Skip to main content

Emergence of Orientation Selectivity in the Cerebral Cortex, Modeling

  • Reference work entry
  • First Online:
Book cover Encyclopedia of Computational Neuroscience

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220–224

    CAS  PubMed  Google Scholar 

  • Adorján P, Levitt JB, Lund JS, Obermayer K (1999) A model for the intracortical origin of orientation preference and tuning in macaque striate cortex. Vis Neurosci 16:303–318

    PubMed  Google Scholar 

  • Alitto HJ, Usrey WM (2004) Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. J Neurophysiol 91:2797–2808

    PubMed  Google Scholar 

  • Allison JD, Smith KR, Bonds AB (2001) Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex. Vis Neurosci 18:941–948

    CAS  PubMed  Google Scholar 

  • Anderson JS, Carandini M, Ferster D (2000) Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J Neurophysiol 84:909–926

    CAS  PubMed  Google Scholar 

  • Banitt Y, Martin KAC, Segev I (2007) A biologically realistic model of contrast invariant orientation tuning by thalamocortical synaptic depression. J Neurosci 27:10230–10239

    CAS  PubMed  Google Scholar 

  • Ben-Yishai R, Lev Bar-Or R, Sompolinsky H (1995) Theory of orientation tuning in visual cortex. Proc Natl Acad Sci USA 92:3844–3848

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bishop PO, Coombs JS, Henry GH (1973) Receptive fields of simple cells in the cat striate cortex. J Physiol (Lond) 231:31–60

    CAS  Google Scholar 

  • Blasdel CG, Fitzpatrick D (1984) Physiological organization of macaque striate cortex. J Neurosci 4:880–895

    CAS  PubMed  Google Scholar 

  • Boycott BB, Wässle H (1974) The morphological types of ganglion cells of the domestic cat’s retina. J Physiol 240:397–419

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bringuier V, Chavane F, Glaeser L, Frégnac Y (1999) Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283:695–699

    CAS  PubMed  Google Scholar 

  • Bullier J, Henry G (1979) Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. J Neurophysiol 42:1271–1281

    CAS  PubMed  Google Scholar 

  • Carandini M, Ferster D (2000) Membrane potential and firing rate in cat primary visual cortex. J Neurosci 20:470–484

    CAS  PubMed  Google Scholar 

  • Carandini M, Heeger DJ, Senn W (2002) A synaptic explanation of suppression in visual cortex. J Neurosci 22:10053–10065

    CAS  PubMed  Google Scholar 

  • Carandini M, Ringach DL (1997) Predictions of a recurrent model of orientation selectivity. Vision Res 37:3061–3071

    CAS  PubMed  Google Scholar 

  • Cardin JA, Palmer LA, Contreras D (2007) Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex. J Neurosci 27:10333–10344

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chung S, Ferster D (1998) Strength and orientation tuning of the thalamic input to simple cells revealed by electrical evoked cortical suppression. Neuron 20:1177–1189

    CAS  PubMed  Google Scholar 

  • Cleland BG, Levick WR (1974) Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. J Physiol 240:457–492

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crook JM, Kisvárday ZF, Eysel UT (1997) GABA-induced inactivation of functionally characterized sites in cat striate cortex: effects on orientation tuning and direction selectivity. Vis Neurosci 14:141–158

    CAS  PubMed  Google Scholar 

  • DeAngelis GC, Robson JG, Ohzawa I, Freeman RD (1992) Organization of suppression in receptive fields of neurons in cat visual cortex. J Neurophysiol 68:144–163

    CAS  PubMed  Google Scholar 

  • Douglas RJ, Kock C, Mahowald M, Martin KAC, Suarez HH (1995) Recurrent excitation in neocortical circuits. Science 269:981–985

    CAS  PubMed  Google Scholar 

  • Ferster D, Lindström S (1983) An intracellular analysis of geniculate-cortical connectivity in area 17 of the cat. J Physiol 342:181–215

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ferster D, Chung S, Wheat H (1996) Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380:249–252

    CAS  PubMed  Google Scholar 

  • Finn IM, Priebe NJ, Ferster D (2007) The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron 54:137–152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gardner JL, Anzai A, Ohzawa I, Freeman RD (1999) Linear and nonlinear contributions to orientation tuning of simple cells in the cat’s striate cortex. Vis Neurosci 16:1115–1121

    CAS  PubMed  Google Scholar 

  • Geisler WS, Albrecht DG (1992) Cortical neurons: isolation of contrast gain control. Vision Res 32:1409–1410

    CAS  PubMed  Google Scholar 

  • Gilbert C (1977) Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol (Lond) 268:391–421

    CAS  Google Scholar 

  • Gilbert C, Wiesel TN (1979) Morphology and intracortical projections of functionally characterized neurones in the cat visual cortex. Nature 280:120–125

    CAS  PubMed  Google Scholar 

  • Goldberg JA, Rokni U, Sompolinsky H (2004) Patterns of ongoing activity and the functional architecture of the primary visual cortex. Neuron 42:489–500

    CAS  PubMed  Google Scholar 

  • Hammond P (1974) Cat retinal ganglion cells: size and shape of receptive field centres. J Physiol 242:99–118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hata Y, Tsumoto T, Sato H, Hagihara K, Tamura H (1988) Inhibition contributes to orientation selectivity in visual cortex of cat. Nature 335:815–817

    CAS  PubMed  Google Scholar 

  • Heeger D (1992) Normalization of cell responses in cat striate cortex. Vis Neurosci 9:181–197

    CAS  PubMed  Google Scholar 

  • Hirsch JA, Martinez LM (2006) Circuits that build visual cortical receptive fields. Trends Neurosci 29:30–39

    CAS  PubMed  Google Scholar 

  • Hirsch JA, Alonso JM, Reid RC, Martinez LM (1998) Synaptic integration in striate cortical simple cells. J Neurosci 18:9517–9528

    CAS  PubMed  Google Scholar 

  • Hirsch JA, Martinez LM, Pillai C, Alonso JM, Wang Q, Sommer FT (2003) Functionally distinct inhibitory neurons at the first stages of visual processing. Nat Neurosci 6:1300–1308

    CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond) 160:106–154

    CAS  Google Scholar 

  • Hubel D, Wiesel T (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jagadeesh B, Wheat HS, Kontsevich LL, Tyler CW, Ferster D (1997) Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. J Neurophysiol 78:2772–2789

    CAS  PubMed  Google Scholar 

  • Jones JP and Palmer LA (1987) An evaluation of the two-dimensional Gabor filter model of simple cell receptive fields in cat striate cortex. J Neurophysiol 50(6):1233–1258

    Google Scholar 

  • Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68

    CAS  PubMed  Google Scholar 

  • Lauritzen LZ, Miller KD (2003) Different roles for simple-cell and complex-cell inhibition in V1. J Neurosci 23:10201–10213

    CAS  PubMed  Google Scholar 

  • Leventhal AG, Schall JD (1983) Structural basis of orientation sensitivity of cat retinal ganglion cells. J Comp Neurol 220:465–475

    CAS  PubMed  Google Scholar 

  • Levick WR, Thibos LN (1980) Orientation bias of cat retinal ganglion cells. Nature 286:389–390

    CAS  PubMed  Google Scholar 

  • Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382:807–810

    CAS  PubMed  Google Scholar 

  • Martin K (1988) From single cells to simple circuits in the cerebral cortex. J Exp Physiol 73:637–702

    CAS  Google Scholar 

  • Martinez LM, Wang Q, Reid RC, Pillai C, Alonso JM, Sommer FT, Hirsch JA (2006) Receptive field structure varies with layer in the primary visual cortex. Nat Neurosci 8:372–379

    Google Scholar 

  • McLaughlin D, Shapely R, Shelley M, Wielaard DJ (2000) A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer of 4Ca. Proc Natl Acad Sci USA 97:8087–8092

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mohanty D, Scholl B, Priebe NJ (2012) The accuracy of membrane potential reconstruction based on spiking receptive fields. J Neurophysiol 107:2143–2153

    PubMed Central  PubMed  Google Scholar 

  • Monier C, Chavane F, Baudot P, Graham LJ, Frégnac Y (2003) Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37(4):663–680

    CAS  PubMed  Google Scholar 

  • Morrone MC, Burr DC, Maffei L (1982) Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proc R Soc Lond B 216:335–354

    CAS  PubMed  Google Scholar 

  • Nowak LG, Sanchez-Vives MV, McCormick DA (2010) Spatial and temporal features of synaptic to discharge receptive field transformation in cat area 17. J Neurophysiol 103:677–697

    PubMed Central  PubMed  Google Scholar 

  • Ohzawa I, Freeman RD (1986) The binocular organization of simple cells in the cat’s visual cortex. J Neurophysiol 56:221–242

    CAS  PubMed  Google Scholar 

  • Pei X, Vidyasagar TR, Volgushev M, Creutzfeldt OD (1994) Receptive analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex. J Neurosci 14(11): 7130–7140

    CAS  PubMed  Google Scholar 

  • Pettigrew JD, Nikara T, Bishop PO (1968) Binocular interaction on single unity in cat striate cortex: simultaneous stimulation by single moving slit with receptive fields in correspondence. Exp Brain Res 6:391–410

    CAS  PubMed  Google Scholar 

  • Priebe NJ, Ferster D (2005) Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron 45:133–145

    CAS  PubMed  Google Scholar 

  • Priebe NJ, Ferster D (2008) Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57:482–490

    CAS  PubMed  Google Scholar 

  • Reid RC, Alonso JM (1995) Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378:281–284

    CAS  PubMed  Google Scholar 

  • Ringach DL, Shapely RM, Hawken MJ (2002) Orientation selectivity in macaque V1: diversity and laminar dependence. J Neurosci 22:5639–5651

    CAS  PubMed  Google Scholar 

  • Sclar G, Freeman RD (1982) Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast. Exp Brain Res 46:457–461

    CAS  PubMed  Google Scholar 

  • Sharma J, Angelucci A, Sur M (2000) Induction of visual orientation modules in auditory cortex. Nature 404:841–847

    CAS  PubMed  Google Scholar 

  • Shou T, Leventhal AG, Thompson KG, Zhou Y (1995) Direction biases of X and Y type retinal ganglion cells in the cat. J Neurophysiol 73:1414–1421

    CAS  PubMed  Google Scholar 

  • Sillito AM (1975) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol 250:305–329

    PubMed Central  CAS  PubMed  Google Scholar 

  • Skottun BC, Bradley A, Sclar G, Ohzawa I, Freeman RD (1987) The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. J Neurophysiol 57:773–786

    CAS  PubMed  Google Scholar 

  • Somers DC, Nelson SB, Mriganka S (1995) An emergent model of orientation selectivity in cat visual cortical simple cells. J Neurosci 15:5448–5465

    CAS  PubMed  Google Scholar 

  • Sadogopan S, Ferster D (2012) Feedforward origins of response variability underlying contrast invariant orientation tuning in cat visual cortex. Neuron 74:911–923

    Google Scholar 

  • Stanley GB, Jin J, Wang Y, Desbordes G, Wang Q, Black MJ, Alonso JM (2012) Visual orientation and direction selectivity through thalamic synchrony. J Neurosci 32:9073–9088

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stratford KJ, Tarczy-Hornoch K, Martin KAC, Bannister NJ, Jack JJB (1996) Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature 382:258–261

    CAS  PubMed  Google Scholar 

  • Tanaka K (1983) Cross-correlation analysis of geniculostriate neuronal relationships in cats. J Neurophysiol 49:1303–1318

    CAS  PubMed  Google Scholar 

  • Tao L, Cai D, McLaughlin DW, Shelley MJ, Shapely R (2006) Orientation selectivity in visual cortex by fluctuation-controlled criticality. Proc Natl Acad Sci USA 103:12911–12916

    PubMed Central  CAS  PubMed  Google Scholar 

  • Toyama K, Kimura M, Tanaka K (1981) Organization of cat visual cortex as investigated by cross-correlation technique. J Neurophysiol 46:202–214

    CAS  PubMed  Google Scholar 

  • Troyer TW, Krukowski AE, Priebe NJ, Miller KD (1998) Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J Neurosci 18:5908–5927

    CAS  PubMed  Google Scholar 

  • Vidyasagar TR, Pei X, Volgushev M (1996) Multiple mechanisms underlying the orientation selectivity of visual cortical neurones. Trends Neurosci 19:272–277

    CAS  PubMed  Google Scholar 

  • Volgushev M, Vidyasagar TR, Pei X (1996) A linear model fails to predict orientation selectivity of cells in cat visual cortex. J Physiol 496:597–606

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Q, Webber RM, Stanley GB (2010) Thalamic synchrony and adaptive gating of information flow to cortex. Nat Neurosci 13:1534–1541

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wörgötter F, Koch C (1991) A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity. J Neurosci 11:1959–1979

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Priebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York (outside the USA)

About this entry

Cite this entry

Scholl, B., Priebe, N.J. (2015). Emergence of Orientation Selectivity in the Cerebral Cortex, Modeling. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_576

Download citation

Publish with us

Policies and ethics