Skip to main content

Animal Breeding, Foundations of

  • Reference work entry

Definition of the Subject

The term Animal Breeding refers to the human-guided genetic improvement of phenotypic traits in domestic animals such as livestock and companion species [1]. Animal breeding is based on principles of Quantitative Genetics [24] and aims to increase the frequency of favorable alleles and allelic combinations in the population, which is achieved through selection of superior individuals and specific mating systems strategies. Selection methods and mating strategies are developed by combining principles of quantitative and population genetics with sophisticated statistical methods and computational algorithms for integrating phenotypic, pedigree, and genomic information, along with the utilization of reproductive technologies that allow for larger progeny cohorts from superior animals as well as shorter generation intervals.

Through selection and mating...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Bayesian inference:

Statistical inference approach based on the combination of prior information and evidence (i.e., observations) for estimation or hypothesis testing. In Bayesian analysis the prior information is updated with the experimental data to generate the posterior distribution of unknowns, such as model parameters. The name “Bayesian” comes from the use of the Bayes’ theorem in the updating process.

Breeding value:

A measure of the genetic merit of an individual for breeding purposes.

Genetic correlation:

The correlation between traits that is caused by genetic as opposed to environmental factors. Genetic correlations can be caused by pleiotropy (genes that affect multiple traits simultaneously) or by linkage disequilibrium between genes affecting the different traits.

Genomic selection:

Genomic selection is a form of marker-assisted selection in which genetic markers covering the whole genome are used such that all quantitative trait loci (QTL) are in linkage disequilibrium with at least one marker.

Heritability (narrow sense):

The fraction of the phenotypic variance that is due to additive genetic effects.

Infinitesimal genetic model:

A genetic model that assumes that a trait is influenced by a very large (effectively infinite) number of loci, each with infinitesimal effect.

Linkage disequilibrium:

Nonrandom association of alleles at two or more loci, leading to combinations of alleles (haplotypes) that are more or less frequent in a population than would be expected from a random formation of haplotypes from alleles based on their frequencies.

Mixed models:

A mixed-effects model (or simply mixed model) is a statistical model containing both fixed and random effects. Such models are useful in a wide variety of disciplines in the physical, biological, and social sciences, especially for the analysis of data with repeated measurements on each statistical unit or with measurements taken on clusters of related statistical units.

Population genetics:

The study of allele frequency distribution and change under the influence of the four main evolutionary processes: selection, genetic drift, mutation, and migration.

Quantitative genetics:

The study of complex traits (e.g., production and reproductive traits, disease resistance) and their underlying genetic mechanisms. It is effectively an extension of simple Mendelian inheritance in that the combined effect of the many underlying genes results in a continuous distribution of phenotypic values or of some underlying scale or liability thereof.

Bibliography

Primary Literature

  1. Lush JL (1994) The genetics of populations. (Prepared for publication by Chapman AB, Shrode RR, with an addendum by Crow JF) Special report 94, College of Agriculture, Iowa State University, Ames

    Google Scholar 

  2. Bulmer MG (1985) The mathematical theory of quantitative genetics. Clarendon, Oxford

    Google Scholar 

  3. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longmans Green, Harlow

    Google Scholar 

  4. Lynch M, Walsh B (1998) Genetic analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  5. Hill WG (1969) On the theory of artificial selection in finite populations. Genet Res 13:143–163

    Article  PubMed  CAS  Google Scholar 

  6. Havenstein B, Ferket PR, Qureshi MA (2003) Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult Sci 82:1509–1518

    PubMed  CAS  Google Scholar 

  7. Bourdon RM (2000) Understanding animal breeding, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  8. Crow J, Kimura M (1970) An introduction to populations genetics theory. Haraper and Row, New York

    Google Scholar 

  9. Shook GE (2006) Major advances in determining appropriate selection goals. J Dairy Sci 89(4):1349–1361

    Article  PubMed  CAS  Google Scholar 

  10. Henderson CR (1949) Estimation of changes in herd environment. J Dairy Sci 32:709

    Google Scholar 

  11. Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447

    Article  PubMed  CAS  Google Scholar 

  12. Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Guelph

    Google Scholar 

  13. Fernando RL, Grossman M (1989) Marker-assisted selection using best linear unbiased prediction. Genet Sel Evol 21:467–477

    Article  Google Scholar 

  14. Yu J et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  15. Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8:625–637

    Article  PubMed  CAS  Google Scholar 

  16. Rosa GJM, Steibel JP, Tempelman RJ (2005) Reassessing design and analysis of two-color microarray experiments using mixed effects models. Comp Funct Genomics 6:123–131

    Article  PubMed  CAS  Google Scholar 

  17. Steibel JP, Poletto R, Coussens PM, Rosa GJM (2009) A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data. Genomics 94:146–152

    Article  PubMed  CAS  Google Scholar 

  18. Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309

    Google Scholar 

  19. Henderson CR (1953) Estimation of variance and covariance components. Biometrics 9:226

    Article  Google Scholar 

  20. Rao CR (1971) Estimation of variance and covariance components MINQUE theory. J Multivar Anal 1:257–275

    Article  Google Scholar 

  21. Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems. J Am Stat Assoc 72(358):320–338

    Article  Google Scholar 

  22. Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58(3):545–554

    Article  Google Scholar 

  23. Sorensen D, Gianola D (2002) Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer, New York

    Google Scholar 

  24. Littell RC, Miliken GA, Stroup WW, Wolfinger RD (2006) SAS system for mixed models, 2nd edn. SAS Institute, Cary

    Google Scholar 

  25. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Springer, New York

    Book  Google Scholar 

  26. Searle SR, Casella G, McCulloch CE (1992) Variance components. Wiley, New York

    Book  Google Scholar 

  27. Verbeke G, Molenberghs G (1997) Linear mixed models in practice: A SAS-oriented approach, Lecture Notes in Statistics 126. Springer, New York

    Book  Google Scholar 

  28. Wright S (1921) Systems of mating I. The biometric relations between parents and offspring. Genetics 6:111–123

    PubMed  CAS  Google Scholar 

  29. Henderson CR (1976) A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 32:69–83

    Article  Google Scholar 

  30. Quaas RL (1976) Computing the diagonal elements of a large numerator relationship matrix. Biometrics 32:949–953

    Article  Google Scholar 

  31. Henderson CR, Quaas RL (1976) Multiple trait evaluation using relatives’ records. J Anim Sci 43:1188–1197

    Google Scholar 

  32. Schaeffer LR (1984) Sire and cow evaluation under multiple trait models. J Dairy Sci 67:1567–1580

    Article  Google Scholar 

  33. Thompson R (1977) Estimation of quantitative genetic parameters. In: Pollak E, Kempthorne O, Bailey TB (eds) Proceedings of the international conference on quantitative genetics, Iowa State University Press, Ames, pp. 639–657

    Google Scholar 

  34. Meyer K (1985) Maximum-likelihood estimation of variance-components for a multivariate mixed model with equal design matrices. Biometrics 41:153

    Article  PubMed  CAS  Google Scholar 

  35. Ducrocq V, Besbes B (1993) Solution of multiple trait animal models with missing data on some traits. J Anim Breed Genet 110:81–92

    Article  PubMed  CAS  Google Scholar 

  36. Quaas RL, Pollak EJ (1981) Modified equations for sire models with groups. J Dairy Sci 64:1868–1872

    Article  Google Scholar 

  37. Quaas RL, Pollak EJ (1980) Mixed model methodology for farm and ranch beef cattle testing programs. J Anim Sci 51:1277–1287

    Google Scholar 

  38. Misztal I, Gianola D (1988) Indirect solution of mixed model equations. J Dairy Sci 77(Suppl 2):99–106

    Article  Google Scholar 

  39. Schaeffer LR, Kennedy BW (1986) Computing solutions to mixed model equations. In: 3rd World congress on genetic applied livestock production, Lincoln, Nebraska, 16–22 July 1986, vol XII. pp 382–393

    Google Scholar 

  40. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  41. Haley CS, Knott SA (1992) A simple regression method to for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  42. Haley CS, Knott SA, Elsen J-M (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136:1195–1207

    PubMed  CAS  Google Scholar 

  43. Pérez-Enciso M, Misztal I (2004) Qxpak: a versatile mixed model application for genetical genomics and QTL analyses. Bioinformatics 20(16):2792–2798

    Article  PubMed  CAS  Google Scholar 

  44. Meuwissen THE, Goddard ME (2000) Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155:421–430

    PubMed  CAS  Google Scholar 

  45. Pérez-Enciso M (2003) Fine mapping of complex trait genes combining pedigree and linkage disequilibrium information: a Bayesian unified framework. Genetics 163:1497–1510

    PubMed  Google Scholar 

  46. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  47. Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3(1):22–32

    Article  PubMed  CAS  Google Scholar 

  48. Dekkers JCM, van Arendonk JAM (1998) Optimizing selection for quantitative traits with information on an identified locus in outbred populations. Genet Res 71(3):257–275

    Article  Google Scholar 

  49. Manfredi E, Barbieri M, Fournet F, Elsen JM (1998) A dynamic deterministic model to evaluate breeding strategies under mixed inheritance. Genet Sel Evol 30:127–148

    Article  Google Scholar 

  50. Chakraborty R, Moreau L, Dekkers JCM (2002) A method to optimize selection on multiple identified quantitative trait loci. Genet Sel Evol 34(2):145–170

    Article  PubMed  CAS  Google Scholar 

  51. Goddard ME (1992) A mixed model for analyses of data on multiple genetic-markers. Theor Appl Genet 83:878–886

    Article  Google Scholar 

  52. Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Gen 124(6):323–330

    Article  CAS  Google Scholar 

  53. Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218–223

    Article  PubMed  CAS  Google Scholar 

  54. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  55. Whittaker JC, Thompson R, Visscher PM (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252

    Article  PubMed  CAS  Google Scholar 

  56. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc B 58:267–288

    Google Scholar 

  57. Gianola D, Perez-Enciso M, Toro MA (2003) On marker-assisted prediction of genetic value: beyond the ridge. Genetics 163:347–365

    PubMed  CAS  Google Scholar 

  58. Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163(2):789–801

    PubMed  CAS  Google Scholar 

  59. ter Braak CJF, Boer MP, Bink MCAM (2005) Extending Xu’s Bayesian model for estimating polygenic effects using markers of the entire genome. Genetics 170(3):1435–1438

    Article  PubMed  CAS  Google Scholar 

  60. Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning: data mining, inference, and predictions. Springer, New York

    Google Scholar 

  61. Calus MPL, Veerkamp RF (2007) Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM. J Anim Breed Genet 124:362–368

    Article  PubMed  CAS  Google Scholar 

  62. Muir WM (2007) Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J Anim Breed Genet 124:342–355

    Article  PubMed  CAS  Google Scholar 

  63. VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor J, Schenkel FS (2009) Reliability of genomic predictions for North American dairy bulls. J Dairy Sci 92:16–24

    Article  PubMed  CAS  Google Scholar 

  64. Weigel KA, de Los Campos G, González-Recio O, Naya H, Wu XL, Long N, Long N, Rosa GJM, Gianola D (2009) Predictive ability of direct genomic values for lifetime net merit of Holstein sires using selected subsets of single nucleotide polymorphism markers. J Dairy Sci 92:5248–5257

    Article  PubMed  CAS  Google Scholar 

  65. Henderson CR (1985) Best linear unbiased prediction of non-additive genetic merits in non-inbred populations. J Anim Sci 60:111–117

    Google Scholar 

  66. Hoeschele I, VanRaden PM (1991) Rapid inverse of dominance relationship matrices for noninbred populations by including sire and dam subclass effects. J Dairy Sci 74:557–569

    Article  PubMed  CAS  Google Scholar 

  67. Gianola D (1982) Theory and analysis of threshold characters. J Anim Sci 54:1079–1096

    Google Scholar 

  68. Gianola D, Foulley JL (1983) Sire evaluation for ordered categorical-data with a threshold-model. Genet Sel Evol 15(2):201–223

    Article  PubMed  CAS  Google Scholar 

  69. Tempelman RJ, Gianola D (1996) A mixed effects model for overdispersed count data in animal breeding. Biometrics 52:265–279

    Article  Google Scholar 

  70. Strandén I, Gianola D (1998) Attenuating effects of preferential treatment with student-t mixed linear models: a simulation study. Genet Sel Evol 31:25–42

    Article  Google Scholar 

  71. Rosa GJM, Padovani CR, Gianola D (2003) Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation. Biom J 45(5):573–590

    Article  Google Scholar 

  72. Ducrocq V, Casella G (1996) A Bayesian analysis of mixed survival models. Genet Sel Evol 28(6):505–529

    Article  Google Scholar 

  73. Varona L (1997) Multiple trait genetic analysis of underlying biological variables of production functions. Livest Prod Sci 47:201–209

    Article  Google Scholar 

  74. Forni S, Piles M, Blasco A et al (2009) Comparison of different nonlinear functions to describe Nelore cattle growth. J Anim Sci 87(2):496–506

    Article  PubMed  CAS  Google Scholar 

  75. Gianola D, Fernando RL (1986) Bayesian methods in animal breeding theory. J Anim Sci 63:217–244

    Google Scholar 

  76. Shoemaker JS, Painter IS, Weir BS (1999) Bayesian statistics in genetics - a guide for the uninitiated. Trends Genet 15:354–358

    Article  PubMed  CAS  Google Scholar 

  77. Blasco A (2001) The Bayesian controversy in animal breeding. J Anim Sci 79(8):2023–2046

    PubMed  CAS  Google Scholar 

  78. Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5:251–261

    Article  PubMed  CAS  Google Scholar 

  79. Yi N, Xu S (2008) Bayesian Lasso for quantitative trait loci mapping. Genetics 179:1045–1055

    Article  PubMed  CAS  Google Scholar 

  80. Gianola D, de Los Campos G, Hill WG et al (2009) Additive genetic variability and the Bayesian alphabet. Genetics 183(1):347–363

    Article  PubMed  Google Scholar 

  81. de Los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes J (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigrees. Genetics 182:375–385

    Article  CAS  Google Scholar 

  82. Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173:1761–1776

    Article  PubMed  CAS  Google Scholar 

  83. Gianola D, van Kaam JBCHM (2008) Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178:2289–2303

    Article  PubMed  Google Scholar 

  84. Long N, Gianola D, Rosa GJM, Weigel KA, Avendaño S (2007) Machine learning procedure for selecting SNPs in genomic selection: application to early mortality in broilers. J Anim Breed Genet 124(6):377–389

    Article  PubMed  CAS  Google Scholar 

  85. González-Recio O, Gianola D, Long N, Weigel KA, Rosa GJM, Avendano S (2008) Nonparametric methods for incorporating genomic information into genetic evaluations: an application to mortality in broilers. Genetics 178(4):2305–2313

    Article  PubMed  Google Scholar 

  86. Campos G, Gianola D, Rosa GJM (2009) The linear model of quantitative genetics is a reproducing kernel Hilbert spaces regression. J Anim Sci 87:1883–1887

    Article  CAS  Google Scholar 

  87. Misztal I, Legarra A, Aguilar I (2009) Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci 92:4648–4655

    Article  PubMed  CAS  Google Scholar 

  88. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman and Hall, London

    Google Scholar 

  89. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

Books and Reviews

  • Chapman AB (1980) General and quantitative genetics. World animal science series. Elsevier, Amsterdam

    Google Scholar 

  • Lange K (1997) Mathematical and statistical methods for genetic analysis. Springer, New York

    Google Scholar 

  • Liu BH (1998) Statistical genomics. CRC Press, Boca Raton

    Google Scholar 

  • Mrode R (2005) Linear models for the prediction of animal breeding values, 2nd edn. CAB International, New York

    Book  Google Scholar 

  • Ott J (1991) Analysis of Human Genetic Linkage. Johns Hopkins, Baltimore

    Google Scholar 

  • Sham PC (1998) Statistics in human genetics. Arnold, London

    Google Scholar 

  • Van Vleck LD (1993) Selection index and introduction to mixed model methods for genetic improvement of animals. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme J. M. Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Rosa, G.J.M. (2013). Animal Breeding, Foundations of. In: Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A. (eds) Sustainable Food Production. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5797-8_334

Download citation

Publish with us

Policies and ethics