Skip to main content

Nanomaterials Synthesis and Applications: Molecule-Based Devices

  • Reference work entry
Book cover Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 10k Accesses

Abstract

The constituent components of conventional devices are carved out of larger materials relying on physical methods. This top-down approach to engineered building blocks becomes increasingly challenging as the dimensions of the target structures approach the nanoscale. Nature, on the other hand, relies on chemical strategies to assemble nanoscaled biomolecules. Small molecular building blocks are joined to produce nanostructures with defined geometries and specific functions. It is becoming apparent that nature's bottom-up approach to functional nanostructures can be mimicked to produce artificial molecules with nanoscaled dimensions and engineered properties. Indeed, examples of artificial nanohelices, nanotubes, and molecular motors are starting to be developed. Some of these fascinating chemical systems have intriguing electrochemical and photochemical properties that can be exploited to manipulate chemical, electrical, and optical signals at the molecular level. This tremendous opportunity has led to the development of the molecular equivalent of conventional logic gates. Simple logic operations, for example, can be reproduced with collections of molecules operating in solution. Most of these chemical systems, however, rely on bulk addressing to execute combinational and sequential logic operations. It is essential to devise methods to reproduce these useful functions in solid-state configurations and, eventually, with single molecules. These challenging objectives are stimulating the design of clever devices that interface small assemblies of organic molecules with macroscaled and nanoscaled electrodes. These strategies have already produced rudimentary examples of diodes, switches, and transistors based on functional molecular components. The rapid and continuous progress of this exploratory research will, we hope, lead to an entire generation of molecule-based devices that might ultimately find useful applications in a variety of fields, ranging from biomedical research to information technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CD:

compact disc

CD:

critical dimension

DNA:

deoxyribonucleic acid

SWNT:

single-wall nanotube

TTF:

tetrathiafulvalene

References

  1. D. Voet, J. G. Voet: Biochemistry (Wiley, New York 1995)

    Google Scholar 

  2. K. C. Nicolau, E. C. Sorensen: Classics in Total Synthesis (VCH, Weinheim 1996)

    Google Scholar 

  3. J.-M. Lehn: Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim 1995)

    Google Scholar 

  4. M. M. Harding, U. Koert, J.-M. Lehn, A. Marquis-Rigault, C. Piguet, J. Siegel: Synthesis of unsubstituted and 4,4'-substituted oligobipyridines as ligand strands for helicate self-assembly, Helv. Chim. Acta 74, 594–610 (1991)

    Article  CAS  Google Scholar 

  5. J.-M. Lehn, A. Rigault, J. Siegel, B. Harrowfield, B. Chevrier, D. Moras: Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: Structure of an inorganic double helix, Proc. Natl. Acad. Sci. USA 84, 2565–2569 (1987)

    Article  CAS  Google Scholar 

  6. J.-M. Lehn, A. Rigault: Helicates: Tetra- and pentanuclear double helix complexes of Cu(I) and poly(bipyridine) strands, Angew. Chem. Int. Ed. Engl. 27, 1095–1097 (1988)

    Article  Google Scholar 

  7. J. D. Hartgerink, J. R. Granja, R. A. Milligan, M. R. Ghadiri: Self-assembling peptide nanotubes, J. Am. Chem. Soc. 118, 43–50 (1996)

    Article  CAS  Google Scholar 

  8. M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee, N. Khazanovich: Self-assembling organic nanotubes based on a cyclic peptide architecture, Nature 366, 324–327 (1993)

    Article  CAS  Google Scholar 

  9. V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart: Artificial molecular machines, Angew. Chem. Int. Ed. 39, 3348–3391 (2000)

    CAS  Google Scholar 

  10. A. J. Bard, L. R. Faulkner: Electrochemical Methods: Fundamentals and Applications (Wiley, New York 2000)

    Google Scholar 

  11. V. Balzani (Ed.): Electron Transfer in Chemistry (Wiley-VCH, Weinheim 2001)

    Google Scholar 

  12. J. D. Coyle: Principles and Applications of Photochemistry (Wiley, New York 1988)

    Google Scholar 

  13. V. Balzani, M. Venturi, A. Credi: Molecular Devices and Machines (Wiley-VCH, Weinheim 2003)

    Book  Google Scholar 

  14. P. R. Ashton, R. Ballardini, V. Balzani, A. Credi, K. R. Dress, E. Ishow, C. J. Kleverlaan, O. Kocian, J. A. Preece, N. Spencer, J. F. Stoddart, M. Venturi, S. Wenger: A photochemically driven molecular-level abacus, Chem. Eur. J. 6, 3558–3574 (2000)

    Article  CAS  Google Scholar 

  15. M. Irié (Ed.): Photochromism: memories and switches, Chem. Rev. 100, 1683–1890 (2000)

    Google Scholar 

  16. B. L. Feringa (Ed.): Molecular Switches (Wiley-VCH, Weinheim 2001)

    Google Scholar 

  17. R. J. Mitchell: Microprocessor Systems: An Introduction (Macmillan, London 1995)

    Google Scholar 

  18. D. R. Smith: Digital Transmission Systems (Van Nostrand Reinhold, New York 1993)

    Google Scholar 

  19. S. Madhu: Electronics: Circuits and Systems (SAMS, Indianapolis 1985)

    Google Scholar 

  20. F. M. Raymo: Digital processing and communication with molecular switches, Adv. Mater. 14, 401–414 (2002)

    Article  CAS  Google Scholar 

  21. A. P. de Silva: Molecular computation – Molecular logic gets loaded, Nature Mater. 4, 15–16 (2005)

    Article  Google Scholar 

  22. A. Aviram: Molecules for memory, logic and amplification, J. Am. Chem. Soc. 110, 5687–5692 (1988)

    Article  CAS  Google Scholar 

  23. A. P. de Silva, H. Q. N. Gunaratne, C. P. McCoy: A molecular photoionic AND gate based on fluorescent signaling, Nature 364, 42–44 (1993)

    Article  Google Scholar 

  24. M. Asakawa, P. R. Ashton, V. Balzani, A. Credi, G. Mattersteig, O. A. Matthews, M. Montalti, N. Spencer, J. F. Stoddart, M. Venturi: Electrochemically induced molecular motions in pseudorotaxanes: A case of dual-mode (oxidative and reductive) dethreading, Chem. Eur. J. 3, 1992–1996 (1997)

    Article  CAS  Google Scholar 

  25. F. M. Raymo, S. Giordani, A. J. P. White, D. J. Williams: Digital processing with a three-state molecular switch, J. Org. Chem. 68, 4158–4169 (2003)

    Article  CAS  Google Scholar 

  26. F. M. Raymo, S. Giordani: Signal communication between molecular switches, Org. Lett. 3, 3475–3478 (2001)

    Article  CAS  Google Scholar 

  27. F. M. Raymo, S. Giordani: Multichannel Digital Transmission in an Optical Network of Communicating Molecules, J. Am. Chem. Soc. 124, 2004–2007 (2002)

    Article  CAS  Google Scholar 

  28. F. M. Raymo, S. Giordani: All-optical processing with molecular switches, Proc. Natl. Acad. Sci. USA 99, 4941–4944 (2002)

    Article  CAS  Google Scholar 

  29. A. J. Bard: Integrated Chemical Systems: A Chemical Approach to Nanotechnology (Wiley, New York 1994)

    Google Scholar 

  30. C. Joachim, J. K. Gimzewski, A. Aviram: Electronics using hybrid-molecular and mono-molecular devices, Nature 408, 541–548 (2000)

    Article  CAS  Google Scholar 

  31. J. M. Tour: Molecular electronics. Synthesis and testing of components, Acc. Chem. Res. 33, 791–804 (2000)

    Article  CAS  Google Scholar 

  32. A. R. Pease, J. O. Jeppesen, J. F. Stoddart, Y. Luo, C. P. Collier, J. R. Heath: Switching devices based on interlocked molecules, Acc. Chem. Res. 34, 433–444 (2001)

    Article  CAS  Google Scholar 

  33. R. M. Metzger: Unimolecular electrical rectifiers, Chem. Rev. 103, 3803–3834 (2003)

    Article  CAS  Google Scholar 

  34. M. C. Petty: Langmuir–Blodgett Films: An Introduction (Cambridge Univ. Press, Cambridge 1996)

    Book  Google Scholar 

  35. A. Ulman: An Introduction to Ultrathin Organic Films (Academic, Boston 1991)

    Google Scholar 

  36. C. Lee, A. J. Bard: Comparative electrochemical studies of N-Methyl-N′-hexadecyl viologen monomolecular films formed by irreversible adsorption and the Langmuir–Blodgett method, J. Electroanal. Chem. 239, 441–446 (1988)

    Article  CAS  Google Scholar 

  37. C. Lee, A. J. Bard: Cyclic voltammetry and Langmuir film isotherms of mixed monolayers of N-docosoyl-N ′-methyl viologen with arachidic acid, Chem. Phys. Lett. 170, 57–60 (1990)

    Article  CAS  Google Scholar 

  38. M. Fujihira, K. Nishiyama, H. Yamada: Photoelectrochemical responses of optically transparent electrodes modified with Langmuir–Blodgett films consisting of surfactant derivatives of electron donor, acceptor and sensitizer molecules, Thin Solid Films 132, 77–82 (1985)

    Article  CAS  Google Scholar 

  39. M. Fujihira: Photoelectric conversion with Langmuir–Blodgett films. In: Nanostructures Based on Molecular Materials, ed. by W. Göpel, C. Ziegler (VCH, Weinheim 1992) pp. 27–46

    Google Scholar 

  40. C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, J. R. Heath: Electronically configurable molecular-based logic gates, Science 285, 391–394 (1999)

    Article  CAS  Google Scholar 

  41. E. W. Wong, C. P. Collier, M. Belohradsky, F. M. Raymo, J. F. Stoddart, J. R. Heath: Fabrication and transport properties of single-molecule-thick electrochemical junctions, J. Am. Chem. Soc. 122, 5831–5840 (2000)

    Article  CAS  Google Scholar 

  42. M. Asakawa, P. R. Ashton, V. Balzani, A. Credi, C. Hamers, G. Mattersteig, M. Montalti, A. N. Shipway, N. Spencer, J. F. Stoddart, M. S. Tolley, M. Venturi, A. J. P. White, D. J. Williams: A chemically and electrochemically switchable [2]catenane incorporating a tetrathiafulvalene unit, Angew. Chem. Int. Ed. 37, 333–337 (1998)

    Article  CAS  Google Scholar 

  43. V. Balzani, A. Credi, G. Mattersteig, O. A. Matthews, F. M. Raymo, J. F. Stoddart, M. Venturi, A. J. P. White, D. J. Williams: Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs, J. Org. Chem. 65, 1924–1936 (2000)

    Article  CAS  Google Scholar 

  44. M. Asakawa, M. Higuchi, G. Mattersteig, T. Nakamura, A. R. Pease, F. M. Raymo, T. Shimizu, J. F. Stoddart: Current/Voltage characteristics of monolayers of redox-switchable [2]catenanes on gold, Adv. Mater. 12, 1099–1102 (2000)

    Article  CAS  Google Scholar 

  45. C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, J. R. Heath: A [2]catenane based solid-state electronically reconfigurable switch, Science 289, 1172–1175 (2000)

    Article  CAS  Google Scholar 

  46. C. P. Collier, J. O. Jeppesen, Y. Luo, J. Perkins, E. W. Wong, J. R. Heath, J. F. Stoddart: Molecular-based electronically switchable tunnel junction devices, J. Am. Chem. Soc. 123, 12632–12641 (2001)

    Article  CAS  Google Scholar 

  47. J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour: Large on-off ratios and negative differential resistance in a molecular electronic device, Science 286, 1550–1552 (1999)

    Article  CAS  Google Scholar 

  48. M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, J. M. Tour: Molecular random access memory cell, Appl. Phys. Lett. 78, 3735–3737 (2001)

    Article  CAS  Google Scholar 

  49. D. I. Gittins, D. Bethell, R. J. Nichols, D. J. Schiffrin: Redox-controlled multilayers of discrete gold particles: A novel electroactive nanomaterial, Adv. Mater. 9, 737–740 (1999)

    Article  Google Scholar 

  50. D. I. Gittins, D. Bethell, R. J. Nichols, D. J. Schiffrin: Diode-like electron transfer across nanostructured films containing a redox ligand, J. Mater. Chem. 10, 79–83 (2000)

    Article  CAS  Google Scholar 

  51. D. I. Gittins, D. Bethell, D. J. Schiffrin, R. J. Nichols: A nanometer-scale electronic switch consisting of a metal cluster and redox-addressable groups, Nature 408, 67–69 (2000)

    Article  CAS  Google Scholar 

  52. A. N. Shipway, M. Lahav, I. Willner: Nanostructured gold colloid electrodes, Adv. Mater. 12, 993–998 (2000)

    Article  CAS  Google Scholar 

  53. A. N. Shipway, M. Lahav, R. Blonder, I. Willner: Bis-bipyridinium cyclophane receptor–Au nanoparticle superstructure for electrochemical sensing applications, Chem. Mater. 11, 13–15 (1999)

    Article  CAS  Google Scholar 

  54. M. Lahav, A. N. Shipway, I. Willner, M. B. Nielsen, J. F. Stoddart: An enlarged bis-bipyridinum cyclophane–Au nanoparticle superstructure for selective electrochemical sensing applications, J. Electroanal. Chem. 482, 217–221 (2000)

    Article  CAS  Google Scholar 

  55. R. E. Gillard, F. M. Raymo, J. F. Stoddart: Controlling self-assembly, Chem. Eur. J. 3, 1933–1940 (1997)

    Article  CAS  Google Scholar 

  56. F. M. Raymo, J. F. Stoddart: From supramolecular complexes to interlocked molecular compounds, Chemtracts – Organic Chemistry 11, 491–511 (1998)

    CAS  Google Scholar 

  57. M. Lahav, T. Gabriel, A. N. Shipway, I. Willner: Assembly of a Zn(II)-porphyrin-bipyridinium dyad and Au-nanoparticle superstructures on conductive surfaces, J. Am. Chem. Soc. 121, 258–259 (1999)

    Article  CAS  Google Scholar 

  58. M. Lahav, V. Heleg-Shabtai, J. Wasserman, E. Katz, I. Willner, H. Durr, Y. Hu, S. H. Bossmann: Photoelectrochemistry with integrated photosensitizer-electron acceptor Au-nanoparticle arrays, J. Am. Chem. Soc. 122, 11480–11487 (2000)

    Article  CAS  Google Scholar 

  59. G. Will, S. N. Rao, D. Fitzmaurice: Heterosupramolecular optical write-read-erase device, J. Mater. Chem. 9, 2297–2299 (1999)

    Article  CAS  Google Scholar 

  60. A. Merrins, C. Kleverlann, G. Will, S. N. Rao, F. Scandola, D. Fitzmaurice: Time-resolved optical spectroscopy of heterosupramolecular assemblies based on nanostructured TiO2 films modified by chemisorption of covalently linked ruthenium and viologen complex components, J. Phys. Chem. B 105, 2998–3004 (2001)

    Article  CAS  Google Scholar 

  61. H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, P. L. McEuen: Nanomechanical oscillations in a single C60 transistor, Nature 407, 57–60 (2000)

    Article  Google Scholar 

  62. W. Liang, M. P. Shores, M. Bockrath, J. R. Long, H. Park: Kondo resonance in a single-molecule transistor, Nature 417, 725–729 (2002)

    Article  CAS  Google Scholar 

  63. J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, D. C. Ralph: Coulomb blockade and the Kondo effect in single-atom transistors, Nature 417, 722–725 (2002)

    Article  CAS  Google Scholar 

  64. C. Z. Li, H. X. He, N. J. Tao: Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching, Appl. Phys. Lett. 77, 3995–3997 (2000)

    Article  CAS  Google Scholar 

  65. H. He, J. Zhu, N. J. Tao, L. A. Nagahara, I. Amlani, R. Tsui: A conducting polymer nanojunction switch, J. Am. Chem. Soc. 123, 7730–7731 (2001)

    Article  CAS  Google Scholar 

  66. A. Bogozi, O. Lam, H. He, C. Li, N. J. Tao, L. A. Nagahara, I. Amlani, R. Tsui: Molecular adsorption onto metallic quantum wires, J. Am. Chem. Soc. 123, 4585–4590 (2001)

    Article  CAS  Google Scholar 

  67. A. Bezryadin, C. N. Lau, M. Tinkham: Quantum suppression of superconductivity in ultrathin nanowires, Nature 404, 971–974 (2000)

    Article  CAS  Google Scholar 

  68. D. Porath, A. Bezryadin, S. de Vries, C. Dekker: Direct measurement of electrical transport through DNA molecules, Nature 403, 635–638 (2000)

    Article  CAS  Google Scholar 

  69. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, E. E. Smalley, L. J. Geerligs, C. Dekker: Individual single-wall carbon nanotubes as quantum wires, Nature 386, 474–477 (1997)

    Article  CAS  Google Scholar 

  70. A. F. Morpurgo, J. Kong, C. M. Marcus, H. Dai: Gate-controlled superconducting proximity effect in carbon nanotubes, Nature 286, 263–265 (1999)

    CAS  Google Scholar 

  71. J. Nygård, D. H. Cobden, P. E. Lindelof: Kondo physics in carbon nanotubes, Nature 408, 342–346 (2000)

    Article  Google Scholar 

  72. W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, H. Park: Fabry–Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)

    Article  CAS  Google Scholar 

  73. M. S. Fuhrer, J. Nygård, L. Shih, M. Forero, Y.-G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, P. L. McEuen: Crossed nanotube junctions, Science 288, 494–497 (2000)

    Article  CAS  Google Scholar 

  74. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, C. M. Lieber: Carbon nanotube-based nonvolatile random access memory for molecular computing, Science 289, 94–97 (2000)

    Article  CAS  Google Scholar 

  75. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker: Logic circuits with carbon nanotube transistors, Science 294, 1317–1320 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françisco Raymo Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Raymo, F. (2007). Nanomaterials Synthesis and Applications: Molecule-Based Devices. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29857-1_2

Download citation

Publish with us

Policies and ethics