Skip to main content

EMG Activity in Gait: The Influence of Motor Disorders

  • Living reference work entry
  • First Online:
Book cover Handbook of Human Motion
  • 644 Accesses

Abstract

EMG techniques have been widely used in research and clinical settings, revealing underlying mechanisms that are involved in pathology and assisting clinicians to decision-making. Current findings based on EMG, combined with kinematic and kinetic data during gait, describe very specific activation patterns and muscle synergies in people with and without motor disorders, which contribute to the understanding of the disease’s causes and to build more accurate and detailed simulation models. Furthermore, the EMG findings during stance and swing phase are discussed and more particularly the co-activation of the agonist and antagonist muscles. This helps to comprehend the contribution of certain muscles/muscle groups when power generation or stability is required and the effect of spasticity and stretch reflex on the movement quality. This chapter also supplies the reader with several examples that reveal, by means of EMG assessments, mechanisms of the neuromuscular system to compensate primary or secondary causes of movement disorders. Finally, the limitations and difficulties in EMG interpretation in pathological cases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CP:

Cerebral palsy

PD:

Parkinson’s disease

TD:

Typically developed

References

  • Ada L, Vattanasilp W, O’Dwyer NJ, Crosbie J (1998) Does spasticity contribute to walking dysfunction after stroke? J Neurol Neurosurg Psychiatry 64:628–635

    Article  Google Scholar 

  • Adams RW, Gandevia SC, Skuse NF (1990) The distribution of muscle weakness in upper motoneuron lesions affecting the lower limb. Brain 113:1459–1476

    Article  Google Scholar 

  • Aiona MD, Sussman MD (2004) Treatment of spastic diplegia in patients with cerebral palsy: part II. J Pediatr Orthop B 13:S13–S38

    Google Scholar 

  • Arias P, Espinosa N, Robles-García V, Cao R, Cudeiro J (2012) Antagonist muscle co-activation during straight walking and its relation to kinematics: insight from young, elderly and Parkinson’s disease. Brain Res 1455:124–131. doi:10.1016/j.brainres.2012.03.033

    Article  Google Scholar 

  • Arnold AS, Anderson FC, Pandy MG, Delp SL (2005) Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait. J Biomech 38:2181–2189

    Article  Google Scholar 

  • Baratta RV, Solomonow MR, Zhou BH, Letson D, Chuinard R, D’Ambrosia RD (1988) The role of antagonistic musculature in maintaining knee stability. Am J Sports Med 16:113–122

    Article  Google Scholar 

  • Bar-On L, Molenaers G, Aertbelien E, Monari D, Feys H, Desloovere K (2014) The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy. Gait Posture 35:3354–3364

    Google Scholar 

  • Beals RK (2001) Treatment of knee contracture in cerebral palsy by hamstring lengthening, posterior capsulotomy, and quadriceps mechanism shortening. Dev Med Child Neurol 43:802–805

    Article  Google Scholar 

  • Beres-Jones JA, Harkema SJ (2004) The human spinal cord interprets velocity-dependent afferent input during stepping. Brain 127:2232–2246. doi:10.1093/brain/awh252

    Article  Google Scholar 

  • Berger W, Quintern J, Dietz V (1982) Pathophysiology of gait in children with cerebral palsy. Electroencephalogr Clin Neurophysiol 53:538–548

    Article  Google Scholar 

  • Blanchette AK, Noël M, Richards CL, Nadeau S, Bouyer LJ (2014) Modifications in ankle dorsiflexor activation by applying a torque perturbation during walking in persons post-stroke: a case series. J Neuroeng Rehabil 11:98

    Article  Google Scholar 

  • Bohannon RW, Andrews AW (1995) Relationship between impairments and gait performance after stroke. A summary of relevant research. Gait Posture 3:236–240

    Article  Google Scholar 

  • Brunner R, Romkes J (2008) Abnormal EMG muscle activity during gait in patients without neurological disorders. Gait Posture 27(3):399–407

    Article  Google Scholar 

  • Brunt D, Scarborough N (1988) Ankle muscle activity during gait in children with cerebral palsy and equinovarus deformity. Arch Phys Med Rehabil 69:115–117

    Google Scholar 

  • Burden AM, Trew M, Baltzopoulos V (2003) Normalisation of gait EMGs: a re-examination. J Electromyogr Kinesiol 13:519–532

    Article  Google Scholar 

  • Busse ME, Wiles CM, van Deursen WM (2005) Muscle co-activation in neurological conditions. Phys Ther Rev 7(4):247–253

    Article  Google Scholar 

  • Cai LL, Courtine G, Fong AJ, Burdick JW, Roy RR, Edgerton VR (2006) Plasticity of functional connectivity in the adult spinal cord. Philos Trans R Soc Lond B 361:1635–1646

    Article  Google Scholar 

  • Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F (2006) Motor patterns in human walking and running. J Neurophysiol 95:3426–3437. doi:10.1152/jn.00081.2006

    Article  Google Scholar 

  • Chambers H, Lauer A, Kaufman K, Cardelia JM, Sutherland D (1998) Prediction of outcome after rectus femoris surgery in cerebral palsy: the role of cocontraction of the rectus femoris and vastus lateralis. J Pediatr Orthop 18:703–711

    Google Scholar 

  • Cheron G, Cebolla AM, Bengoetxea A, Leurs F, Dan B (2007) Recognition of the physiological actions of the triphasic EMG pattern by a dynamic recurrent neural network. Neurosci Lett 414(2):192–196

    Article  Google Scholar 

  • Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA (2010) Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol 103:844–857

    Article  Google Scholar 

  • Corcoran PJ, Jebsen RH, Brengelmann GL, Simons BC (1970) Effects of plastic and metal leg braces on speed and energy cost of hemiparetic ambulation. Arch Phys Med Rehabil 51:69–77

    Google Scholar 

  • Corry I, Cosgrove A, Duffy C, Taylor T, Graham H (1999) Botulinum toxin A in hamstring spasticity. Gait Posture 10(3):206–210

    Article  Google Scholar 

  • Crenna P (1998) Spasticity and ‘Spastic’ gait in children with cerebral palsy. Neurosci Biobehav Rev 22:571–578

    Article  Google Scholar 

  • Damiano DL (1993) Reviewing muscle cocontraction: is it a developmental, pathological, or motor control issue. Phys Occup Ther Pediatr 12:3–20

    Google Scholar 

  • Damiano DL, Abel MF (1998) Functional outcomes of strength training in spastic cerebral palsy. Arch Phys Med Rehabil 79:119–125

    Article  Google Scholar 

  • Damiano DL, Vaughan CL, Abel MF (1995) Muscle response to heavy resistance exercise in children with spastic cerebral palsy. Dev Med Child Neurol 37:731–739

    Article  Google Scholar 

  • Damiano DL, Martellotta TL, Sullivan DJ, Granata KP, Abel MF (2000) Muscle force production and functional performance in spastic cerebral palsy: relationship of cocontraction. Arch Phys Med Rehabil 81:895–900

    Article  Google Scholar 

  • Damiano DL, Dodd KJ, Taylor NF (2002) Should we be testing and training muscle strength in cerebral palsy? Dev Med Child Neurol 44:68–72

    Article  Google Scholar 

  • Damiano DL, Laws E, Carmines DV, Abel MF (2006) Relationship of spasticity to knee angular velocity and motion during gait in cerebral palsy. Gait Posture 23:1–8

    Article  Google Scholar 

  • Davids J, Foti T, Dabelstein J, Bagley A (1999) Voluntary (normal) versus obligatory (cerebral palsy) toe-walking in children: a kinematic, kinetic, and electromyographic analysis. J Pediatr Orthop 19(4):461–469

    Article  Google Scholar 

  • De Quervain IA, Simon SR, Leurgans S, Pease WS, McAllister D (1996) Gait pattern in the early recovery period after stroke. J Bone Joint Surg Am 78A(10):1506–1514

    Google Scholar 

  • Delp SL, Arnold AS, Speers RA, Moore CA (1996) Hamstrings and psoas lengths during normal and crouch gait: Implications for muscle-tendon surgery. J Orthop Res 14(1):144–151

    Article  Google Scholar 

  • DeLuca PA (1991) The use of gait analysis and dynamic EMG in the assessment of the child with cerebral palsy. Hum Mov Sci 10:543–554

    Article  Google Scholar 

  • Den Otter AR, Geurts ACH, Mulder T, Duysens J (2006) Gait recovery is not associated with changes in the temporal patterning of muscle activity during treadmill walking in patients with post-stroke hemiparesis. Clin Neurophysiol 117:4–15

    Article  Google Scholar 

  • Desrosiers J, Bourbonnais D, Bravo G, Roy PM, Guay M (1996) Performance of the “unaffected” upper extremity of elderly stroke patients. Stroke 27:1564–1570

    Article  Google Scholar 

  • Detrembleur C, Willems P, Plaghki L (1997) Does walking speed influence the time pattern of muscle activation in normal children? Dev Med Child Neurol 39:803–807

    Google Scholar 

  • Dickey JP, Winter DA (1992) Adaptations in gait resulting from unilateral ischaemic block of the leg. Clin Biomech (Bristol, Avon) 7:215–225. doi:10.1016/S0268-0033(92)90004-N

    Article  Google Scholar 

  • Dietz V, Colombo G (1998) Influence of body load on the gait pattern in Parkinson’s disease. Mov Disord 13(2):255–261

    Article  Google Scholar 

  • Dietz V, Quintern J, Berger W (1981) Electrophysiological studies of gait in spasticity and rigidity. Brain 104:431–449

    Article  Google Scholar 

  • Dietz V, Berger W, Horstrnann GA (1988) Posture in Parkinson’s disease: impairment of reflexes and programming. Ann Neurol 1988:660–669

    Article  Google Scholar 

  • Dietz V, Ziiistrab W, Prokopc T, Bergerc W (1995) Leg muscle activation during gait in Parkinson’s disease: adaptation and interlimb coordination. Electroencephalogr Clin Neurophysiol 97(6):408–415

    Article  Google Scholar 

  • Dobson F, Morris ME, Baker RJ, Graham HK (2007) Gait classification in children with cerebral palsy: a systematic review. Gait Posture 25:140–152

    Article  Google Scholar 

  • Dodd KJ, Taylor NF, Damiano DL (2002) A systematic review of the effectiveness of strength-training programs for people with cerebral palsy. Arch Phys Med Rehabil 83:1157–1164

    Article  Google Scholar 

  • Dursun E, Dursun N, Alican D (2004) Effects of biofeedback treatment on gait in children with cerebral palsy. Disabil Rehabil 26(2):116–120

    Article  Google Scholar 

  • Duysens J, De Groote F, Jonkers I (2013) The flexion synergy, mother of all synergies and father of new models of gait. Front Comput Neurosci 7:14. doi:10.3389/fncom.2013.00014

    Article  Google Scholar 

  • Elder GBC (2003) Contributing factors to muscle weakness in children with cerebral palsy. Dev Med Child Neurol 45:542–550

    Article  Google Scholar 

  • Falconer K, Winter DA (1985) Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr Clin Neurophysiol 25:135–149

    Google Scholar 

  • Farina D, Cescon C, Merletti R (2002) Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol Cybern 86:445–456

    Article  MATH  Google Scholar 

  • Flett PJ, Stern LM, Waddy H, Connell TM, Seeger JD, Gibson SK (1999) Botulinum toxin A versus fixed cast stretching for dynamic calf tightness in cerebral palsy. J Paediatr Child Health 35:71–77

    Article  Google Scholar 

  • Fonseca ST, Holt KG, Saltzman E, Fetters L (2001) A dynamical model of locomotion in spastic hemiplegic cerebral palsy: influence of walking speed. Clin Biomech (Bristol, Avon) 16:793–805

    Article  Google Scholar 

  • Frost G, Dowling JJ, Dyson K, Bar-Or O (1997) Cocontraction in three age groups of children during treadmill locomotion. J Electromyogr Kinesiol 7(3):179–186

    Article  Google Scholar 

  • Fung J, Barbeau H (1994) Effects of conditioning cutaneomuscular stimulation on the soleus H-reflex in normal and spastic paretic subjects during walking and standing. J Neurophysiol 72(5):2090–2104

    Google Scholar 

  • Gage JR, Schwartz MH (2009) Consequences of brain injury on musculoskeletal development. The identification and treatment of gait problems in cerebral palsy. Mac Keith Press, London

    Google Scholar 

  • Gersten JW, Orr W (1971) External work of walking in hemiparetic patients. Scand J Rehabil Med 3:85–88

    Google Scholar 

  • Gizzi L, Nielsen JF, Felici F, Ivanenko YP, Farina D (2011) Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J Neurophysiol (Bethesda) 106:202–210

    Article  Google Scholar 

  • Goldberg SR, Anderson FC, Pandy MG, Delp SL (2004) Muscles that influence knee flexion velocity in double support: implications for stiff-knee gait. J Biomech 37:1189–1196

    Article  Google Scholar 

  • Granata KP, Padua DA, Abel MF (2005) Repeatability of surface EMG during gait in children. Gait Posture 22:346–350

    Article  Google Scholar 

  • Griffin PP, Wheelhouse WW, Shiavi R, Bass W (1977) Habitual toe-walkers. J Bone Joint Surg Am 59A:97–101

    Google Scholar 

  • Gross R, Leboeuf F, Hardouin JB, Lempereur M, Perrouin-Verbe B, Remy-Neris O, Brochard S (2013) The influence of gait speed on co-activation in unilateral spastic cerebral palsy children. Clin Biomech (Bristol, Avon) 28(3):312–317. doi:10.1016/j.clinbiomech.2013.01.002

    Article  Google Scholar 

  • Gueth V, Abbink F, Reuken R (1985) Comparison of pre and post-operative electromyographs in children with cerebral palsy. Electromyogr Clin Neurophysiol 25:233–243

    Google Scholar 

  • Hermens HJ, Freriks B, Merletti R, Stegeman DF, Blok JH, Raw G, Disselhorst-Klug C, Hägg GM (1999) European recommendations for surface electromyography. Results of the SENIAM project. Roessingh Research and Development, Enshede

    Google Scholar 

  • Higginson JS, Zajac FE, Neptune RR, Kautz SA, Burgar CG, Delp SL (2006a) Effect of equinus foot placement and intrinsic muscle response on knee extension during stance. Gait Posture 23:32–36

    Article  Google Scholar 

  • Higginson JS, Zajac FE, Neptune RR, Kautz SA, Delp SL (2006b) Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J Biomech 39:1769–1777

    Article  Google Scholar 

  • Hirschberg GG, Nathanson M (1952) Electromyographic recording of muscular activity in normal and spastic gaits. Arch Phys Med Rehabil 33:217–224

    Google Scholar 

  • Hof AL, Geelen BA, Van den Berg J (1983) Calf muscle moment, work and efficiency in level walking; role of series elasticity. J Biomech 16:523–537

    Article  Google Scholar 

  • Hof AL, Elzinga H, Grimmius W, Halbertsma JPK (2002) Speed dependence of averaged EMG profiles in walking. Gait Posture 16:78–86

    Article  Google Scholar 

  • Hortobágyi T, Solnik S, Gruber A, Rider P, Steinweg K, Helseth J, DeVita P (2009) Interaction between age and gait velocity in the amplitude and timing of antagonist muscle coactivation. Gait Posture 29:558–564

    Article  Google Scholar 

  • Houx L, Lempereur M, Rémy-Néris O, Gross R, Brochard S (2014) Changes in muscle activity in typically developing children walking with unilaterally induced equinus. Clin Biomech (Bristol, Avon) 29(10):1116–1124

    Article  Google Scholar 

  • Hullin MG, Robb JE, Loudon IR (1996) Gait patterns in children with hemiplegic spastic cerebral palsy. J Pediatr Orthop 5(B):247–251

    Article  Google Scholar 

  • Ikeda AJ, Abel MF, Granata KP, Damiano DL (1998) Quantification of cocontraction in spastic cerebral palsy. Electromyogr Clin Neurophysiol 38:497–504

    Google Scholar 

  • Ivanenko YP, Cappellini G, Poppele RE, Lacquaniti F (2008) Spatiotemporal organization of a-motoneuron activity in the human spinal cord during different gaits and gait transitions. Eur J Neurol 27:3351–3368. doi:10.1111/j.1460-9568.2008.06289.x

    Google Scholar 

  • Ivanenko YP, Cappellini G, Solopova IA, Grishin AA, MacLellan MJ, Poppele RE, Lacquaniti F (2013) Plasticity and modular control of locomotor patterns in neurological disorders with motor deficits. Front Comput Neurosci 7:123. doi:10.3389/fncom.2013.00123

    Article  Google Scholar 

  • Johansson RS, Westling G (1988) Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res 71:59–71

    Google Scholar 

  • Jones RD, Donaldson IM, Parkin PJ (1989) Impairment and recovery of ipsilateral sensory-motor function following unilateral cerebral infarction. Brain 112:113–132

    Article  Google Scholar 

  • Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS (1995) Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 76(1):27–32

    Article  Google Scholar 

  • Kalen V, Adler N, Bleck EE (1986) Electromyography of idiopathic toe walking. J Pediatr Orthop 6:31–33

    Article  Google Scholar 

  • Kautz SA, Brown DA (1998) Relationships between timing of muscle excitation and impaired motor performance during cyclical lower extremity movement in post-stroke hemiplegia. Brain 121:515–526

    Article  Google Scholar 

  • Kerrigan DC, Gronley J, Perry J (1991) Stiff-legged gait in spastic paresis. A study of quadriceps and hamstrings muscle activity. Am J Phys Med Rehabil 70:294–300

    Article  Google Scholar 

  • Knarr BA, Zeni JA Jr, Higginson JS (2012) Comparison of electromyography and joint moment as indicators of co-contraction. J Electromyogr Kinesiol 22(4):607–611

    Article  Google Scholar 

  • Knutsson E, Richards C (1979) Different types of disturbed motor control in gait of hemiparetic patients. Brain 102:405–430

    Article  Google Scholar 

  • Koller JR, Jacobs DA, Ferris DP, Remy CD (2015) Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. J Neuroeng Rehabil 12:97. doi:10.1186/s12984-015-0086-5

    Article  Google Scholar 

  • Lacquaniti F, Maioli C (1987) Anticipatory and reflex coactivation of antagonist muscles in catching. Brain Res 406:373–378

    Article  Google Scholar 

  • Lacquaniti F, Maioli C (1989) The role of preparation in tuning anticipatory and reflex responses during catching. J Neurosci 9:134–148

    Google Scholar 

  • Lacquaniti F, Ivanenko YP, Zago M (2012) Patterned control of human locomotion. J Physiol 590(10):2189–2199

    Article  Google Scholar 

  • Lamontagne A, Malouin F, Richards CL (2000a) Contribution of passive stiffness to ankle plantarflexor moment during gait after stroke. Arch Phys Med Rehabil 81:351–358

    Article  Google Scholar 

  • Lamontagne A, Richards CL, Malouin F (2000b) Coactivation during gait as an adaptive behavior after stroke. J Electromyogr Kinesiol 10:407–415

    Article  Google Scholar 

  • Lamontagne A, Malouin F, Richards CL (2001) Locomotor-specific measure of spasticity of plantarflexor muscles after stroke. Arch Phys Med Rehabil 82(12):1696–1704

    Article  Google Scholar 

  • Lamontagne A, Malouin F, Richards CL, Dumas F (2002) Mechanisms of disturbed motor control in ankle weakness during gait after stroke. Gait Posture 15:244–255

    Article  Google Scholar 

  • Layne CS, McDonald PV, Bloomberg JJ (1997) Neuromuscular activation patterns during treadmill walking after space flight. Exp Brain Res 113:104–116

    Article  Google Scholar 

  • Lee EH, Goh JCH, Bose K (1992) Value of gait analysis in assessment of surgery in cerebral palsy. Arch Phys Med Rehabil 73:642–646

    Google Scholar 

  • Levin MF, Dimov M (1997) Spatial zones for muscle coactivation and the control of postural stability. Brain Res 757:43–59

    Article  Google Scholar 

  • Lin C-J, Guo L-Y, Su F-C, Chou Y-L, Cherng R-J (2000) Common abnormal kinetic patterns of the knee in gait in spastic diplegia of cerebral palsy. Gait Posture 11:224–232

    Article  Google Scholar 

  • Manganotti P, Zaina F, Falso M, Milanese F, Fiaschi A (2007) Evaluation of botulinum toxin therapy of spastic equinus in paediatric patients with cerebral palsy. J Rehabil Med 39(2):115–120

    Article  Google Scholar 

  • Marks M, Hirschberg GG (1958) Analysis of the hemiplegic gait. Ann N Y Acad Sci 74:59–77

    Article  Google Scholar 

  • Marsden J, Ramdharry G, Stevenson V, Thompson A (2012) Muscle paresis and passive stiffness: key determinants in limiting function in hereditary and sporadic spastic paraparesis. Gait Posture 35:266–271

    Article  Google Scholar 

  • Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38(1):35–56

    Article  Google Scholar 

  • Mazzaro N, Grey MJ, Sinkjaer T, Andersen JB, Pareyson D, Schieppati M (2005) Lack of on-going adaptations in the soleus muscle activity during walking in patients affected by large-fiber neuropathy. J Neurophysiol (Bethesda) 93(6):3075–3085

    Article  Google Scholar 

  • McGowan CP, Neptune RR, Clark DJ, Kautz SA (2010) Modular control of human walking: adaptations to altered mechanical demands. J Biomech 43(3):412–419

    Article  Google Scholar 

  • Merletti R (1999) Standards for reporting EMG data. J Electromyogr Kinesiol 9(1):III–IV

    Google Scholar 

  • Metaxiotis D, Siebel A, Döderlein L (2002) Repeated botulinum toxin A injections in the treatment of spastic equinus foot. Clin Orthop Relat Res 394:177–185

    Article  Google Scholar 

  • Miller F, Cardoso DR, Lipton GE, Albarracin JP, Dabney KW, Castagno P (1997) The effect of rectus EMG patterns on the outcome of rectus femoris transfers. J Pediatr Orthop 17:603–607

    Article  Google Scholar 

  • Mulroy SJ, Gronley JK, Weiss W, Newsam CJ, Perry JP (2003) Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke. Gait Posture 18:114–125

    Article  Google Scholar 

  • Murray MP, Guten GN, Sepic SB, Gardner GM, Baldwin JM (1978) Function of the triceps surae during gait. Compensatory mechanisms for unilateral loss. J Bone Joint Surg Am 60A:354–363

    Google Scholar 

  • Murray M, Hardee A, Goldberg RL, Lewek MD (2014) Loading and knee flexion after stroke: less does not equal more. J Electromyogr Kinesiol 24:172–177

    Article  Google Scholar 

  • Nadeau S, Gravel D, Arsenault AB, Bourbonnais D (1996) A mechanical model to study the relationship between gait speed and muscular strength. IEEE Trans Rehabil Eng 4:386–394

    Article  Google Scholar 

  • Nadeau S, Gravel D, Arsenault AB, Bourdonnais D (1999) Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors. Clin Biomech (Bristol, Avon) 14(2):125–135. doi:10.1016/S0268-0033(98)00062-X

    Article  Google Scholar 

  • Nardone A, Schieppati M (2006) Balance control in peripheral neuropathy: are patients equally unstable under static and dynamic conditions? Gait Posture 23(3):364–373

    Article  Google Scholar 

  • Nathan PW, Smith M, Deacon P (1996) Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119(6):1809–1833

    Article  Google Scholar 

  • Nene AV, Byrne C, Hermens HJ (2004) Is rectus femoris really a part of quadriceps? Assessment of rectus femoris function during gait in able-bodied adults. Gait Posture 20:1–13

    Article  Google Scholar 

  • Neptune RR, McGowan CP, Fiandt JM (2009) The influence of muscle physiology and advanced technology on sports performance. Annu Rev Biomed Eng 11:81–107

    Article  Google Scholar 

  • Nilsson J, Thorstensson A, Halbertsma J (1985) Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans. Acta Physiol Scand 123:457–475. doi:10.1111/j.1748-1716.1985.tb07612.x

    Article  Google Scholar 

  • Novak I, McIntyre S, Morgan C, Campbell L, Dark L, Morton N, Stumbles E, Wilson SA, Goldsmith S (2013) A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol 55(10):885–910

    Article  Google Scholar 

  • Olney SJ, Richards C (1996) Hemiparetic gait following stroke. Part I: characteristics. Gait Posture 4:136–148

    Article  Google Scholar 

  • Olney SJ, MacPhail HEA, Hedden DM, Boyce WF (1990) Work and power in hemiplegic cerebral palsy gait. Phys Ther 70:431–438

    Google Scholar 

  • Olney SJ, Griffin MP, Monga TN, McBride ID (1991) Work and power in gait of stroke patients. Arch Phys Med Rehabil 72:309–314

    Google Scholar 

  • Osternig LR, Caster BL, James CR (1995) Contralateral hamstring (biceps femoris) coactivation patterns and anterior cruciate ligament dysfunction. Med Sci Sports Exerc 27(6):805–808

    Article  Google Scholar 

  • Õunpuu S, Davis RB, DeLuca PA (1996) Joint kinetics: methods, interpretation and treatment decision-making in children with cerebral palsy and myelomeningocele. Gait Posture 4:62–78

    Article  Google Scholar 

  • Papariello S, Skinner S (1985) Dynamic electromyographic analysis of habitual toewalkers. J Pediatr Neurol 5:171–175

    Google Scholar 

  • Parvataneni K, Ploeg L, Olney SJ, Brouwer B (2009) Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults. Clin Biomech (Bristol, Avon) 24(1):95–100

    Article  Google Scholar 

  • Patikas D, Wolf SI, Döderlein L (2005) Electromyographic evaluation of the sound and involved side during gait of spastic hemiplegic children with cerebral palsy. Eur J Neurol 12(9):691–699. doi:10.1111/j.1468-1331.2005.01047.x

    Article  Google Scholar 

  • Patikas D, Wolf SI, Schuster W, Armbrust P, Dreher T, Döderlein L (2007) Electromyographic patterns in children with cerebral palsy: do they change after surgery? Gait Posture 26(3):362–371. doi:10.1016/j.gaitpost.2006.10.012

    Article  Google Scholar 

  • Perry JP (1992) Gait analysis: normal and pathological function. Slack, Thorofare

    Google Scholar 

  • Perry JP, Hoffer MM (1977) Preoperative and postoperative dynamic electromyography as an aid in planning tendon transfers in children with cerebral palsy. J Bone Joint Surg Am 59A:531–537

    Google Scholar 

  • Perry J, Hoffer M, Giovan P, Antonelli D, Greenberg R (1974) Gait analysis of the triceps surae in cerebral palsy. A preoperative and postoperative clinical and electromyographic study. J Bone Joint Surg Am 56A(3):511–520

    Google Scholar 

  • Perry J, Antonelli D, Ford W (1975) Analysis of knee-joint forces during flexed-knee stance. J Bone Joint Surg Am 57A:961–967

    Google Scholar 

  • Perry J, Fontaine JD, Mulroy SJ (1995) Findings in post-poliomyelitis syndrome. Weakness of muscles of the calf as a source of late pain and fatigue of muscles of the thigh after poliomyelitis. J Bone Joint Surg Am 77A:1148–1153

    Google Scholar 

  • Perry J, Burnfield JM, Gronley JK, Mulroy SJ (2003) Toe walking: muscular demands at the ankle and knee. Arch Phys Med Rehabil 84:7–16

    Article  Google Scholar 

  • Peterson DS, Martin PE (2010) Effects of age and walking speed on coactivation and cost of walking in healthy adults. Gait Posture 31:355–359

    Article  Google Scholar 

  • Popovic DB, Sinkaer T, Popovic MB (2009) Electrical stimulation as a means for achieving recovery of function in stroke patients. Neurorehabilitation 25:45–58. doi:10.3233/NRE-2009-0498

    Google Scholar 

  • Prilutsky BI, Gregor RJ (2001) Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions. J Exp Biol 204:2277–2287

    Google Scholar 

  • Reding MJ, Potes E (1988) Rehabilitation outcome following initial unilateral hemispheric stroke. Life table analysis approach. Stroke 19:1354–1358

    Article  Google Scholar 

  • Richards L (1985) EMG activity level comparison in quadriceps and hamstrings in five dynamic activities. In: Winter DA, Norman RW, Wells RP (eds) Biomechanics, vol IX-A. Human Kinetics Publishers, Champaign, pp 313–317

    Google Scholar 

  • Richards CL, Malouin F, Dumas F, Wood-Dauphinee S (1992) The relationship of gait speed to clinical measures of function and muscle activations during recovery post-stroke. In: North American Congress on Biomechanics, pp 299–302

    Google Scholar 

  • Rodda JM, Graham HK (2001) Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis for a management algorithm. Eur J Neurol 8(5):S98–S108

    Article  Google Scholar 

  • Romkes J, Brunner R (2007) An electromyographic analysis of obligatory (hemiplegic cerebral palsy) and voluntary (normal) unilateral toe-walking. Gait Posture 26(4):577–586

    Article  Google Scholar 

  • Romkes J, Hell AK, Brunner R (2006) Changes in muscle activity in children with hemiplegic cerebral palsy while walking with and without ankle-foot orthoses. Gait Posture 24(4):467–474

    Article  Google Scholar 

  • Rosa MC, Marques A, Demain S, Metcalf CD, Rodrigues J (2014) Methodologies to assess muscle co-contraction during gait in people with neurological impairment – a systematic literature review. J Electromyogr Kinesiol 24(2):179–191. doi:10.1016/j.jelekin.2013.11.003

    Article  Google Scholar 

  • Rose J, McGill KC (2005) Neuromuscular activation and motor-unit firing characteristics in cerebral palsy. Dev Med Child Neurol 47(5):329–336

    Article  Google Scholar 

  • Rose J, Martin J, Torburn L, Rinsky LA, Gamble JG (1999) Electromyographic differentiation of diplegic cerebral palsy from idiopathic toe walking: involuntary coactivation of the quadriceps and gastrocnemius. J Pediatr Orthop 19(5):677

    Google Scholar 

  • Rosenthal RK (1984) The use of orthotics in foot and ankle problems in cerebral palsy. Foot Ankle 4:195–200

    Article  Google Scholar 

  • Schmitz A, Silder A, Heiderscheit B, Mahoney J, Thelen DG (2009) Differences in lower-extremity muscular activation during walking between healthy older and young adults. J Electromyogr Kinesiol 19:1085–1091

    Article  Google Scholar 

  • Shiavi R, Bugle HJ, Limbird T (1987a) Electromyographic gait assessment, part 1: adult EMG profiles and walking speed. J Rehabil Res Dev 24(2):13–23

    Google Scholar 

  • Shiavi R, Bugle HJ, Limbird T (1987b) Electromyographic gait assessment, part 2: preliminary assessment of hemiparetic synergy patterns. J Rehabil Res Dev 24:24–30

    Google Scholar 

  • Siegler S, Moskowitz GD, Freedman W (1984) Passive and active components of the internal moment developed about the ankle joint during human ambulation. J Biomech 17:647–652

    Article  Google Scholar 

  • Simonsen EB (2014) Contributions to the understanding of gait control. Danish Med J 61(4):B4823

    Google Scholar 

  • Simonsen EB, Alkjær T (2012) The variability problem of normal human walking. Med Eng Phys 34(2):219–224

    Article  Google Scholar 

  • Solomonow MR, Baratta RV, Zhou B-H, D’Ambrosia RD (1988) Electromyogram coactivation patterns of the elbow antagonist muscles during slow isokinetic movement. Exp Neurol 100:470–477

    Article  Google Scholar 

  • Solopova IA, Tihonova DY, Grishin AA, Ivanenko YP (2011) Assisted leg displacements and progressive loading by a tilt table combined with FES promote gait recovery in acute stroke. Neurorehabilitation 29:67–77

    Google Scholar 

  • Sporns O, Edelman GM (1993) Solving Bernstein’s problem: a proposal for the development of coordinated movement by selection. Child Dev 64(4):960–981

    Article  Google Scholar 

  • Stackhouse SK, Binder-Macleod SA, Lee SCK (2005) Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve 31:594–601

    Article  Google Scholar 

  • Sutherland DH, Cooper L, Daniel D (1980) The role of the ankle plantar flexors in normal walking. J Bone Joint Surg Am 62(3):354–363

    Google Scholar 

  • Sutherland D, Kaufman K, Wyatt M, Chambers H, Mubarak S (1999) Double-blind study of botulinum A toxin injections into the gastrocnemius muscle in patients with cerebral palsy. Gait Posture 10(1):1–9

    Article  Google Scholar 

  • Tardieu C, Lespargot A, Tabary C, Bret MD (1989) Toe-walking in children with cerebral palsy: contributions of contracture and excessive contraction of triceps surae muscle. Phys Ther 69:656–662

    Google Scholar 

  • Teixeira da Fonseca S, Silva PL, Ocarino JM, Guimaràes RB, Oliveira MT, Lage CA (2004) Analyses of dynamic co-contraction level in individuals with anterior cruciate ligament injury. J Electromyogr Kinesiol 14:239–247

    Article  Google Scholar 

  • Tirosh O, Sangeux M, Wong M, Thomason P, Graham HK (2013) Walking speed effects on the lower limb electromyographic variability of healthy children aged 7–16 years. J Electromyogr Kinesiol 23(6):1451–1459

    Article  Google Scholar 

  • Tong RK, Ng MF, Li LS, So EF (2006) Gait training of patients after stroke using an electromechanical gait trainer combined with simultaneous functional electrical stimulation. Phys Ther 86:1282–1294. doi:10.2522/ptj.20050183

    Article  Google Scholar 

  • Tuzson AE, Granata KP, Abel MF (2003) Spastic velocity threshold constrains functional performance in cerebral palsy. Arch Phys Med Rehabil 84:1363–1368

    Article  Google Scholar 

  • Unnithan VB, Dowling JJ, Frost G, Ayub B, Bar-Or O (1996a) Cocontraction and phasic activity during gait in children with cerebral palsy. Electromyogr Clin Neurophysiol 46:487–494

    Google Scholar 

  • Unnithan VB, Dowling JJ, Frost G, Bar-Or O (1996b) Role of cocontraction in the O2 cost of walking in children with cerebral palsy. Med Sci Sports Exerc 28:1498–1504

    Article  Google Scholar 

  • Valero-Cuevas FJ (2005) An integrative approach to the biomechanical function and neuromuscular control of the fingers. J Biomech 38:673–684

    Article  Google Scholar 

  • Whittle MW (1996) Clinical gait analysis: a review. Hum Mov Sci 15:369–387

    Article  Google Scholar 

  • Wiley ME, Damiano DL (1998) Lower-extremity strength profiles in spastic cerebral palsy. Dev Med Child Neurol 40:100–107

    Article  Google Scholar 

  • Willerslev-Olsen M, Andersen JB, Sinkjaer T, Nielsen JB (2014) Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy. J Neurophysiol 111:746–754

    Article  Google Scholar 

  • Winter DA (1989) Biomechanics of normal and pathological gait: implications for understanding human locomotor control. J Mot Behav 21:337–355. doi:10.1080/00222895.1989.10735488

    Article  Google Scholar 

  • Winter DA, Sienko SE (1988) Biomechanics of below-knee amputee gait. J Biomech 21(5):361–367

    Article  Google Scholar 

  • Winter DA, Yack HJ (1987) EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol 67(5):402–411

    Article  Google Scholar 

  • Winters TF, Gage JR, Hicks RR (1987) Gait patterns in spastic hemiplegia in children and young adults. J Bone Joint Surg Am 69(3):437–441

    Google Scholar 

  • Wootten ME, Kadaba MP, Cochran GVB (1990) Dynamic electromyography. II. Normal patterns during gait. J Orthop Res 8:259–265

    Article  Google Scholar 

  • Wortis SB, Marks M, Hirschberg GG, Nathanson M (1951) Gait analysis in hemiplegia. Trans Am Neurol Assoc 76:181–183

    Google Scholar 

  • Yan T, Hui-Chan CWY, Li LSW (2005) Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke. Stroke 36:80–85. doi:10.1161/01.STR.0000149623.24906.63

    Article  Google Scholar 

  • Yang JF, Fung J, Edamura M, Blunt R, Stein RB, Barbeau H (1991a) H-reflex modulation during walking in spastic paretic subjects. Can J Neurol Sci 18:443–452

    Article  Google Scholar 

  • Yang JF, Stein RB, James KB (1991b) Contribution of peripheral afferents to the activation of the soleus muscle during walking in humans. Exp Brain Res 87:679–687

    Article  Google Scholar 

  • Zajac FE, Neptune RR, Kautz SA (2003) Biomechanics and muscle coordination of human walking. Part II: lessons from dynamical simulations and clinical implications. Gait Posture 17:1–17. doi:10.1016/S0966-6362(02)00069-3

    Article  Google Scholar 

  • Zamparo P, Francescato MP, De Luca G, Lovati L, di Prampero PE (1995) The energy cost of level walking in patients with hemiplegia. Scand J Med Sci Sports 5:348–352

    Article  Google Scholar 

  • Zwick EB, Leistrintz L, Milleit B, Saraph V, Zwick G, Galicki M, Witte H, Steinwender G (2004) Classification of equinus in ambulatory children with cerebral palsy – discrimination between dynamic tightness and fixed contracture. Gait Posture 20:273–279

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios A. Patikas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Patikas, D.A. (2016). EMG Activity in Gait: The Influence of Motor Disorders. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics