Skip to main content

Causality

  • Living reference work entry
  • First Online:
  • 626 Accesses

Abstract

Causality is an essential concept in our understanding of the world as, in order to predict how a system behaves under an intervention, it is necessary to have causal knowledge of the impact of interventions. This knowledge should be expressed in a language built on top of probabilistic models, since the axioms of probability do not provide a way of expressing how external interventions affect a system. Learning this knowledge from data also poses additional challenges compared to the standard machine learning problem, as much data comes from passive observations that do not follow the same regime under which our predictions will take place.

This is a preview of subscription content, log in via an institution.

Recommended Reading

  • Chickering D (2002) Optimal structure identification with greedy search. J Mach Learn Res 3:507–554

    MathSciNet  MATH  Google Scholar 

  • Cooper G, Yoo C (1999) Causal discovery from a mixture of experimental and observational data. In: Proceedings of the 15th conference on uncertainty in artificial intelligencem (UAI-1999), Stockholm, pp 116–125

    Google Scholar 

  • Dawid AP (2003) Causal inference using influence diagrams: the problem of partial compliance. In: Green PJ, Hjort NL, Richardson S (eds) Highly structured stochastic systems. Oxford University Press, New York, pp 45–65

    Google Scholar 

  • Eaton D, Murphy K (2007) Exact Bayesian structure learning from uncertain interventions. In: Proceedings of the 11th international conference on artificial intelligence and statistics (AISTATS-2007), San Juan, pp 107–114

    Google Scholar 

  • Entner D, Hoyer PO, Spirtes P (2012) Statistical test for consistent estimation of causal effects in linear non-gaussian models. In: Proceedings of the 15th international conference on artificial intelligence and statistics (AISTATS-2012), La Palma, pp 364–372

    Google Scholar 

  • Halpern J, Pearl J (2005) Causes and explanations: a structural-model approach. Part II: explanations. Br J Philos Sci 56:889–911

    Article  MathSciNet  MATH  Google Scholar 

  • Hyttinen A, Eberhardt F, Hoyer PO (2013) Experiment selection for causal discovery. J Mach Learn Res 14:3041–3071

    MathSciNet  MATH  Google Scholar 

  • Meek C (1997) Graphical models: selecting causal and statistical models. PhD thesis, Carnegie Mellon University

    Google Scholar 

  • Pearl J (2000) Causality: models, reasoning and inference. Cambridge University Press, New York

    MATH  Google Scholar 

  • Peters J, Mooij JM, Janzing D, Schölkopf B (2014) Causal discovery with continuous additive noise models. J Mach Learn Res 15:2009–2053

    MathSciNet  MATH  Google Scholar 

  • Richardson TS (1996) A discovery algorithm for directed cyclic graphs. In: Proceedings of 12th conference on uncertainty in artificial intelligence, Portland

    Google Scholar 

  • Richardson TS, Robins J (2013) Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality. Working Paper Number 128, Center for Statistics and the Social Sciences, University of Washington

    Google Scholar 

  • Robins J, Scheines R, Spirtes P, Wasserman L (2003) Uniform consistency in causal inference. Biometrika 90:491–515

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenbaum P (2002) Observational studies. Springer, New York

    Book  MATH  Google Scholar 

  • Rubin D (2005) Causal inference using potential outcomes: design, modeling, decisions. J Am Stat Assoc 100(469):322–331

    Article  MathSciNet  MATH  Google Scholar 

  • Sachs K, Perez O, Pe’er D, Lauffenburger D, Nolan G (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529

    Article  Google Scholar 

  • Shimizu S, Hoyer P, Hyvärinen A, Kerminen A (2006) A linear non-Gaussian acyclic model for causal discovery. J Mach Learn Res 7:2003–2030

    MathSciNet  MATH  Google Scholar 

  • Silva R, Scheines R, Glymour C, Spirtes P (2006) Learning the structure of linear latent variable models. J Mach Lear Res 7:191–246

    MathSciNet  MATH  Google Scholar 

  • Spirtes P, Glymour C, Scheines R (2000) Causation, prediction and search. MIT Press, Cambridge

    MATH  Google Scholar 

  • Wasserman L (2004) All of statistics. Springer, New York

    Book  MATH  Google Scholar 

  • Zhang J, Spirtes P (2003) Strong faithfulness and uniform consistency in causal inference. In: Proceedings of the 19th conference in uncertainty in artificial intelligence (UAI-2013), Acapulco, pp 632–639

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Silva, R. (2016). Causality. In: Sammut, C., Webb, G. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7502-7_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7502-7_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Online ISBN: 978-1-4899-7502-7

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics