Skip to main content

Peat

  • Living reference work entry
  • First Online:

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Peat is an organic soil composed of partially decomposed plant and, to a lesser extent, animal remains. Precise definitions of “peat” vary but are mostly based on a combination of thickness (typically >30 cm) and organic matter content (typically >50–65%; e.g., Wüst et al. 2003; Page et al. 2011; Dargie et al. 2017). Their high organic matter content means that peats have a high carbon concentration, up to 48–60 wt% in very pure peats (Shimada et al. 2001; Loisel et al. 2014; Lawson et al. 2015). The term “histosol ,” used in the FAO and USDA soil taxonomies, includes peats.

Peat Formation, Peatlands, and Peatland Classification

Peat has a long geological history dating back to the Late Devonian (Greb et al. 2006). Burial and heating slowly transform ancient peat deposits into extensive coal and lignite deposits, which are economically important; some modern peat accumulating environments can therefore be used as analogues to understand coal formation (Phillips and Bustin 1998...

This is a preview of subscription content, log in via an institution.

References

  • Arlen-Pouliot Y, Bhiry N (2005) Palaeoecology of a palsa and a filled thermokarst pond in a permafrost peatland, subarctic Quebec, Canada. The Holocene 15:408–419

    Article  Google Scholar 

  • Barber KE, Chambers FM, Maddy D, Stoneman R, Brew JS (1994) A sensitive high-resolution record of late Holocene climatic change from a raised bog in northern England. The Holocene 4:198–205

    Article  Google Scholar 

  • Bridgham SD, Richardson CJW (1993) Hydrology and nutrient gradients in North Carolina peatlands. Wetlands 13:207–218

    Article  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19:1325–1346

    Article  Google Scholar 

  • Chambers FM, Charman DJ (2004) Holocene environmental change: contributions from the peatland archive. The Holocene 14:1–6

    Article  Google Scholar 

  • Chimner RA, Lemly JM, Cooper DJ (2010) Mountain fen distribution, types and restoration priorities, San Juan Mountains, Colorado, USA. Wetlands 30:763

    Article  Google Scholar 

  • Chimner RA, Cooper DJ, Wurster FC, Rochefort L (2017) An overview of peatland restoration in North America: where are we after 25 years? Restor Ecol 25:283–292

    Article  Google Scholar 

  • Christensen TR, Jackowicz-Korczyǹski M, Aurela M, Crill P, Heliasz M, Mastepanov M, Friborg T (2012) Monitoring the multi-year carbon balance of a Subarctic Palsa Mire with Micrometeorological Techniques. Ambio 41(Supplement 3):207–217

    Article  Google Scholar 

  • Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc Lond B 303:605–654

    Article  Google Scholar 

  • Cooper DJ, Andrus RA, Arp CD (2002) Sphagnum balticum in a Southern Rocky Mountains iron fen. Madrono 49:186–188

    Google Scholar 

  • Dargie GC, Lewis SL, Lawson IT, Mitchard ETA, Page SE, Bocko YE, Ifo SA (2017) Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542:86–90

    Article  Google Scholar 

  • Ezcurra P, Ezcurra E, Garcillán PP, Costa MT, Aburto-Oropeza O (2016) Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage. PNAS 19:4404–4409

    Article  Google Scholar 

  • Fenton JHC (1980) The rate of peat accumulation in Antarctic Moss Banks. J Ecol 68:211–228

    Article  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Greb SF, DiMichele WA, Gastaldo RA (2006) Evolution and importance of wetlands in earth history. Geol Soc Am Spec Pap 399:1–40

    Google Scholar 

  • Hájek M, Horsák M, Hájková P, Dítě D (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect Plant Ecol Evol Syst 8:97–114

    Article  Google Scholar 

  • Holden J (2005) Peatland hydrology and carbon release: why small-scale process matters. Phil Trans R Soc A 363:2891–2913

    Article  Google Scholar 

  • Huijnen V, Wooster MJ, Kaiser JW, Gaveau DLA, Flemming J, Parrington M, Inness A, Murdiyarso D, Main B, van Weele M (2016) Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci Rep 6:26886

    Article  Google Scholar 

  • IPCC (2013) In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Ireland AW, Booth RK (2011) Hydroclimatic variability drives episodic expansion of a floating peat mat in a North American kettlehole basin. Ecology 92:11–18

    Article  Google Scholar 

  • Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009) Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79:140–145

    Article  Google Scholar 

  • Lähteenoja O, Reátegui YR, Räsänen M, Torres DD, Oinonen M, Page S (2012) The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru. Glob Chang Biol 18:164–178

    Article  Google Scholar 

  • Lawson IT, Kelly TJ, Aplin P, Boom A, Dargie G, Draper FCH, Hassan PNZBP, Hoyos-Santillan J, Kaduk J, Large D, Murphy W, Page SE, Roucoux KH, Sjögersten S, Tansey K, Waldram M, Wedeux BMM, Wheeler J (2015) Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetl Ecol Manag 23:327–346

    Article  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosci Discuss 5:1379–1419

    Article  Google Scholar 

  • Loisel J, Yu Z, Beilman DW, Camill P, Alm J, Amesbury MJ, Anderson D, Andersson S, Bochicchio C, Barber KE, Belyea LR, Bunbury J, Chambers FM, Charman DJ, De Vleeschouwer F, Fiałkiewicz-Kozieł B, Finkelstein SA, Gałka M, Garneau M, Hammarlund D, Hinchcliffe W, Holmquist J, Hughes PDM, Jones MC, Klein ES, Kokfelt U, Korhola A, Kuhry P, Lamarre A, Lamentowicz M, Large D, Lavoie M, MacDonald G, Magnan G, Makila M, Mallon G, Mathijssen P, Mauquoy D, McCarroll J, Moore TR, Nichols J, O'Reilly B, Oksanen P, Packalen M, Peteet D, Richard PJH, Robinson S, Ronkainen T, Rundgren M, Sannel ABK, Tarnocai C, Thom T, Tuittila ES, Turetsky M, Valiranta M, van der Linden M, van Geel B, van Bellen S, Vitt D, Zhao Y, Zhou W (2014) A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene 24:1028–1042

    Article  Google Scholar 

  • Moore R, Evans CD, Page SE, Garnett MH, Jones TG, Freeman C, Hooijer A, Wiltshire AJ, Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660–663

    Article  Google Scholar 

  • Orson RA, Warren RS, Niering WA (1987) Development of a tidal marsh in a New England river valley. Estuaries 10:20–27

    Article  Google Scholar 

  • Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65

    Article  Google Scholar 

  • Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818

    Article  Google Scholar 

  • Phillips, S., and Bustin, R.M. (1998) Accumulation of organic rich sediments in a dendritic fluvial/lacustrine mire system at Tasik Bera, Malaysia: implications for coal formation. International Journal of Coal Geology, 36: 31–61

    Google Scholar 

  • Rydin H, Jeglum J (2006) The biology of Peatlands. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schilstra, A.J. (2001) How sustainable is the use of peat for commercial energy production? Ecological Economics, 39: 285–293

    Google Scholar 

  • Shimada S, Takahashi H, Haraguchi A, Kaneko M (2001) The carbon content characteristics of tropical peats in Central Kalimantan, Indonesia: estimating their spatial variability in density. Biogeochemistry 53:249–267

    Article  Google Scholar 

  • Sjögersten S, Cheesman AW, Lopez O, Turner BL (2011) Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104:147–163

    Article  Google Scholar 

  • Tipping R (2008) Blanket peat in the Scottish Highlands: timing, cause, spread and the myth of environmental determinism. Biodivers Conserv 17:2097–2113

    Article  Google Scholar 

  • Turetsky MR, Benscoter B, Page SE, Rein G, van der Werf GR, Watts A (2014) Global vulnerability of peatlands to fire and carbon loss. Nat Geosci 8:11–14

    Article  Google Scholar 

  • Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland – application to boreal and subarctic regions. The Holocene 12:69–80

    Article  Google Scholar 

  • Tzedakis PC, Hooghiemstra H, Pälike H (2006) The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quat Sci Rev 25:3416–3430

    Article  Google Scholar 

  • Wells ED (1996) Classification of peatland vegetation in Atlantic Canada. J Veg Sci 7:847–878

    Article  Google Scholar 

  • Wheeler BD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203

    Article  Google Scholar 

  • Wüst RA, Bustin RM, Lavkulich LM (2003) New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia. Catena 53:133–163

    Article  Google Scholar 

  • Yu ZC (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085

    Article  Google Scholar 

  • Zaccone C, Lobianco D, Shotyk W, Ciavatta C, Appleby PG, Brugiapaglia E, Casella L, Miano TM, D’Orazio V (2017) Highly anomalous accumulation rates of C and N recorded by a relic, free-floating peatland in Central Italy. Sci Rep 7:43040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kelly, T.J., Lawson, I.T., Cole, L.E.S. (2017). Peat. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_187-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_187-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics