Skip to main content

Red Sea Metagenomics

  • Living reference work entry
  • First Online:
Encyclopedia of Metagenomics
  • 167 Accesses

Synonyms

Community genomics of the Red Sea (Arabic: Al-Bahr al-Ahmar)

Definition

The study of microbial taxonomic and functional diversity in waters of the Red Sea by sequencing millions of small fragments of genomic DNA isolated from bacteria, archaea, and viruses collected from the seawater by filtration.

Introduction

The Red Sea is a seawater inlet of the Indian Ocean, technically an incipient ocean forming via seafloor spreading of the Red Sea Rift, part of the Great Rift Valley. Mostly isolated from the world ocean, the Red Sea is connected only by a shallow strait (Bab el Mandeb, 310 m) to the Gulf of Aden and by the very shallow Suez Canal (25 m) to the Mediterranean Sea. The region is subject to high year-round solar irradiance and high air temperatures. Because riverine and other freshwater inputs draining into the Red Sea are negligible, net evaporation has resulted in high salinities. High solar irradiance and low circulation with the Indian Ocean also cause high water...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Antunes A, Eder W, Fareleira P, Santos H, Huber R. Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine–seawater interface of the Shaban Deep, Red Sea. Extremophiles. 2002;7(1):29–34. doi:10.1007/s00792-002-0292-5.

    PubMed  Google Scholar 

  • Antunes A, Franca L, Rainey FA, Huber R, Nobre MF, Edwards KJ, da Costa MS. Marinobacter salsuginis sp. nov., isolated from the brine-seawater interface of the Shaban Deep, Red Sea. Int J Syst Evol Microbiol. 2007;57(5):1035–40. doi:10.1099/ijs.0.64862-0.

    Article  CAS  PubMed  Google Scholar 

  • Antunes A, Rainey FA, Wanner G, Taborda M, Patzold J, Nobre MF, da Costa MS, Huber R. A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J Bacteriol. 2008;190(10):3580–7. doi:10.1128/JB.01860-07.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Antunes A, Ngugi DK, Stingl U. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep. 2011;3(4):416–33. doi:10.1111/j.1758-2229.2011.00264.x.

    Article  PubMed  Google Scholar 

  • Barneah O, Ben-Dov E, Kramarsky-Winter E, Kushmaro A. Characterization of black band disease in Red Sea stony corals. Environ Microbiol. 2007;9(8):1995–2006. doi:10.1111/j.1462-2920.2007.01315.x.

    Article  CAS  PubMed  Google Scholar 

  • Coleman ML, Chisholm SW. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci USA. 2010;107(43):18634–9. doi:10.1073/pnas.1009480107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eder W, Jahnke LL, Schmidt M, Huber R. Microbial diversity of the brine–seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol. 2001;67(7):3077–85. doi:10.1128/AEM.67.7.3077-3085.2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eder W, Schmidt M, Koch M, Garbe-Schönberg D, Huber R. Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol. 2002;4(11):758–63. doi:10.1046/j.1462-2920.2002.00351.x.

    Article  CAS  PubMed  Google Scholar 

  • Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol. 2003;69(5):2430–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller N, West N, Marie D, Yallop M, Rivlin T. Dynamics of community structure and phosphate status of picocyanobacterial populations in the Gulf of Aqaba, Red Sea. Limnol Oceanogr. 2005;50:363. http://www.jstor.org/stable/3597908.

    Article  CAS  Google Scholar 

  • Kelman D, Kashman Y, Rosenberg E, Kushmaro A, Loya Y. Antimicrobial activity of Red Sea corals. Mar Biol. 2006;149(2):357–63. doi:10.1007/s00227-005-0218-8.

    Article  CAS  Google Scholar 

  • Kleijne A, Kroon D, Zevenboom W. Phytoplankton and foraminiferal frequencies in northern Indian Ocean and Red Sea surface waters. Netherlands J Sea Res. 1989;24(4):531–9.

    Article  Google Scholar 

  • Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian P-Y. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J. 2010;5(4):650–64. doi:10.1038/ismej.2010.165.

    Article  PubMed Central  PubMed  Google Scholar 

  • Millard AD, Mann NH. A temporal and spatial investigation of cyanophage abundance in the Gulf of Aqaba, Red Sea. J Mar Biol Assoc UK. 2006;86(03):507–15. doi:10.1017/S0025315406013415.

    Article  Google Scholar 

  • Ngugi DK, Stingl U. Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea. PLoS ONE. 2012;7(11):e50274. doi:10.1371/journal.pone.0050274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ngugi DK, Antunes A, Brune A, Stingl U. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea. Mol Ecol. 2012;21(2):388–405. doi:10.1111/j.1365-294X.2011.05378.x.

    Article  CAS  PubMed  Google Scholar 

  • Oz A, Sabehi G, Koblížek M, Massana R, Beja O. Roseobacter-like bacteria in Red and Mediterranean Sea aerobic anoxygenic photosynthetic populations. Appl Environ Microbiol. 2005;71(1):344–53. doi:10.1128/AEM.71.1.344-353.2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc Natl Acad Sci USA. 2010; doi:10.1073/pnas.1009513107 Proc Natl Acad Sci USA 107, 16184–16189 (2010).

    Google Scholar 

  • Sharon I, Tzahor S, Williamson S, Shmoish M, Man-Aharonovich D, Rusch DB, Yooseph S, Zeidner G, Golden SS, Mackey SR, Adir N, Weingart U, Horn D, Venter JC, Mandel-Gutfreund Y, Béjà O. Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J. 2007;1(6):492–501. doi:10.1038/ismej.2007.67.

    Article  CAS  PubMed  Google Scholar 

  • Steglich C, Post AF, Hess WR. Analysis of natural populations of Prochlorococcus spp. in the northern Red Sea using phycoerythrin gene sequences. Environ Microbiol. 2003;5(8):681–90. doi:10.1046/j.1462-2920.2003.00456.x.

    Article  CAS  PubMed  Google Scholar 

  • Steindler L, Huchon D, Avni A, Ilan M. 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl Environ Microbiol. 2005;71(7):4127–31. doi:10.1128/AEM.71.7.4127-4131.2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson LR, Field C, Romanuk T, Ngugi DK, Siam R, El Dorry H, Stingl U. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments. Ecol Evol. 2013. doi:10.1002/ece3.593.

    Google Scholar 

  • West NJ, Schönhuber WA, Fuller NJ, Amann RI, Rippka R, Post AF, Scanlan DJ. Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides. Microbiology. 2001;147(Pt 7):1731–44.

    CAS  PubMed  Google Scholar 

  • Zeidner G, Béjà O. The use of DGGE analyses to explore eastern Mediterranean and Red Sea marine picophytoplankton assemblages. Environ Microbiol. 2004;6(5):528–34.

    Article  CAS  PubMed  Google Scholar 

  • Zeidner G, Preston CM, DeLong EF, Massana R, Post AF, Scanlan DJ, Béjà O. Molecular diversity among marine picophytoplankton as revealed by psbA analyses. Environ Microbiol. 2003;5(3):212–6. doi:10.1046/j.1462-2920.2003.00403.x.

    Article  CAS  PubMed  Google Scholar 

  • Zeidner G, Bielawski JP, Shmoish M, Scanlan DJ, Sabehi G, Béjà O. Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environ Microbiol. 2005;7(10):1505–13. doi:10.1111/j.1462-2920.2005.00833.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Thompson, L. (2014). Red Sea Metagenomics. In: Nelson, K. (eds) Encyclopedia of Metagenomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6418-1_803-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6418-1_803-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6418-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics