Skip to main content

Anti-soiling Effect of Porous SiO2 Coatings

  • Living reference work entry
  • First Online:
  • 360 Accesses

Abstract

Various surface topographies and chemical compositions may result in anti-soiling properties. In this chapter, different strategies are compiled and respective solutions based on sol-gel processing are reviewed. Methods for the validation of material performance are discussed with focus on particulate contaminations. Then porous SiO2 films combining antireflective (AR) and anti-soiling are presented.

This is a preview of subscription content, log in via an institution.

References

  • Alfaro S, Chabas A, Lombardo T, Verney-Carron A, Ausset P. Predicting the soiling of modern glass in urban environments: a new physically-based model. Atmos Environ. 2012;60:348–57.

    Article  Google Scholar 

  • Back F, Bockmeyer M, Rudigier-Voigt E, Löbmann P. Periodic nanostructures imprinted on high-temperature stable sol–gel films by ultraviolet-based nanoimprint lithography for photovoltaic and photonic applications. Thin Solid Films. 2014;562:274–81.

    Article  Google Scholar 

  • Bahattab M, Alhomoudi I, Alhussaini M, Mirza M, Hegmann J, Glaubitt W, Löbmann P. Anti-soiling surfaces for PV applications by sol-gel processing: comparison of laboratory testing and outdoor exposure. Solar Energy Mater Solar Cells. 2016 submitted.

    Google Scholar 

  • Banerjee S, Dionysiou D, Pillai S. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal Environ. 2015;176–177:396–428.

    Article  Google Scholar 

  • Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202:1–8.

    Article  Google Scholar 

  • Bhushan B, Jung Y, Koch K. Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir. 2009;25:3240–8.

    Article  Google Scholar 

  • Blanco E, Gonzalez-Leal JM, Ramirez-del Solar M. Photocatalytic TiO2 sol-gel thin films: optical and morphological characterization. Sol Energy. 2015;122:11–23.

    Article  Google Scholar 

  • Brinker C, Scherer G. Sol-gel science – the physics and chemistry of sol-gel processing. Boston: Academic; 1990.

    Google Scholar 

  • Dey T, Naughton D. Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective. J Sol-Gel Sci Technol. 2016;77:1–27.

    Article  Google Scholar 

  • Glaubitt W, Löbmann P. Anti-soiling effect of porous SiO2 coatings prepared by sol-gel processing. J Sol-Gel Sci Technol. 2011;59:239–44.

    Article  Google Scholar 

  • Gregori D, Benchenaa I, Chaput F, Therias S, Gardette J-L, Leonard D, Guillard C, Parola S. Mechanically stable and photocatalytically active TiO2/SiO2 hybrid films on flexible organic substrates. J Mater Chem A Mater Energy Sustain. 2014;2(47):20096–104.

    Article  Google Scholar 

  • Gurav A, Latthe S, Kappenstein C, Mukherjee S, Rao A, Vhatkar R. Porous water repellent silica coatings on glass by sol–gel method. J Porous Mater. 2011;18(3):361–7.

    Article  Google Scholar 

  • Jiang T, Guo Z, Liu W. Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. J Mater Chem A. 2015;3:1811–27.

    Article  Google Scholar 

  • Karunakaran R, Lu C, Zhang Z, Yang S. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm). Langmuir. 2011;27(8):4594–602.

    Article  Google Scholar 

  • Löbmann P. Antireflective coatings and optical filters. In: Schneller T, Waser R, Kosec M, Payne D, editors. Chemical solution deposition of functional oxide thin film. Wien: Springer; 2013. p. 707–24.

    Chapter  Google Scholar 

  • Ma Y, Hill R. Superhydrophobic surfaces. Curr Opin Colloid Interface Sci. 2006;11:193–202.

    Article  Google Scholar 

  • Mao Q, Zeng D, Xu K, Xie C. Fabrication of porous TiO2-SiO2 multifunctional anti-reflection coatings by sol-gel spin coating method. RSC Adv. 2014;4(101):58101–7.

    Article  Google Scholar 

  • Marmur A. The lotus effect: superhydrophobicity and metastability. Langmuir. 2004;20(9):3517–9.

    Article  Google Scholar 

  • Maro D, Connan O, Flori J, Hébert D, Mestayer P, Olive F, Rosant J, Rozet M, Sini J, Solier L. Aerosol dry deposition in the urban environment: assessment of deposition velocity on building facades. J Aerosol Sci. 2014;69:113–31.

    Article  Google Scholar 

  • Mayen-Hernandez SA, Paraguay-Delgado F, de Moure-Flores F, Casarrubias-Segura G, Coronel-Hernandez J, Santos-Cruz J. Synthesis of TiO2 thin films with highly efficient surfaces using a sol-gel technique. Mater Sci Semicond Process. 2015;37:207–14.

    Article  Google Scholar 

  • Okunaka S, Tokudome H, Hitomi Y, Abe R. Facile preparation of stable aqueous titania sols for fabrication of highly active TiO2 photocatalyst films. J Mater Chem A Mater Energy Sustain. 2015;3(4):1688–95.

    Article  Google Scholar 

  • Park Y, Im H, Im M, Choi Y. Self-cleaning effect of highly water-repellent microshell structures for solar cell applications. J Mater Chem. 2011;21:633–6.

    Article  Google Scholar 

  • Qasem H, Betts T, Müllejans H, AlBusairi H, Gottschalg R. Effect of dust shading on photovoltaic modules. In: 26th European photovoltaic solar energy conference and exhibition, 2011, Hamburg. pp. 3652–56.

    Google Scholar 

  • Roupsard P, Amielh M, Maro D, Coppalle A, Branger H, Connan O, Laguionie P, Hébert D, Talbaut M. Measurement in a wind tunnel of dry deposition velocities of submicron aerosol with associated turbulence onto rough and smooth urban surfaces. J Aerosol Sci. 2013;55:12–24.

    Article  Google Scholar 

  • Saison T, Peroz C, Chauveau V, Berthier S, Sondergard E, Arribart H. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol–gel films. Bioinsp Biomim. 2008;3:046004–9.

    Article  Google Scholar 

  • Schneller T, Waser R, Kosec M, Payne D, editors. Chemical solution deposition of functional oxide thin film. Wien: Springer; 2013.

    Google Scholar 

  • Schottner G. Hybrid sol-gel-derived polymers: applications of multifunctional materials. Chem Mater. 2001;13:3422–35.

    Article  Google Scholar 

  • Su B, Tian Y, Jiang L. Bioinspired interfaces with superwettability: from materials to chemistry. J Am Chem Soc. 2016. doi:10.1021/jacs.5b12728.

    Google Scholar 

  • Thompson C, Fleming R, Zou M. Transparent self-cleaning and antifogging silica nanoparticle films. Sol Energy Mater Sol Cells. 2013;115:108–13.

    Article  Google Scholar 

  • Vivar M, Herrero R, Antón I, Martınez-Moreno F, Moreton R, Sala G, Blakers A, Smeltink J. Effect of soiling in CPV systems. Sol Energy. 2010;84:1327–35.

    Article  Google Scholar 

  • Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces. Nature. 1997;388:431–2.

    Article  Google Scholar 

  • Yan Y, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci. 2011;168:80–105.

    Article  Google Scholar 

  • Yu S, Guo Z, Liu W. Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature. Chem Commun. 2015;51:1775–94.

    Article  Google Scholar 

  • Zhang J, Severtson S. Fabrication and use of artificial superhydrophilic surfaces. J Adhes Sci Technol. 2014;28(8–9):751–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer Löbmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Löbmann, P. (2016). Anti-soiling Effect of Porous SiO2 Coatings. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_132-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_132-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics