale, N.A. Ahmed: Examining the effect of flow reversal on seven-hole probe measurements, AIAA J. 41, 2460–2467 (2003)

    Google Scholar 

  135. O.K. Rediniotis, R.E. Kinser: Development of a nearly omnidirectional velocity measurement pressure probe, AIAA J. 36, 1854–1860 (1998)

    Google Scholar 

  136. J.D. Vagt: Experimental techniques in three-dimensional turbulent boundary layers. In: IUTAM Symposium: Three-dimensional turbulent boundary layers, ed. by H.H. Fernholz, E. Krause (Springer, New York 1982)

    Google Scholar 

  137. H.H. Fernholz and E. Krause: Three-dimensional turbulent boundary layers, IUTAM Symposium, Berlin, (1982)

    Google Scholar 

  138. P.M. Ligrani, B.A. Singer, L.R. Baun: Miniature five-hole pressure probe for measurements of three mean velocity components in low-speed flows, J. Phy. E: Sci. Instrum. 22, 868–876 (1989)

    Google Scholar 

  139. L. Pompeo, M.S.G. Bettelini, H. Thomann: Laterally strained turbulent boundary layers near a plane of symmetry, J. Fluid Mech. 257, 507–532 (1993)

    Google Scholar 

  140. R.V. Westphal, M. Prather, and M. Toyooka: Rotatable single hole pressure probe for flow velocity and direction, AIAA-2002-3138 (2002)

    Google Scholar 

  141. D. Driver, S. Hebbar: Experimental study of a three-dimensional, shear-driven, turbulent boundary layer, AIAA J. 25, 35–42 (1987)

    Google Scholar 

  142. K. Flack, J. Johnston: Near-wall flow in a three-dimensional turbulent boundary layer on the endwall of a rectangular bend, ASME Fluids Eng. Div. 184, 1–19 (1994)

    Google Scholar 

  143. J. Johnston, K. Flack: Advances in three-dimensional turbulent boundary layers with an emphasis on the wall-layer regions, ASME J. Fluids Eng. 118, 219–232 (1996)

    Google Scholar 

  144. D.B. DeGraaff, J.K. Eaton: Reynolds number scaling of the flat plate turbulent boundary layer, J. Fluid Mech. 422, 319–346 (2000)

    MATH  Google Scholar 

  145. S. Song, J.K. Eaton: Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery, Exp. Fluids 36, 246–258 (2004)

    Google Scholar 

  146. K.T. Lowe, R.L. Simpson: Measurements of velocity-acceleration statistics in turbulent boundary layers, Int. J. Heat Fluid Flow 27, 558–565 (2006)

    Google Scholar 

  147. R.L. Simpson, Y.T. Chew, B.G. Shivaprasad: The structure of a separating turbulent boundary layer. Part 1. Mean flow and Reynolds stresses, J. Fluid Mech. 113, 23–51 (1981)

    Google Scholar 

  148. S.M. Olcmen, R.L. Simpson: An experimental study of a three-dimensional pressure-driven turbulent boundary layer, J. Fluid Mech. 290, 225–262 (1995)

    Google Scholar 

  149. D.R. Webster, D.B. DeGraaff, J.K. Eaton: Turbulence characteristics of a boundary layer over a swept bump, J. Fluid Mech. 323, 1–22 (1996)

    Google Scholar 

  150. D.A. Compton, J.K. Eaton: Near-wall measurements in a three-dimensional turbulent boundary layer, J. Fluid Mech. 350, 189–208 (1997)

    Google Scholar 

  151. H.H. Bruun: Hot-wire Anemometry. Principles and Signal Analysis (Oxford Univ. Press, Oxford 1995)

    Google Scholar 

  152. I. Marusic, A.E. Perry: A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support, J. Fluid Mech. 298, 389–407 (1995)

    Google Scholar 

  153. F.H. Champagne, C.A. Sleicher, O.H. Wehrmann: Turbulence measurements with inclined hot-wires. Part 1. heat transfer experiments with inclined hot-wire, J. Fluid Mech. 28, 153–175 (1967)

    Google Scholar 

  154. F.H. Champagne, C.A. Sleicher: Turbulence measurements with inclined hot-wires. Part 2. hot-wire response equations, J. Fluid Mech. 28, 177–182 (1967)

    Google Scholar 

  155. A.E. Perry: Hot-wire Anemometry (Clarendon, Oxford 1982)

    Google Scholar 

  156. B.J. Cantwell, D. Coles: An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder, J. Fluid Mech. 136, 321–374 (1983)

    Google Scholar 

  157. A.E. Perry, J.H. Watmuff: The phase-averaged large-scale structures in three-dimensional turbulent wakes, J. Fluid Mech. 103, 33–51 (1981)

    Google Scholar 

  158. A.E. Perry, J.D. Li: Experimental support for the attached eddy hypothesis in zero-pressure-gradient turbulent boundary layers, J. Fluid Mech. 218, 405–438 (1990)

    Google Scholar 

  159. A.E. Perry, K.L. Lim, S.M. Henbest: An experimental study of the turbulence structure in smooth- and rough-wall boundary layers, J. Fluid Mech. 177, 437–466 (1987)

    Google Scholar 

  160. P.E. Skåre, P.-Å. Krogstad: A turbulent boundary layer near separation, J. Fluid Mech. 272, 319–348 (1994)

    Google Scholar 

  161. K. Elsberry, J. Loeffler, M.D. Zhou, I. Wygnanski: An experimental study of a boundary layer that is maintained on the verge of separation, J. Fluid Mech. 423, 227–261 (2000)

    MATH  Google Scholar 

  162. R.V. Westphal, J.K. Eaton, J.P. Johnston: A new probe for measurement of velocity and wall shear stress in unsteady, reversing flow, J. Fluids Eng. 103, 478–482 (1981)

    Google Scholar 

  163. L.J.S. Bradbury, I.P. Castro: A pulsed-wire technique for velocity measurements in highly turbulent flows, J. Fluid Mech. 49, 657–691 (1971)

    Google Scholar 

  164. I.P. Castro, M. Dianat: Pulsed-wire anemometry near walls, Exp. Fluids 8, 343–352 (1990)

    Google Scholar 

  165. W.J. Devenport, G.P. Evans, E.P. Sutton: A traversing pulsed wire probe for measurements near a wall, Exp. Fluids 8, 336–342 (1990)

    Google Scholar 

  166. M. Schober, P.E. Hancock, H. Siller: Pulsed-wire anemometry near walls, Exp. Fluids 25, 151–159 (1998)

    Google Scholar 

  167. H.H. Fernholz, G. Janke, M. Schober, P.M. Wagner, D. Warnack: New developments and applications of skin-friction measuring techniques, Meas. Sci. Tech. 7(10), 1396–1409 (1996)

    Google Scholar 

  168. P.G. Spazzini, G. Iuso, M. Onorato, N. Zurlo: Design, test and validation of a probe for time-resolved measurement of skin friction, Meas. Sci. Tech. 10, 631–639 (1999)

    Google Scholar 

  169. Y. Li, A.M. Naguib: High-frequency oscillating hot-wire sensor for near-wall diagnostics in separated flows, AIAA J. 43(3), 520–529 (2005)

    Google Scholar 

  170. R.O. Kiesow, M.W. Plesniak: Modification of near-wall turbulence structure in a shear-driven three-dimensional turbulent boundary layer, Exp. Fluids 25, 233–242 (1998)

    Google Scholar 

  171. K.P. Angele: Pressure-based scaling in a separating turbulent APG boundary layer, In Proc. ETC9, Southampton, UK, 2002. (ed. I.P. Castro, P.E. Handcock and T.G. Thomas)

    Google Scholar 

  172. O. Uzol, Y.C. Chow, J. Katz, C. Meneveau: Unobstructed PIV measurements within an axial turbo-pump using liquid and blades with matched refractive indices, Exp. Fluids 33, 909–919 (2002)

    Google Scholar 

  173. C.J. Elkins, M. Markl, N. Pelc, J.K. Eaton: 4D magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows, Exp. Fluids 34, 494–503 (2003)

    Google Scholar 

  174. B. Tao, J. Katz, C. Meneveau: Geometry and scale relationships in high Reynolds number turbulence determined from three-dimensional holographic velocimetry, Phys. Fluids 12, 941 (2000)

    MATH  Google Scholar 

  175. R. Konrath, W. Schroder, W. Limberg: Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine, Exp. Fluids 33, 781–793 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph Klewicki Prof. , William Saric Prof. , Ivan Marusic Prof. or John Eaton Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Klewicki, J., Saric, W., Marusic, I., Eaton, J. (2007). Wall-Bounded Flows. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics