Skip to main content

Detecting and Measuring Ataxia in Gait

  • Living reference work entry
  • First Online:
Handbook of Human Motion

Abstract

Gait ataxia is traditionally described as clumsy, staggering movements with a wide-based gait which resembles the gait of drunken people. Recent modern motion analysis systems have been used to quantitatively characterize the nature and degree of walking dysfunction. These findings have revealed that the whole range of locomotor activities is impaired, including linear steady-state gait, turning, gait initiation, and gait termination. All these locomotor abnormalities reflect poor limb coordination and impaired balance, which greatly restrict patients in their daily life activities and predispose them to falls (van de Warrenburg et al. 2005).

Detecting and measuring gait in patients with ataxia gives further insights on the motor deficit and may allow to discern the complex relationship between the primary deficits and the compensatory mechanisms, to recognize specific abnormalities and their impact on clinical decision-making, and to individualize rehabilitative treatment and better evaluating its effects over the time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bastian AJ (2011) Moving, sensing and learning with cerebellar damage. Curr Opin Neurobiol 21:596–601

    Article  Google Scholar 

  • Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, Mariën P, Nowak DA, Schmahmann JD, Serrao M, Steiner KM, Strupp M, Tilikete C, Timmann D, van Dun K (2016) Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 15:369–391

    Article  Google Scholar 

  • Brenière Y, Do MC (1986) When and how does steady state gait movement induced from upright posture begin? J Biomech 19:1035–1040

    Article  Google Scholar 

  • Breniere Y, Do MC, Sanchez J (1981) A biomechanical study of gait initiation process. J Biophys Nucl Med 5:197–205

    Google Scholar 

  • Brenière Y, Cuong Do M, Bouisset S (1987) Are dynamic phenomena prior to stepping essential to walking? J Mot Behav 19:62–76. doi:10.1080/00222895.1987.10735400

    Article  Google Scholar 

  • Chini G, Ranavolo A, Draicchio F, Casali C, Conte C, Martino G, Leonardi L, Padua L, Coppola C, Pierelli F, Serrao M (2016) Local stability of the trunk in patients with degenerative cerebellar ataxia during walking. Cerebellum. doi:10.1007/s12311-016-0760-6

    Google Scholar 

  • Conte C, Serrao M, Casali C, Ranavolo A, Mari S, Draicchio F, Di Fabio R, Monami S, Padua L, Iavicoli S, Sandrini G, Pierelli F (2012) Planned gait termination in cerebellar ataxias. Cerebellum 11:896–904

    Article  Google Scholar 

  • Conte C, Pierelli F, Casali C, Ranavolo A, Draicchio F, Martino G, Harfoush M, Padua L, Coppola G, Sandrini G, Serrao M (2014) Upper body kinematics in patients with cerebellar ataxia. Cerebellum 13:689–697. doi:10.1007/s12311-014-0586-z

    Article  Google Scholar 

  • Crenna P, Frigo C (1991) A motor programme for the initiation of forward-oriented movements in humans. J Physiol 437:635–653

    Article  Google Scholar 

  • Cuesta-Vargas AI, Galán-Mercant A, Williams JM (2010) The use of inertial sensors system for human motion analysis. Phys Ther Rev 15:462–473

    Article  Google Scholar 

  • Dietrich G, Brenière Y, Do MC (1994) Organization of local anticipatory movements in single step initiation. Hum Mov Sci 13:195–210

    Article  Google Scholar 

  • Dominici N, Ivanenko YP, Cappellini G, d’Avella A, Mondì V, Cicchese M, Fabiano A, Silei T, Di Paolo A, Giannini C, Poppele RE, Lacquaniti F (2011) Locomotor primitives in newborn babies and their development. Science 334:997–999

    Article  Google Scholar 

  • Earhart GM, Bastian AJ (2000) Form switching during human locomotion: traversing wedges in a single step. J Neurophysiol 84:605–615

    Google Scholar 

  • Earhart GM, Bastian AJ (2001) Selection and coordination of human locomotor forms following cerebellar damage. J Neurophysiol 85:759–769

    Google Scholar 

  • Ebersbach G, Sojer M, Valldeoriola F, Wissel J, Müller J, Tolosa E, Poewe W (1999) Comparative analysis of gait in Parkinson’s disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy. Brain 122:1349–1355

    Article  Google Scholar 

  • Fonteyn EM, Schmitz-Hubsch T, Verstappen CC, Baliko L, Bloem BR, Boesch S et al (2010) Falls in spinocerebellar ataxias: results of the EuroSCA Fall Study. Cerebellum 9(2):232

    Article  Google Scholar 

  • Glaister BC, Bernatz GC, Klute GK, Orendurff MS (2007) Video task analysis of turning during activities of daily living. Gait Posture 25:289–294

    Article  Google Scholar 

  • Grimaldi G, Manto M (2012) Topography of cerebellar deficits in humans. Cerebellum 11:336–351

    Article  Google Scholar 

  • Gryfe CI, Amies A, Ashley MJ (1977) A longitudinal study of falls in an elderly population: I. Incidence and comorbidity. Age Ageing 6:201–210

    Article  Google Scholar 

  • Hase K, Stein RB (1998) Analysis of rapid stopping during human walking. J Neurophysiol 80:255–261

    Google Scholar 

  • Herculano-Houzel S (2010) Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat 4:12. doi:10.3389/fnana.2010.00012

    Google Scholar 

  • Ilg W, Golla H, Thier P, Giese MA (2007) Specific influences of cerebellar dysfunctions on gait. Brain 130:786–788

    Article  Google Scholar 

  • Ilg W, Giese MA, Gizewski ER, Schoch B, Timmann D (2008) The influence of focal cerebellar lesions on the control and adaptation of gait. Brain 131:2913–2927

    Article  Google Scholar 

  • Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F (2005) Coordination of locomotion with voluntary movements in humans. J Neurosci 25:7238–7253

    Article  Google Scholar 

  • Ivanenko YP, Dominici N, Cappellini G, Paolo AD, Giannini C, Poppele RE, Lacquaniti F (2013) Changes in the spinal segmental motor output for stepping during development from infant to adult. J Neurosci 33:3025–3036

    Article  Google Scholar 

  • Jian Y, Winter DA, Ishac MG, Glichrist L (1993) Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture 1:9–22

    Article  Google Scholar 

  • Kozio LF, Budding D, Andreasen N et al (2014) Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13:151–177. doi:10.1007/s12311-013-0511-xo

    Article  Google Scholar 

  • Mari S, Serrao M, Casali C, Conte C, Ranavolo A, Padua L, Draicchio F, Iavicoli S, Monamì S, Sandrini G, Pierelli F (2012) Turning strategies in patients with cerebellar ataxia. Exp Brain Res 222:65–75. doi:10.1007/s00221-012-3197-2

    Article  Google Scholar 

  • Mari S, Serrao M, Casali C, Conte C, Martino G, Ranavolo A, Coppola G, Draicchio F, Padua L, Sandrini G, Pierelli F (2014) Lower limb antagonist muscle co-activation and its relationship with gait parameters in cerebellar ataxia. Cerebellum 13:226–236. doi:10.1007/s12311-013-0533-4

    Article  Google Scholar 

  • Martino G, Ivanenko YP, Serrao M, Ranavolo A, d’Avella A, Draicchio F, Conte C, Casali C, Lacquaniti F (2014) Locomotor patterns in cerebellar ataxia. J Neurophysiol 112:2810–2821

    Article  Google Scholar 

  • Martino G, Ivanenko YP, d’Avella A, Serrao M, Ranavolo A, Draicchio F, Cappellini G, Casali C, Lacquaniti F (2015) Neuromuscular adjustments of gait associated with unstable conditions. J Neurophysiol 114:2867–2882. doi:10.1152/jn.00029.2015

    Google Scholar 

  • Masud T, Morris RO (2001) Epidemiology of falls. Age Ageing 30:3–7

    Article  Google Scholar 

  • McAndrew Young PM, Dingwell JB (2012) Voluntary changes in step width and step length during human walking affect dynamic margins of stability. Gait Posture 36:219–224. doi:10.1016/j.gaitpost.2012.02.020

    Article  Google Scholar 

  • Michel V, Do MC (2002) Are stance ankle plantar flexor muscles necessary to generate propulsive force during human gait initiation? Neurosci Lett 325:139–143

    Article  Google Scholar 

  • Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H (2000) Characteristics of parkinsonian and ataxic gaits: a study using surface electromyograms, angular displacements and floor reaction forces. J Neurol Sci 174:22–39

    Article  Google Scholar 

  • Morton SM, Bastian AJ (2003) Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. J Neurophysiol 89:1844–1856

    Article  Google Scholar 

  • Nowak DA, Timmann D, Hermsdörfer J (2007) Dexterity in cerebellar agenesis. Neuropsychologia 45:696–703

    Article  Google Scholar 

  • Palliyath S, Hallett M, Thomas SL, Lebiedowska MK (1998) Gait in patients with cerebellar ataxia. Mov Disord 13:958–964

    Article  Google Scholar 

  • Patla AE, Adkin A, Ballard T (1999) Online steering: coordination and control of body center of mass, head and body reorientation. Exp Brain Res 129:629–634

    Article  Google Scholar 

  • Perry J, Burnfield JM (1992) Gait analysis: normal and pathological function. SLACK Incorporated, Thorofare

    Google Scholar 

  • Salman ME (2002) The cerebellum: it’s about time! But timing is not everything – new insights into the role of the cerebellum in timing motor and cognitive tasks. J Child Neurol 17:1–9

    Article  Google Scholar 

  • Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M, Brandt T, Jahn K (2014) Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol 261:213–223

    Article  Google Scholar 

  • Schniepp R, Schlick C, Pradhan C, Dieterich M, Brandt T, Jahn K, Wuehr M (2016) The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia. J Neurol 263:1409–1417. doi:10.1007/s00415-016-8142-z

    Article  Google Scholar 

  • Serrao M, Bartolo M, Ranavolo A, Pierelli F (2012a) Analisi quantitativa del cammino e nuove tecnologie in riabilitazione neurologica. In: Sandrini G, Dattola R (eds) compendio neuroriabilitazione. Verduci Editore, Rome, Italy

    Google Scholar 

  • Serrao M, Pierelli F, Ranavolo A, Draicchio F, Conte C, Don R, Di Fabio R, LeRose M, Padua L, Sandrini G, Casali C (2012b) Gait pattern in inherited cerebellar ataxias. Cerebellum 11:194–211

    Google Scholar 

  • Serrao M, Conte C, Casali C, Ranavolo A, Mari S, Di Fabio R, Perrotta A, Coppola G, Padua L, Monamì S, Sandrini G, Pierelli F (2013a) Sudden stopping in patients with cerebellar ataxia. Cerebellum 12:607–616

    Article  Google Scholar 

  • Serrao M, Mari S, Conte C, Ranavolo A, Casali C, Draicchio F, Di Fabio R, Bartolo M, Monamì S, Padua L, Pierelli F (2013b) Strategies adopted by cerebellar ataxia patients to perform U-turns. Cerebellum 12:460–468

    Article  Google Scholar 

  • Stack EL, Ashburn AM, Jupp KE (2006) Strategies used by people with Parkinson’s disease who report difficulty turning. Parkinsonism Relat Disord 12:87–92

    Article  Google Scholar 

  • Stolze H, Klebe S, Petersen G, Raethjen J, Wenzelburger R, Witt K, Deuschl G (2002) Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry 73:310–312

    Article  Google Scholar 

  • Stolze H, Klebe S, Zechlin C, Baecker C, Friege L, Deuschl G (2004) Falls in frequent neurological diseases – prevalence, risk factors and aetiology. J Neurol 251:79–84

    Article  Google Scholar 

  • Timmann D, Horak FB (2001) Perturbed step initiation in cerebellar subjects: 2. Modification of anticipatory postural adjustments. Exp Brain Res 141:110–120

    Article  Google Scholar 

  • Tirosh O, Sparrow WA (2003) Gait termination in young and older adults: effects of stopping stimulus probability and stimulus delay. Gait Posture 19:243–251

    Article  Google Scholar 

  • Tong K, Granat MH (1999) A practical gait analysis system using gyroscopes. Med Eng Phys 21:87–94

    Article  Google Scholar 

  • Topka H, Konczak J, Schneider K, Boose A, Dichgans J (1998) Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp Brain Res 119:493–503

    Article  Google Scholar 

  • van de Warrenburg BP, Steijns JA, Munneke M, Kremer BP, Bloem BR (2005) Falls in degenerative cerebellar ataxias. Mov Disord 20:497–500

    Article  Google Scholar 

  • Xu D, Carlton LG, Rosengren KS (2004) Anticipatory postural adjustments for altering direction during walking. J Mot Behav 36:316–326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Serrao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Serrao, M., Conte, C. (2016). Detecting and Measuring Ataxia in Gait. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics