Skip to main content

An Overview of the Animal Forests of the World

  • Living reference work entry
  • First Online:

Abstract

In the marine benthos, megabenthic communities dominated by sessile suspension feeders (such as sponges, corals, and bivalves) form three-dimensional structures which provide architectural complexity and shelter for several species. These communities are, in part, structurally and functionally similar to the terrestrial forests, with the main difference that they are dominated by animals instead of plants. The term “animal forests” has been introduced to describe these communities, highlighting the structural and functional similarities with their terrestrial counterparts trying to gather, in a single concept, all the three-dimensional alive structures dominated by sessile animals. Among the animal forests, tropical coral reefs, due to their high biodiversity, have been defined as the “rainforests of the sea” and have attracted the interest of scientists all over the world. However, during the last decades, many other animal forests have been subjected to the attention of the scientific community; Cold-water coral communities, with their key role in ecosystem functioning, fisheries sustainability, and potential carbon sinks in deep benthic ecosystems, are an example of other animal forests that probably cover larger extensions than the tropical shallow coral reefs, but for which the distribution and fully understanding of their functionality are still largely unknown. Similarly, recent technological advances have allowed scientists to explore the mesophotic environment, revealing complex and unknown animal forests in the so-called twilight zone. Gradually, we begin to understand the real extension of these three-dimensional benthic communities and their ecological importance. The animal forests are probably one of the most widely distributed ecosystems on the planet, due to the wide spectra of environments they occupy, from the shallow mussel beds to the tropical and the deepest cold-water coral communities or Antarctic sponge grounds. However, during the last 20 years or so, there has been an increasing evidence of important changes in marine ecosystems due to human-induced disturbances, which are dramatically reducing biodiversity, biomass, and the potential recover of the animal forests all over the world. Many aspects related to the occurrence, distribution, life history, population dynamics, trophic ecology, or physiology of the organisms which structure these communities still need to be understood in order to get an insight into their functional ecology and dynamics. The concept of animal forests imply a holistic approach allowing the pooling of different ecosystems under the same umbrella and possibly lead to a better understanding of their ecological role and the application of effective management and conservation measures.

This is a preview of subscription content, log in via an institution.

References

  • Allemand D, Tambutté E, Zoccola D, Tambutté S. Coral calcification, cells to reefs. In: Dubinsky Z, editor. “Coral reefs”. Berlin (Germany): Springer; 2011. p. 1–50.

    Google Scholar 

  • Althaus F, et al. Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Mar Ecol Prog Ser. 2009;397:279–94.

    Article  Google Scholar 

  • Altizer S, Ostfield RS, Johnson PTJ, Katz S, Harvell DC. Climate change and infectious diseases: from evidence to a predictive framework. Science. 2013;341:514.

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Filip L, Gill JA, Dulvy NK. Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere. 2011;2:art118.

    Article  Google Scholar 

  • Arntz WA, Brey T, Gallardo VA. Antarctic zoobenthos. Oceanogr Mar Biol Annu Rev. 1994;32:241–304.

    Google Scholar 

  • Arntz WE, Gili JM, Reise K. Unjustifiably ignored: reflections on the role of benthos in marine ecosystems. In: Gray JS, Ambrose W, Szaniawska A, editors. Biochemical cycling and sediment ecology. Dordrecht: Kluwer Academic Publishers; 1999. p. 105–24.

    Chapter  Google Scholar 

  • Avila C, Taboada S, Núñez-Pons L. Antarctic marine chemical ecology: what is next? Mar Ecol. 2008;29:1–71.

    Article  CAS  Google Scholar 

  • Baillon S, Hamen JF, Wareham VE, Mercier A. Deep cold-water corals as nurseries for fish larvae. Front Ecol Environ. 2012. http://dx.doi.org/10.1890/120022

    Google Scholar 

  • Ballesteros E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol Annu Rev. 2006;44:123–95.

    Google Scholar 

  • Barnes DKA, Clarke A. Seasonality of feeding activity in Antarctic suspension feeders. Pol Biol. 1995;15:335–40.

    Article  Google Scholar 

  • Bell JJ. The functional roles of marine sponges. Estuar Coast Shelf Sci. 2008;79:341–35.

    Article  Google Scholar 

  • Benedetti MC, Priori C, Erra F, Santangelo G. Growth patterns in mesophotic octocorals: Timing the branching process in the highly-valuable Mediterranean Corallium rubrum. Estuar Coast Shelf Sci. 2016;171:106–10.

    Article  Google Scholar 

  • Bo M, Bertolino M, Borghini M, Castellano M, Harriague AC, Di Camillo CG, Gasparini G, Misic C, Povero P, Pusceddu A, Schroeder K, Bavestrello G. Characteristics of the mesophotic megabenthic assemblages of the Vercelli seamount (North Tyrrhenian Sea). Plos One. 2011;6:e16357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bo M, Bavestrello G, Angiolillo M, Calcagnile L, Canese S, Cannas R, et al. Persistence of pristine deep-sea coral gardens in the Mediterranean Sea (SW Sardinia). PLoS ONE. 2015;10(3):e0119393. doi:10.1371/journal.pone.0119393.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bramanti L, Edmunds P. Density-associated recruitment mediates coral population dynamics on a coral reef. Coral Reefs. 2016;35:543–53.

    Article  Google Scholar 

  • Bramanti L, Movilla J, Guron M, Calvo E, Gori A, Dominguez-Carriò C, Martinez-Quintana A, Pelejero C, Lopez-Sanz A, Ziveri P, Rossi S. Detrimental effects of ocean acidification on the economically important Mediterranean red coral (Corallium rubrum). Global Change Biol. 2013;19:1897–908.

    Google Scholar 

  • Bramanti L, Santangelo G, Iannelli M. Mathematical modelling for conservation and management of gorgonians corals: young and olds, could they coexist? Ecol Model. 2009;20(21):2851–6.

    Article  Google Scholar 

  • Bramanti L, Vielmini I, Rossi S, Tsounis G, Iannelli M, Cattaneo-Vietti R, Priori C, Santangelo G. Demographic parameters of two populations of red coral (Corallium rubrum L. 1758) in the North Western Mediterranean. Mar Biol. 2014;161:1015–26.

    Article  Google Scholar 

  • Bruno JF. How do coral reefs recover? Science. 2014;345:879–80.

    Article  CAS  PubMed  Google Scholar 

  • Buhl-Mortensen L, Vanreusel A, Gooday AJ, Levin LA, Priede IG, Buhl-Mortensen P, Gheerardyn H, King NJ, Raes M. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol. 2010;31:21–50.

    Article  Google Scholar 

  • Cau A, Follesa MC, Moccia D, Alvito A, Bo M, Angiolillo M, Canese S, Paliaga EM, Orrù PE, Sacco F, Cannas R. Deep-water corals biodiversity along roche du large ecosystems with different habitat complexity along the south Sardinia continental margin (CW Mediterranean Sea). Mar Biol. 2015. DOI. 10.1007/s00227-015-2718-5

    Google Scholar 

  • Cau A, Bramanti L, Cannas R, Follesa MC, Angiolillo M, Canese S, Marzia B, Danila C, Guizien K. Habitat constraints and self-thinning shape Mediterranean red coral deep population structure: implications for conservation practice. Sci Rep. 2016;6:23322. http://doi.org/10.1038/srep23322.

  • Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara` G, Schiaparelli S, Siccardi A, Sponga F. A catastrophic mass- mortality episode of gorgonians and other organisms in the Ligurian Sea (north western Mediterranean), summer 1999. Ecol Lett. 2000;3:284–93.

    Article  Google Scholar 

  • Clarke A. Antarctic marine benthic diversity: patterns and processes. J Exp Mar Biol Ecol. 2008;366:48–55.

    Article  Google Scholar 

  • Clarke A, Johnston NM. Antarctic marine benthic diversity. In: Oceanography and marine biology: an annual review. London: Aberdeen University Press/Allen & Unwin; 2003. Vol. 41, p. 47–114. ISSN 0078-3218.

    Google Scholar 

  • Connell JH. Diversity in tropical rain forests and coral reefs. Science. 1978;199:1302–10.

    Article  CAS  PubMed  Google Scholar 

  • Coppari M, Gori A, Viladrich N, Saponari L, Grinyó J, Olariaga A, Rossi S. The role of sponges in the benthic-pelagic coupling process in warm temperate coastal bottoms. J Exp Mar Biol Ecol. 2016;477:57–68.

    Article  Google Scholar 

  • Cowen KR, et al. Population connectivity in marine systems an overview. Oceanography. 1997;20(3):14–21.

    Article  Google Scholar 

  • Cupido R, Cocito S, Barsanti M, Sgorbini S, Peirano A, Santangelo G. Unexpected long-term population dynamics in a canopy-forming gorgonian following mass mortality. Mar Ecol Prog Ser. 2009;394:195–200.

    Article  Google Scholar 

  • De’ath G, Lough JM, Fabricius KE. Declining coral calcification on the great barrier reef. Science. 2009;323:116–9.

    Article  PubMed  Google Scholar 

  • De Goeij JM, et al. Surviving in a Marine Desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich A. The impacts of tourism on coral reef conservation awareness and support in coastal communities in Belize. Coral Reefs. 2007;26:985–96.

    Article  Google Scholar 

  • Duarte C, Marbá N, Gacia E, Fourqurean JW, Beggins J, Barrón C, Apostolaki ET. Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows. Global Biogeochem Cycles. 2010. Doi:10.1029/2010GB003793

    Google Scholar 

  • Eckman JE, Duggins OD, Sewel AT. Ecology of understory kelp environments. Effects of kelps on flow and particle transport near the bottom. J Exp Mar Biol Ecol. 1989;129:173–87.

    Article  Google Scholar 

  • Edmunds PJ, Lasker HR. Cryptic regime shift in benthic community structure on shallow reefs in St. John, US Virgin Islands. Mar Ecol Prog Ser. 2016;559:1–12.

    Article  Google Scholar 

  • Einstein A. Considerations concerning the fundaments of theoretical physics. Science. 1940;91(2369):487–92.

    Article  CAS  PubMed  Google Scholar 

  • Enríquez S, Méndez ER, Iglesias-Prieto R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr. 2005;50:1025–32.

    Article  Google Scholar 

  • Fabricius KE, De'ath G. Photosynthetic symbionts and energy supply determine octocoral biodiversity in coral reefs. Ecology. 2008;89:3163–73.

    Article  Google Scholar 

  • Ferraio L, Beck MW, Storlazzi CD, Micheli F, Shepard CC, Airoldi L. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat Commun. 2014;5. doi:10.1038/ncomms4794.

    Google Scholar 

  • Galli G, Bramanti L, Priori C, Rossi S, Santangelo G, Tsounis G, Solidoro C. Modelling red coral (Corallium rubrum) growth in response to temperature and nutrition. Ecol Model. 2016;337:137–48.

    Article  CAS  Google Scholar 

  • Garcia E, Duarte CM. Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar Coast Shelf Sci. 2001;52:505–14.

    Article  Google Scholar 

  • Ghisalberti M, Gold DA, Laflamme M, Clapham ME, Narbonne GM, Summons RE, Johnston DT, Jacobs DK. Canopy flow analysis reveals the advantage of size in the oldest communities of multi-cellular Eukaryotes. Curr Biol. 2014;24:305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert-Norton L, Wilson R, Stevens JR, Beard KH. A meta-analytic review of corridor effectiveness. Conserv Biol. 2010;24:660–8.

    Article  PubMed  Google Scholar 

  • Gili JM, Coma R. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol. 1998;13:316–1.

    Google Scholar 

  • Gili JM, Hughes RG. The ecology of marine benthic hydroids. Oceanogr Mar Biol Annu Rev. 1995;33:351–6.

    Google Scholar 

  • Gori A, Rossi S, Berganzo-González E, Pretus JL, Dale MRT, Gili JM. Spatial distribution, abundance and relationship with environmental variables of the gorgonians Eunicella singularis, Paramuricea clavata and Leptogorgia sarmentosa (Cape of Creus, Northwestern Mediterranean Sea). Mar Biol. 2011;158:143–8.

    Google Scholar 

  • Gori A, Linares C, Viladrich N, Clavero A, Orejas C, Fiorillo I, Ambroso S, Gili JM, Rossi S. The effects of starvation on the gonadal development and biochemical composition of the Mediterranean gorgonian Paramuricea clavata. J Exp Mar Biol Ecol. 2013;444:38–45.

    Article  Google Scholar 

  • Grace J, et al. Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia, 1992 to 1993. Science. 1995;270:778–80.

    Article  CAS  Google Scholar 

  • Grémare A, Amouroux JM, Charles F, Dinet A, et al. Temporal changes in the biochemical composition and nutritional value of the particulate organic matter available to surface deposit-feeders: a two year study. Mar Ecol Prog Ser. 1997;150:195–206.

    Article  Google Scholar 

  • Graf G. Benthic-pelagic coupling: a benthic view. Ocean Mar Biol Annu Rev. 1992;30:149–90.

    Google Scholar 

  • Grinyó J, et al. Diversity, distribution and population size structure of deep Mediterranean gorgonian assemblages (Menorca Channel, Western Mediterranean Sea). Prog Oceanogr. 2016;145:42–56.

    Article  Google Scholar 

  • Guizien K, Bramanti L. Modelling ecological complexity for marine species conservation: the effect of variable connectivity on species spatial distribution and age structure. Theor Biol Forum. 2014;107(1–2):47–56.

    Google Scholar 

  • Guizien K, Brochier T, Duchêne JC, Koh BS, Marsaleix P. Dispersal of Owenia fusiformis larvae by wind-driven currents: turbulence, swimming behaviour and mortality in a three-dimensional stochastic model. Mar Ecol Prog Ser. 2006;311:47–66.

    Article  Google Scholar 

  • Guizien K, Belharet M, Marsaleix P, Guarini JM. Using larval dispersal simulations for marine protected area design: application to the Gulf of Lions (northwest Mediterranean). Limnol Oceanogr. 2012;57:1099–112.

    Article  Google Scholar 

  • Gutte J, Barratt I, Domack E, d’Udekem d’Acoz C, Dimmler W, Grémare A, Heilmayer O, Isla E, Janussen D, Jorgensen E, Kock K-H, Lehnert LS, López-Gonzáles P, Langner S, Linse K, Manjón-Cabeza ME, Meißner M, Montiel A, Raes M, Robert H, Rose A, Sañé-Schepisi E, Saucéde T, Scheidat M, Schenke H-W, Seiler J, Smith C. Biodiversity change after climate- induced ice-shelf collapse in the Antarctic. Deep-Sea Res II. 2011;58:74–83.

    Article  Google Scholar 

  • Halpern BS, et al. An index to assess the health and benefits of the global ocean. Nature. 2012;488:615–20.

    Article  CAS  PubMed  Google Scholar 

  • Hanski I. Metapopulation dynamics. Nature. 1998;396:41–9.

    Article  CAS  Google Scholar 

  • Hardin G. Tragedy of the commons. Science. 1968;162:1243–8.

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, et al. Coral reefs under rapid climate change and ocean acidification. Science. 2007;318:1737–42.

    Article  CAS  PubMed  Google Scholar 

  • Houlbrèque F, Ferrier-Pagés C. Heterotrophy in tropical scleractinian corals. Biol Rev. 2009;84:1–17.

    Article  PubMed  Google Scholar 

  • Hughes TP, et al. Climate change, human impacts, and the resilience of coral reefs. Science. 2003;301:929–33.

    Article  CAS  PubMed  Google Scholar 

  • Ianora A, et al. New trends in marine chemical ecology. Estuar Coast. 2006;29:531–51.

    Article  CAS  Google Scholar 

  • Jiménez E, Ribes M. Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnol Oceanogr. 2007;52:948–58.

    Article  Google Scholar 

  • Jones CJ, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos. 1994;69:373–86.

    Article  Google Scholar 

  • Kahng SE, Benayahu Y, Lasker HR. Sexual reproduction in octocorals. Mar Ecol Prog Ser. 2011;443:265–83.

    Article  Google Scholar 

  • Kinsey DW, Hopley D. The significance of coral reefs as global carbon sinks- response to Greenhouse. Paleog Paleoclim Paleoecol. 1991;89:363–77.

    Article  Google Scholar 

  • Klein YL, Osleeb JP, Viola MR. Tourism-generated earnings in the coastal zone: a regional analysis. J Coast Res. 2004;20(4):1080–108.

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science. 1999;284:118–20.

    Article  CAS  PubMed  Google Scholar 

  • Laffoley Dd’A, Grimsditch G (Eds). The management of natural coastal carbon sinks. Gland: IUCN; 2009. 53pp.

    Google Scholar 

  • Lenz E, Bramanti L, Lasker HR, Edmunds PJ. Long-term variation in of octocoral populations in St. John, US Virgin Islands. Coral Reefs. 2015;34:1099–109.

    Article  Google Scholar 

  • Le Quéré C, et al. Global carbon budget 2014. Earth Syst Sci Data. 2015;7:47–85.

    Article  Google Scholar 

  • Linares C, Doak DF, Coma R, Dı’az D, Zabala M. Life history and viability of a long-lived marine invertebrate: the octocoral Paramuricea clavata. Ecology. 2007;88:918–28.

    Article  PubMed  Google Scholar 

  • Linares C, Coma R, Garrabou J, Dı’az D, Zabala M. Size distribution, density and disturbance in two Mediterranean gorgonians: Paramuricea clavata and Eunicella singularis. J Appl Ecol. 2008;45:688–99.

    Article  Google Scholar 

  • Marbá N, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. J Ecol. 2015;103:296–302.

    Article  Google Scholar 

  • Margalef R. Our biosphere. In: Kinne O, editor. Excellence in ecology. Oldendorf/Luhe: Ecology Institute; 1998.

    Google Scholar 

  • Martinez-Quintana A, Bramanti L, Villadrich N, Rossi S, Guizien K. Quantification of larval traits driving connectivity: the case of Corallium rubrum (L.1758). Mar Biol. 2015;162:309–18.

    Article  Google Scholar 

  • McClanahan TR, Obura D. Sedimentation effects on shallow coral communities in Kenya. J Exp Mar Biol Ecol. 1997;209:103–22.

    Article  Google Scholar 

  • McCauley DJ, et al. Marine defaunation: animal loss in the global ocean. Science. 2015;347. doi:10.1126/science.1255641.

    Google Scholar 

  • Miller RJ, Hocevar J, Stone RP, Fedorov DV. Structure-forming corals and sponges and their use as fish habitat in Bering sea submarine canyons. PLoS ONE. 2012;7(3):e33885. doi:10.1371/journal.pone.0033885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen PB, Buhl-Mortensen L. Distribution of deep-water gorgonian corals in relation to benthic habitat features in the Northeast Channel (Atlantic Canada). Mar Biol. 2004;144:1223–38.

    Article  Google Scholar 

  • Orejas C, Gori A, Lo Iacono C, Puig P, Gili JM, Dale MRT. Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Prog Ser. 2009;397:37–51.

    Article  Google Scholar 

  • Pawlik JR, Chanas B, Toonen RJ, Fenical W. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar Ecol Prog Ser. 1995;127:183–94.

    Article  CAS  Google Scholar 

  • Pilskaln CH, Churchill JH, Mayer LM. Resuspension of sediment by bottom trawling in the Gulf of Maine and potential geochemical consequences. Conserv Biol. 1998;12:1223–9.

    Article  Google Scholar 

  • Pimm SL, et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 2014;344. doi:10.1126/science.1246752.

    Google Scholar 

  • Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Farnsworth EJ, Fernando ES, Kalthiresan K, Koedam NE, Livingstone SR. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS One. 2010;5:e10095.http://dx.doi.org/10.1371/journal.pone.0010095

    Article  PubMed  PubMed Central  Google Scholar 

  • Puig P, Canals M, Martín J, Amblas D, Lastras G, Palanques A, Calafat AM. Ploughing the deep sea floor. Nature. 2012;489:286.

    Article  CAS  PubMed  Google Scholar 

  • Reaka-Kudla ML. The global biodiversity of coral reefs: a comparison with Rain Forests. In: Reaka-Kudla ML, Wilson DE, Wilson EO, editors. Biodiversity II: understanding and protecting our biological resources. Washington, DC: National Academy Press; 1997. p. 83–108.

    Google Scholar 

  • Reiswig HM. Particle feeding in natural populations of three marine demosponges. Biol Bull. 1971;141:568–91.

    Article  Google Scholar 

  • Rice JC. Managing fisheries well: delivering the promise of an Ecosystem Approach. Fish Fish. 2011;12:209–31.

    Article  Google Scholar 

  • Roark EB, Guilderson TP, Dunbar RB, Ingram BL. Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Mar Ecol Prog Ser. 2006;327:1–14.

    Article  CAS  Google Scholar 

  • Roberts JM. Cold-water corals: the biology and geology of deep-sea coral habitat. Cambridge/New York: Cambridge University Press; 2009.

    Book  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science. 2006;312:543–7.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, van den Berg J, Loureiro M, Nunes P, Rossi S. The cost of Mediterranean Sea warming and acidification: a choice experiment among Scuba Divers at Medes Islands, Spain. Environ Resour Econ. 2015;63:289–311.

    Article  Google Scholar 

  • Rossi S. The destruction of the ‘animal forests’ in the oceans: towards an over-simplification of the benthic ecosystems. Ocean Coast Manag. 2013;84:77–85.

    Article  Google Scholar 

  • Rossi S, Gili JM. Near bottom phytoplankton and seston: importance in the pelagic-benthic coupling processes. In: Kersey WT, Munger SP, editors. Marine phytoplankton. New York: Nova Science Publishers Inc; 2009. p. 45–85. ISBN:978-1-60741-087-4.

    Google Scholar 

  • Rossi S, Snyder MJ. Competition for space among sessile marine invertebrates: changes in HSP70 expression in two Pacific cnidarians. Biol Bull. 2001;201:385–93.

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Ribes M, Coma R, Gili JM. Temporal variability in zooplankton prey capture rate of the soft bottom passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Mar Biol. 2004;144:89–99.

    Article  Google Scholar 

  • Rossi S, Gili JM, Coma R, Linares C, Gori A, Vert N. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata(Anthozoa, Octocorallia): evidence for summer–autumn feeding constraints. Mar Biol. 2006a;149:643–51.

    Article  CAS  Google Scholar 

  • Rossi S, Snyder MJ, Gili JM. Protein-carbohydrate-lipid levels and HSP70-HSP90 (stress protein) expression over an annual cycle of a benthic suspension feeder: useful tools to detect feeding constraints in a benthic suspension feeder. Helgol Mar Res. 2006b;60:7–17.

    Article  Google Scholar 

  • Rossi S, Tsounis G, Orejas C, Padrón T, Gili JM, Bramanti L, Teixidó N, Gutt J. Survey of deep-dwelling red coral (Corallium rubrum) populations at Cap de Creus (NW Mediterranean). Mar Biol. 2008;154:533–45.

    Article  Google Scholar 

  • Ruzicka RR, et al. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar Ecol Prog Ser. 2013;489:125–41.

    Article  Google Scholar 

  • Sahade R, et al. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv. 2015;1. doi:10.1126/sciadv.1500050.

    Google Scholar 

  • Sala E, Garrabou J, Zabala M. Effects of diver frequentation on Mediterranean sublitoral populations of the bryozoan Pentapora fascialis. Mar Biol. 1996;126:451–9.

    Article  Google Scholar 

  • Sandin SA, Smith JE, De Martin EE, et al. Baselines and degradation of coral reefs in the northern Line Islands. Plos One. 2008;3:1548.

    Article  Google Scholar 

  • Sañé E, Martín J, Puig P, Palanques A. Organic biomarkers in deep-sea regions affected by bottom trawling: pigments, fatty acids, amino acids and carbohydrates in surface sediments from the La Fonera (Palamós) Canyon, NW Mediterranean Sea. Biogeosciences. 2013;10:8093–8.

    Article  Google Scholar 

  • Sasaki N, Putz FE. Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv Lett. 2009;2:226–32.

    Article  Google Scholar 

  • Simberloff D, Cox J. Consequences and costs of conservation corridors. Conserv Biol. 1987;1(1):63–71.

    Article  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G. Connectivity is a vital element of landscape structure. Oïkos. 1993;68:571–3.

    Google Scholar 

  • Tsounis G, Rossi S, Grigg R, Santangelo G, Bramanti L, Gili JM. The exploitation and conservation of precious corals. Oceanogr Mar Biol Annu Rev. 2010;48:161–212.

    Google Scholar 

  • Viladrich N, Bramanti L, Tsounis G, Chocarro B, Martínez-Quintana A, Ambroso S, Madurell T, Rossi S. Variation in lipid and free fatty acid content during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder. Coral Reefs. 2016;35:1033. doi:10.1007/s00338-016-1440-1.

    Article  Google Scholar 

  • Viladrich N, Bramanti L, Tsounis G, Martínez-Quintana A, Ferrier-Pagés C, Isla E, Rossi S. Variation of lipid and free fatty acid contents during larval release in two temperate octocorals according to their trophic strategy. Marine Ecology Progress Series; 2017.

    Google Scholar 

  • Ware JR, Smith SV, Reaka-Kudla ML. Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs. 1992;11:127–30.

    Article  Google Scholar 

  • White AT, Vogt HP, Arin T. Philippine coral reefs under threat: the economic losses caused by reef destruction. Mar Pollut Bull. 2000;40:598–605.

    Article  CAS  Google Scholar 

  • Wood ACL, Probert PK, Rowden AA, Smith AM. Complex habitat generated by marine bryozoans: a review of its distribution, structure, diversity, threats and conservation. Aquat Conserv Mar Freshwat Ecosyst. 2012;22:547–63.

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank Georgios Tsounis for his critical review of the chapter. SR wants to thank the support of the Marie Curie International Outgoing Fellowship (ANIMAL FOREST HEALTH, Grant Agreement Number 327845) and Generalitat de Catalunya to MERS (2014 SGR – 1356). LB was supported, in part, during the preparation of this book by the US National Science Foundation (grant OCE 13-32915). AG wants to thank the support of the Beatriu de Pinos Fellowship (ShelfReCover, Grant Agreement Number 2013 BP-B 00074). This work is contributing to the ICTA “Unit of Excellence” (MinECo, MDM2015-0552). CO thank the support of the CYCLAMEN project (TOTAL foundation, Ref BIO_2014_091_Juin_CS-8) and ATLAS: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 678760 (ATLAS). This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Rossi, S., Bramanti, L., Gori, A., Orejas, C. (2017). An Overview of the Animal Forests of the World. In: Rossi, S., Bramanti, L., Gori, A., Orejas , C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17001-5

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics