Skip to main content

Genetic Connectivity and Conservation of Temperate and Cold-Water Habitat-Forming Corals

  • Living reference work entry
  • First Online:
Book cover Marine Animal Forests

Abstract

Recent explorations of rocky habitats from 40 to about 6,000 m depth disclosed the role of gorgonian and scleractinian corals as habitat formers in tropical, temperate, and polar deep waters. Deep biogenic habitats host high species richness and complexity and their conservation requires a profound understanding of biological and ecological features of sessile species inhabiting them, such as the habitat-forming corals. In sessile species, earliest life history stages and larval processes (e.g., reproduction mode, larval development, behavior, and feeding mode) ensure the exchange of individuals within and among subpopulations, supporting species and habitat resistance and resilience. Genetic studies allow investigating larval processes when direct observations cannot be used. Parameters such as genetic connectivity, gene flow, and levels of genetic diversity are essential to monitor health and resilience of populations under current and future scenarios of anthropogenic environmental changes. In this chapter a review of studies on genetic connectivity of temperate and cold-water habitat-forming corals and associated invertebrate species will be presented. Among them, two case studies, Desmophyllum dianthus, a deep-sea worldwide-distributed scleractinian, and Corallium rubrum, a harvested Mediterranean and Eastern Atlantic alcyonacean with a wide bathymetric distribution, will be discussed in detail. This chapter will also show how these studies contributed to develop, implement, and recommend future conservation strategies and management plans. Existing gaps in literature on genetic connectivity of habitat-forming corals and other invertebrates have been also stressed and discussed. Finally, a conceptual framework for optimizing and planning effective studies on genetic connectivity is provided, including general recommendations on sampling design, key species and new molecular markers to use with a special emphasis on the “next-generation” DNA sequencing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Lophelia pertusa is a junior synonym of recently reassigned scientific name of Desmophyllum pertusum (see Addamo et al. 2016). Although it should be consistent with using the species name D. pertusum, authors decide to maintain the name L. pertusa in the main text in order to be coherent with other chapters and do not confuse the reader.

References

  • Addamo AM, Miller K, Haüssermann V, Taviani M, Machordom A. Global-scale genetic structuring and inferences on larval dispersal in Desmophyllum dianthus (Esper, 1794) (Cnidaria, Anthozoa, Scleractinia): two hemispheres in comparison. Mol. Ecol. Submitted.

    Google Scholar 

  • Addamo AM, Reimer JD, Taviani M, et al. Desmophyllum dianthus (Esper, 1794) in the scleractinian phylogeny and its intraspecific diversity. PLoS One. 2012;7:e50215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addamo AM, García Jiménez R, Taviani M, Machordom A. Development of microsatellite markers in the deep-sea cup coral Desmophyllum dianthus and cross-species amplifications in the Scleractinia Order. J Hered. 2015;106:322–30.

    Article  PubMed  Google Scholar 

  • Addamo AM, Vertino A, Stolarski J, Garcia Jiménez R, Taviani M, Machordom A. Merging scleractinian coral genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol. 2016;16:108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Addison JA, Hart MW. Spawning, copulation and inbreeding coefficients in marine invertebrates. Biol Lett. 2005;1:450–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angiolillo M, Gori A, Canese S, Bo M, Priori C, Bavestrello G, Salvati E, Erra F, Greenacre M, Santangelo G. Distribution and population structure of deep-dwelling red coral in the Northwestern Mediterranean. Mar Ecol. 2016;37:294–310.

    Article  Google Scholar 

  • Arizmendi-Mejía R, Linares C, Garrabou J, et al. Combining genetic and demographic data for the conservation of a Mediterranean marine habitat-forming species. PLoS One. 2015;10:e0119585.

    Article  PubMed  PubMed Central  Google Scholar 

  • Becheler R. Diversité génétique d’espèces structurantes en environnement marin: inuence sur la réponse démographique des populations aux perturbations anthropiques. Génétique des populations [q-bio.PE]. Brest: Université de Bretagne occidentale; 2013.

    Google Scholar 

  • Bo M, Bava S, Canese S, Angiolillo M, Cattaneo-Vietti R, Bavestrello G. Fishing impact on deep Mediterranean rocky habitats as revealed by ROV investigation. Biol Conserv. 2014;171:167–76.

    Article  Google Scholar 

  • Boissin E, Hoareau T, Féral J, Chenuil A. Extreme selfing rates in the cosmopolitan brittle star species complex Amphipholis squamata: data from progeny-array and heterozygote deficiency. Mar Ecol Prog Ser. 2008;361:151–9.

    Article  CAS  Google Scholar 

  • Casado-Amezúa P, Goffredo S, Templado J, Machordom A. Genetic assessment of population structure and connectivity in the threatened Mediterranean coral Astroides calycularis (Scleractinia, Dendrophylliidae) at different spatial scales. Mol Ecol. 2012;21:3671–85.

    Article  PubMed  Google Scholar 

  • Casado-Amezúa P, Kersting DK, Templado J, Machordom A. Regional genetic differentiation among populations of Cladocora caespitosa in the Western Mediterranean. Coral Reefs. 2014;33:1031–40.

    Article  Google Scholar 

  • Costantini F, Abbiati M. Into the depth of population genetics: pattern of structuring in mesophotic red coral populations. Coral Reefs. 2016;35:39–52.

    Article  Google Scholar 

  • Costantini F, Fauvelot C, Abbiati M. Genetic structuring of the temperate gorgonian coral (Corallium rubrum) across the western Mediterranean Sea revealed by microsatellites and nuclear sequences. Mol Ecol. 2007a;16:5168–82.

    Article  CAS  PubMed  Google Scholar 

  • Costantini F, Fauvelot C, Abbiati M. Fine-scale genetic structuring in Corallium rubrum: evidence of inbreeding and limited effects of larval dispersal. Mar Ecol Prog Ser. 2007b;340:100–19.

    Article  Google Scholar 

  • Costantini F, Taviani M, Remia A, et al. Deep-water Corallium rubrum (L., 1758) from the Mediterranean Sea: preliminary genetic characterisation. Mar Ecol. 2010;31:261–9.

    Article  Google Scholar 

  • Costantini F, Rossi S, Pintus E, et al. Low connectivity and declining genetic variability along a depth gradient in Corallium rubrum populations. Coral Reefs. 2011;30:991–1003.

    Article  Google Scholar 

  • Costantini F, Carlesi L, Abbiati M. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum. PLoS One. 2013;8:e61546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini F, Gori A, Lopez-González P, Bramanti L, Rossi S, Gili JM, Abbiati M. Limited genetic connectivity between gorgonian morphotypes along a depth gradient. PLoS One. 2016;11:e0160678.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowen RK, Sponaugle S. Larval dispersal and marine population connectivity. Annu Rev Mar Sci. 2009;1:443–66.

    Article  Google Scholar 

  • Dahl MP, Pereyra RT, Lundälv T, André C. Fine-scale spatial gentic structure and clonal distribution of the cold-water coral Lophelia pertusa. Coral Reefs. 2012;31:1135–48.

    Article  Google Scholar 

  • DiBacco C, Levin LA, Sala E. Connectivity in marine ecosystems: the importance of larval and spore dispersal. Conserv Biol Series-Cambridge. 2006;14:184–213.

    Google Scholar 

  • Duran S, Pascual M, Turon X. Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Mar Biol. 2004;144:31–5.

    Article  CAS  Google Scholar 

  • Freiwald A, Roberts J. Cold-water corals and ecosystems. New York: Springer; 2005.

    Book  Google Scholar 

  • Gleason DF, Hofmann DK. Coral larvae: From gametes to recruits. J Exp Mar Biol Ecol. 2011;408:42–57.

    Article  Google Scholar 

  • Gori A, Viladrich N, Gili J-M, et al. Reproductive cycle and trophic ecology in deep versus shallow populations of the Mediterranean gorgonian Eunicella singularis (Cap de Creus, northwestern Mediterranean Sea). Coral Reefs. 2012;31:823–37.

    Article  Google Scholar 

  • Gori A, Ferrier-Pagès C, Hennige SJ, Murray F, Rottier C, Wicks LC, Roberts JM. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. Peer J. 2016;4:e1606.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera S, Shank TM, Sánchez JA. Spatial and temporal patterns of genetic variation in the widespread antitropical deep-sea coral Paragorgia arborea. Mol Ecol. 2012;21:6053–67.

    Article  CAS  PubMed  Google Scholar 

  • Johnsons CH, Woollacott RM. Seasonal pattern of population structure in a colonial marine invertebrate (Bugula stolonifera, Bryozoa). Biol Bull. 2012;222(3):203–13.

    Article  Google Scholar 

  • Le Goff-Vitry MC, Pybus OG, Rogers AD. Genetic structure of the deep-sea coral Lophelia pertusa in the northeast Atlantic revealed by microsatellites and internal transcribed spacer sequences. Mol Ecol. 2004;13:537–49.

    Article  PubMed  Google Scholar 

  • Ledoux JB, Mokhtar-Jamai K, Roby C, Feral JP, Garrabou J, Aurelle D. Genetic survey of shallow populations of the Mediterranean red coral Corallium rubrum (Linnaeus, 1758): new insights into evolutionary processes shaping nuclear diversity and implications for conservation. Mol Ecol. 2010a;19:675–90.

    Article  CAS  PubMed  Google Scholar 

  • Ledoux JB, Garrabou J, Bianchimani O, Drap P, Feral JP, Aurelle D. Fine-scale genetic structure and inferences on population biology in the threatened Mediterranean red coral, Corallium rubrum. Mol Ecol. 2010b;19:4204–16.

    Article  PubMed  Google Scholar 

  • Ledoux J-B, Aurelle D, Bensoussan N, et al. Potential for adaptive evolution at species range margins: contrasting interactions between red coral populations and their environment in a changing ocean. Ecol Evol. 2015;5:1178–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ. Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol. 2009;375:1–8.

    Article  Google Scholar 

  • Liu S-YV, Yu H-T, Fan T-Y, Dai C-F. Genotyping the clonal structure of a gorgonian coral, Junceella juncea (Anthozoa: Octocorallia), using microsatellite loci. Coral Reefs. 2005;24:352–8.

    Article  Google Scholar 

  • Lowe WH, Allendorf FW. What can genetics tell us about population connectivity? Mol Ecol. 2010;19:3038–51.

    Article  PubMed  Google Scholar 

  • Marti-Puig P, Costantini F, Rugiu L, Ponti M, Abbiati M. Patterns of genetic connectivity in invertebrates of temperate MPA networks. Adv Oceanogr Limnol. 2013;4:138–49.

    Article  Google Scholar 

  • Miller KJ, Rowden AA, Williams A, Häussermann V. Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change. PLoS One. 2011;6:e19004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokhtar-Jamaï K, Pascual M, Ledoux J-B, et al. From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Mol Ecol. 2011;20:3291–305.

    Article  PubMed  Google Scholar 

  • Mokhtar-Jamaï K, Coma R, Wang J, et al. Role of evolutionary and ecological factors in the reproductive success and the spatial genetic structure of the temperate gorgonian Paramuricea clavata. Ecol Evol. 2013;3:1765–79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison CL, Ross SW, Nizinski MS, et al. Genetic discontinuity among regional populations of Lophelia pertusa in the North Atlantic Ocean. Conserv Genet. 2011;12:713–29.

    Article  Google Scholar 

  • Naumann M, Orejas C, Ferrier-Pagès C. High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs. 2013;32:749–54.

    Article  Google Scholar 

  • Pante E, Watling L. Chrysogorgia from the New England and Corner Seamounts: Atlantic–Pacific connections. J Marine Biol Assoc UK. 2011;92:911–27.

    Article  Google Scholar 

  • Pérez-Portela R, Noyer C, Becerro MA. Structure and diversity of the endangered bath sponge Spongia lamella. Aquat Conserv Mar Freshwat Ecosyst. 2014;25:365–79.

    Article  Google Scholar 

  • Pey A, Catanéo J, Forcioli D, et al. Thermal threshold and sensitivity of the only symbiotic Mediterranean gorgonian Eunicella singularis by morphometric and genotypic analyses. Comptes Rendus Biol. 2013;336:331–41.

    Article  Google Scholar 

  • Pilczynska J, Cocito S, Boavida J, Serrão E, Queiroga H. Genetic diversity and local connectivity in the Mediterranean red gorgonian coral after mass mortality events. PLoS One. 2016;11:e0150590.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pineda J (2000) Linking larval settlement to larval transport:assumptions, potentials and pitfalls. Oceanog East Pacific 1:84–105.

    Google Scholar 

  • Pont-Kingdon GA, Okada NA, Macfarlane JL, Beagley CT, Wolstenholme DR, Cavalier-Smith T, Clark-Walker GD. A coral mitochondrial mutS gene. Nature. 1995;375:109–11.

    Article  CAS  PubMed  Google Scholar 

  • Riginos C, Douglas KE, Jin Y, Shanahan DF, Treml EA. Effects of geography and life history traits on genetic differentiation in benthic marine fishes. Ecography. 2011;34:566–75.

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A, Cairns S. Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge, UK: Cambridge University Press; 2009.

    Book  Google Scholar 

  • Shafer A, Alves P, Bergström L, et al. Genomics and the challenging translation into conservation practice. Trends Ecol Evol. 2015;30:78–87.

    Article  PubMed  Google Scholar 

  • Thoma J, Pante E, Brugler M, France S. Deep-sea octocorals and antipatharians show no evidence of seamount-scale endemism in the NW Atlantic. Mar Ecol Prog Ser. 2009;397:25–35.

    Article  CAS  Google Scholar 

  • Torrents O, Tambutté E, Caminiti N, Garrabou J. Upper thermal thresholds of shallow vs. deep populations of the precious Mediterranean red coral Corallium rubrum (L.): assessing the potential effects of warming in the NW Mediterranean. J Exp Mar Biol Ecol. 2008;357:7–19.

    Article  Google Scholar 

  • Van Oppen MJH, Gates RD. Conservation genetics and the resilience of reef-building corals. Mol Ecol. 2006;15:3863–83.

    Article  PubMed  Google Scholar 

  • Villamor A, Costantini F, Abbiati M. Genetic Structuring across Marine Biogeographic Boundaries in Rocky Shore Invertebrates. PLoS One. 2014;9:e101135.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Costantini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Costantini, F., Addamo, A.M., Machordom, A., Abbiati, M. (2016). Genetic Connectivity and Conservation of Temperate and Cold-Water Habitat-Forming Corals. In: Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics