Skip to main content

Imaging and Range Image Processing

  • Reference work entry
Machine Vision Handbook
  • 7467 Accesses

In many industry applications, the image processing tools with input images in 2-D format may find themselves lacking the power of dimensional measurement in a space that has to deal with a third dimension. For an example of typical pick-and-place process on a manufacturing line, a robot tries to grab an unpolished engine block from a bin and the robot controller should give the guidance to the robot arm so that the orientation of the engine block is input to the robot arm prior to its movement. In such a scenario, range information of the engine block, or the depth in the Z-direction, should be part of the input images. The conventional imaging methods for capturing and analyzing grayscale images are inadequate for this type of application.

Range imaging deals with Z-directional data. When many call it 3-D, it is in fact 2.5-D, since we cannot get image data on the negative Z-direction; therefore, it is more pertinent to call it range imaging. There are several techniques that are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anthes J, Carcia P, Pierce J, Dressendorfer P (1993) Non-scanned LADAR imaging and applications. In: Applied laser radar technology. SPIE, vol 1936, pp 11–22

    Google Scholar 

  2. Jelalian AJ (1992) Laser radar systems. Artech House, Norwood

    Google Scholar 

  3. Scott M (1990) Range imaging laser radar. United States Patent no. 4,935,616, 19 June 1990

    Google Scholar 

  4. Scott M, Garcia P (1988) Use of predetection mixing of intensity modulated optical beams. Appl Opt 27:5119

    Article  Google Scholar 

  5. Brophy C (1990) Effect of intensity error correlation on the computed phase of phase-shifting interferometry. J Opt Soc Am A 7(4):537–541

    Article  Google Scholar 

  6. Freischlad K, Koliopoulos C (1990) Fourier description of digital phase-measuring interferometry. J Opt Soc Am A 7(4):542–551

    Article  Google Scholar 

  7. Morgan C (1982) Least-squares estimation in phase-measurement interferometry. Opt Lett 7:368–370

    Article  Google Scholar 

  8. Bruning J, Herriot D, Gallagher J, Rosenfeld D, White A, Brangaccio D (1974) Digital wavefront measuring interferometer for testing optical surfaces and lenses. Appl Opt 13:2693–2703

    Article  Google Scholar 

  9. Stann B, Ruff W, Robinson D, Potter W, Sarama S, Giza M, Simon D, Frankel S, Sztankay Z (1999) Scannerless imaging ladar using a laser diode transmitter and FM/cw radar principles. In: Laser radar technology and applications IV. Proceedings of SPIE, vol 3707

    Google Scholar 

  10. Burns H, Yun ST, Kimmet J, Keltos ML (1999) Compact, multichannel imaging-laser radar receiver. In: Laser radar technology and applications IV. Proceedings of SPIE, vol 3707

    Google Scholar 

  11. Arman F, Aggarwal J (1993) Model-based object recognition in dense-range image – a review. ACM Comput Surv 25:5–43

    Article  Google Scholar 

  12. Besl P (1989) Active optical range imaging. In: Sanz JLC (ed) Advances in machine vision. Springer, New York

    Google Scholar 

  13. Bolle R, Vemuri BC (1991) On three-dimensional surface reconstruction methods. IEEE Trans Pattern Anal Mach Intell 13:1–13

    Article  Google Scholar 

  14. Besl P, Jain R (1985) Three-dimensional object recognition. Comput Surv 17:75–145

    Article  Google Scholar 

  15. Pentland A (1987) Recognition by parts. In: Proceedings of the 1st international conference in computer vision, London, England, pp 612–620

    Google Scholar 

  16. Dickinson S, Metaxas D (1997) The role of model-based segmentation in the recovery of volumetric parts from range data. IEEE Trans Pattern Anal Mach Intell 19:259–267

    Article  Google Scholar 

  17. Dickinson S, Metaxas D, Pentland A (1994) Constrained recovery of deformable models from range data. In: Proceedings of 2nd international workshop visual from, Capri, May 1994

    Google Scholar 

  18. Dorai C, Jain A (1997) COSMOS-a representation scheme for 3D free-form objects. IEEE Trans Pattern Anal Mach Intell 19:1115–1130

    Article  Google Scholar 

  19. Johnson A, Hebert M (1999) Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans Pattern Anal Mach Intell 21:433–449

    Article  Google Scholar 

  20. Sim R, Dudek G (1999) Learning visual landmarks for pose estimation. In: Proceedings of the 1999 IEEE international conference on robotics and automation, Detroit, May 1999, pp 1972–1978

    Google Scholar 

  21. Burtnyk N, Greenspan M (1994) Signature search method for 3-D pose refinement with range data. In: Proceedings of the 1994 IEEE international conference on multisensor fusion and integration for intelligent systems, Las Vegas, Oct 1994, pp 312–319

    Google Scholar 

  22. Stark K, Fuchs S (1996) A method for tracking the pose of known 3-D objects based on an active contour model. In: Proceedings of the 13th international conference on pattern recognition, Vienna, Austria, Aug 1996, pp 905–909

    Google Scholar 

  23. Crowley J, Schiele B (1998) Position estimation using principal components of range data. In: Proceedings of the 1998 IEEE international conference on robotics and automation, Leuven, Belgium, May 1998, pp 3121–3128

    Google Scholar 

  24. Fan T, Medioni G, Nevatia R (1987) Segmented descriptions of 3-D surface. IEEE Int J Robot Automat 3(6):527–538

    Article  Google Scholar 

  25. Gruss A, Kanade T (1990) A fast lightstripe range finding system with smart VLSI sensor. In: Machine vision for 3-D scenes. Academic, San Deigo, pp 381–397

    Google Scholar 

  26. Fu K, Gonzalez R, Lee C (1987) Robotics: control, sensing, vision, and intelligence. McGraw-Hill, New York

    Google Scholar 

  27. Besl P, Jain R (1988) Segmentation through variable-order surface fitting. IEEE Trans Pattern Anal Mach Intell 10:167–192

    Article  Google Scholar 

  28. Kang S, Ikeuchi K (1993) The complex EGI: a new representation for 3-D pose determination. IEEE Trans Pattern Anal Mach Intell 15:707–721

    Article  Google Scholar 

  29. Liu X, Wang D (1999) Range image segmentation using a relaxation oscillator network. IEEE Trans Neural Netw 10:564–573

    Article  Google Scholar 

  30. Lee K et al (1998) Robust adaptive segmentation of range images. IEEE Trans Pattern Anal Mach Intell 20:200–205

    Article  Google Scholar 

  31. Inokuchi S, Nita T, Matsuday F, Sakurai Y (1982) A three-dimensional edge-region operator for range pictures. In: Proceedings of 6th international conference on pattern recognition, Munich, West Germany, pp 918–920

    Google Scholar 

  32. Lim A, Teoh E, Mital D (1994) A hybrid method for range image segmentation. J Math Imaging Vis 4:69–80

    Article  Google Scholar 

  33. Zhao D, Zhang X (1997) Range data based object surface segmentation via edges and critical points. IEEE Trans Image Process 6:826–830

    Article  Google Scholar 

  34. Baccar M, Gee L, Abidi M (1996) Segmentation of range images via data fusion and morphological watersheds. Pattern Recognit 29:1673–1687

    Article  Google Scholar 

  35. Deng S, Yuan B (1995) Range image segmentation based on mathematical morphology. ACTA Electronica Sinica 23:6–9

    Google Scholar 

  36. Jiang X, Bunke H (1999) Edge detection in range images based on scan line approximation. Comput Vis Image Underst 73:183–199

    Article  Google Scholar 

  37. Amano T, Hiura S, Inokuchi S (1996) Eigen space approach for a pose detection with range images. In: Proceedings of ICPR’96, pp 622–627

    Google Scholar 

  38. Li S, Zhao D (2003) Gradient-based polyhedral segmentation for range images. Pattern Recognit Lett 24(12):2069–2077

    Article  Google Scholar 

  39. Zaharia T, Preteux F (2004) 3D versus 2D/3D shape descriptors: a comparative study. Image Process Algorithms Syst III Proc SPIE 5298:70–81

    Google Scholar 

  40. Flynn P, Jain A (1989) On reliable curvature estimation. In: Proceedings of CVPR, pp 110–116

    Google Scholar 

  41. Krishnapuram R, Gupta S (1992) Morphological methods for detection and classification of edges in range images. J Math Imaging Vis 2:351–375

    Article  MATH  Google Scholar 

  42. Brady M, Ronce J, Yullie A, Asada H (1985) Describing surfaces. Comput Vis Graph Image Process 32:1–28

    Article  Google Scholar 

  43. Wani M, Batchelor B (1994) Edge-region-based segmentation of range images. IEEE Trans Pattern Anal Mach Intell 16(3):314–319

    Article  Google Scholar 

  44. Li S, Zhao D (2001) Three-dimensional range data interpolation using B-spline surface fitting. J Electron Imaging 10(1):268–273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongming Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Ltd.

About this entry

Cite this entry

Zhao, D. (2012). Imaging and Range Image Processing. In: Batchelor, B.G. (eds) Machine Vision Handbook. Springer, London. https://doi.org/10.1007/978-1-84996-169-1_15

Download citation

Publish with us

Policies and ethics