Skip to main content

Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis

  • Reference work entry
  • First Online:
Handbook of Coherent-Domain Optical Methods

Abstract

The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.M. Goldys (ed.), Fluorescence Applications in Biotechnology and the Life Sciences (Wiley-Blackwell, New-Jersey, 2009)

    Google Scholar 

  2. V. Ntziachristos, Fluorescence molecular imaging. Annu. Rev. Biomed. Eng. 8, 1–33 (2006)

    Article  Google Scholar 

  3. L. Schermelleh, R. Heintzmann, H. Leonhardt, A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010)

    Article  Google Scholar 

  4. B. Huang, M. Bates, X. Zhuang, Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009)

    Article  Google Scholar 

  5. The Molecular Probes® Handbook, 11th edn. (2011). www.invitrogen.com

  6. M. Monici, Cell and tissue autofluorescence research and diagnostic applications, in Biotechnology Annual Review, ed. by M.R. El-Gewely (Elsevier, Amsterdam, 2005), pp. 227–256

    Google Scholar 

  7. C.W. Chang, D. Sud, M.A. Mycek, Fluorescence lifetime imaging microscopy. Methods Cell Biol. 81, 495–524 (2007)

    Article  Google Scholar 

  8. O. Shimomura, The discovery of aequorin and green fluorescent protein. J. Microsc. 217, 3–15 (2005)

    Article  MathSciNet  Google Scholar 

  9. P.L. Felgner et al., Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. U.S.A. 84, 7413–7417 (1987)

    Article  ADS  Google Scholar 

  10. X. Tsampoula et al., Fibre based cellular transfection. Opt. Express 16, 17007–17013 (2008)

    Article  ADS  Google Scholar 

  11. A.F. Fercher, Optical coherence tomography. J. Biomed. Opt. 1, 157–173 (1996)

    Article  ADS  Google Scholar 

  12. W. Drexler, Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9, 47–74 (2004)

    Article  ADS  Google Scholar 

  13. L.G. Rodriguez, S.J. Lockett, G.R. Holtom, Coherent anti-stokes raman scattering microscopy: a biological review. Cytometry A 69, 779–791 (2006)

    Google Scholar 

  14. T. Kreis, in Holographic Interferometry: Principles and Methods, ed. by W. Osten, vol. 1 (Akademie-Verlag, Berlin, 1996)

    Google Scholar 

  15. V.P. Shchepinov, V.S. Pisarev, Strain and Stress Analysis by Holographic and Speckle Interferometry (Wiley, New York, 1996)

    Google Scholar 

  16. M.-A. Beeck, W. Hentschel, Laser metrology – a diagnostic tool in automotive development processes. Opt. Lasers Eng. 34, 101–120 (2000)

    Article  Google Scholar 

  17. E. Cuche, P. Marquet, C. Depeursinge, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38(24), 6694–7001 (1999)

    Google Scholar 

  18. F. Charrière et al., Characterization of microlenses by digital holographic microscopy. Appl. Opt. 45, 829–835 (2006)

    Article  ADS  Google Scholar 

  19. D. Carl et al., Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl. Opt. 43, 6536–6544 (2004)

    Article  ADS  Google Scholar 

  20. P. Marquet et al., Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005)

    Article  ADS  Google Scholar 

  21. C.J. Mann et al., High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express 13, 8693–8698 (2005)

    Article  ADS  Google Scholar 

  22. B. Kemper, G. von Bally, Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt. 47, A52–A61 (2008)

    Article  ADS  Google Scholar 

  23. B. Kemper et al., Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells. Proc. SPIE 6191, 61910T (2006)

    Article  Google Scholar 

  24. G. von Bally et al., New methods for marker-free live cell and tumor analyis, in Biophotonics: Vision for Better Healthcare, ed. by J. Popp, M. Strehle (Wiley, Berlin, 2006), pp. 301–360

    Chapter  Google Scholar 

  25. B. Kemper et al., Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy. J. Biophoton. 3, 425–431 (2010)

    Article  Google Scholar 

  26. M. Esseling et al., Multimodal biophotonic workstation for live cell analysis. J. Biophoton. 5, 9–13 (2012)

    Article  Google Scholar 

  27. L.G. Alexopoulos, G.R. Erickson, F. Guilak, A method for quantifying cell size from differential interference contrast images: validation and application to osmotically stressed chondrocytes. J. Microsc. 205, 125–135 (2001)

    Article  MathSciNet  Google Scholar 

  28. A. Barty et al., Quantitative optical phase microscopy. Opt. Lett. 23(11), 817–819 (1998)

    Article  ADS  Google Scholar 

  29. J. Farinas, A.S. Verkman, Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry. Biophys. J. 71, 3511–3522 (1996)

    Article  ADS  Google Scholar 

  30. T. Ikeda et al., Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30(10), 1165–1167 (2005)

    Article  ADS  Google Scholar 

  31. G. Popescu et al., Fourier phase microscopy for investigation of biological structures and dynamics. Opt. Lett. 29, 2503–2505 (2004)

    Article  ADS  Google Scholar 

  32. V.P. Tychinskii, Coherent phase microscopy of intracellular processes. Phys. Usp. 44, 617–629 (2001)

    Article  ADS  Google Scholar 

  33. A.D. Aguirre et al., High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. Opt. Lett. 28, 2064–2066 (2003)

    Article  ADS  Google Scholar 

  34. E.A. Swanson et al., In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864–1866 (1993)

    Article  ADS  Google Scholar 

  35. Y. Zhao et al., Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation. Opt. Lett. 27, 98–100 (2002)

    Article  ADS  Google Scholar 

  36. C.G. Rylander et al., Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy. Opt. Lett. 29(13), 1509–1511 (2004)

    Article  ADS  Google Scholar 

  37. A.K. Ellerbee, T.L. Reazzo, J.A. Izatt, Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy. Opt. Express 15, 8115–8124 (2007)

    Article  ADS  Google Scholar 

  38. C. Joo, K.H. Kim, J.F. de Boer, Spectral-domain optical coherence phase and multiphoton microscopy. Opt. Lett. 32, 623–625 (2007)

    Article  ADS  Google Scholar 

  39. U. Schnars, W.P.O. Jüptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, 85–101 (2002)

    Article  ADS  Google Scholar 

  40. P. Langehanenberg, G. von Bally, B. Kemper, Application of partial coherent light in live cell imaging with digital holographic microscopy. J. Mod. Opt. 57, 709–717 (2010)

    Article  ADS  Google Scholar 

  41. B. Kemper et al., Investigation of living pancreas tumor cells by digital holographic microscopy. J. Biomed. Opt. 11(3), 034005–034008 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  42. H. Ding, G. Popescu, Instantaneous spatial light interference microscopy. Opt. Express 18, 1569–1575 (2010)

    Article  ADS  Google Scholar 

  43. J. Jang et al., Self-reference quantitative phase microscopy for microfluidic devices. Opt. Lett. 35, 514–516 (2010)

    Article  ADS  Google Scholar 

  44. N.T. Shaked et al., Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics. J. Biomed. Opt. 15, 030503 (2010)

    Article  ADS  Google Scholar 

  45. G. Popescu et al., Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775–778 (2006)

    Article  ADS  Google Scholar 

  46. B. Kemper et al., Simplified approach for quantitative digital holographic quantitative phase contrast imaging of living cells. J. Biomed. Opt. 16, 026014 (2011)

    Article  ADS  Google Scholar 

  47. P. Bon et al., Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 17, 13080–13094 (2009)

    Article  ADS  Google Scholar 

  48. T.-C. Poon (ed.), Digital Holography and Three-Dimensional Display (Springer, New York, 2006)

    Google Scholar 

  49. L. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, Boston, 2004)

    Google Scholar 

  50. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, Weinheim, 2005)

    Google Scholar 

  51. M.K. Kim, L. Yu, C.J. Mann, Interference techniques in digital holography. J. Opt. A 8, 518–523 (2006)

    Article  ADS  Google Scholar 

  52. J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1996)

    Google Scholar 

  53. T. Colomb, F. Montfort, C. Depeursinge, Small reconstruction distance in convolution formalism, paper DMA4, in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest, ed. by C. Depeursinge (Optical Society of America, Washington, DC, 2008)

    Google Scholar 

  54. M.K. Kim, Principles and techniques of digital holographic microscopy. SPIE Rev. 1, 018005 (2010)

    Article  Google Scholar 

  55. S. De Nicola et al., Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes. Opt. Express 13, 9935–9940 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  56. N.T. Shaked et al., Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy. Biomed. Opt. Express 1, 706–719 (2010)

    Article  Google Scholar 

  57. B. Kemper et al., Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy. J. Bio. Med. Opt. 12, 054009 (2007)

    Article  MathSciNet  Google Scholar 

  58. J. Klokkers et al., Atrial natriuretic peptide and nitric oxide signaling antagonizes 2 vasopressin-mediated water permeability in inner medullary 3 collecting duct cells. Am. J. Physiol. Renal Physiol. 297(3), F693–703 (2009)

    Article  Google Scholar 

  59. T. Zhang, I. Yamaguchi, Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett. 23, 1221–1223 (1998)

    Article  ADS  Google Scholar 

  60. I. Yamaguchi et al., Image formation in phase-shifting digital holography and applications to microscopy. Appl. Opt. 40, 6177–6186 (2001)

    Article  ADS  Google Scholar 

  61. K. Creath, Temporal phase measurement methods, in Interferogram Analysis, ed. by D. Robinson, S. Reid (Institute of Physics Publishing, Bristol, 1993), pp. 94–140

    Google Scholar 

  62. F. Dubois, L. Joannes, J.-C. Legros, Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl. Opt. 38(34), 7085–7094 (1999)

    Article  ADS  Google Scholar 

  63. B. Kemper et al., Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces. Opt. Lasers Eng. 46, 499–507 (2008)

    Article  Google Scholar 

  64. C. Remmersmann et al., Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging. Appl. Opt. 48, 1463–1472 (2009)

    Article  ADS  Google Scholar 

  65. B. Kemper et al., Application of 3D tracking. LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy. Proc. SPIE 7184, 71840R (2009)

    Article  Google Scholar 

  66. G. Nomarski, Differential microinterferometer with polarized waves. J. Phys. Radium. 16, 9–13 (1955)

    Google Scholar 

  67. B. Kemper et al., Optimization of spatial phase shifting in endoscopic electronic-speckle-pattern-interferometry. Opt. Commun. 217, 151–160 (2003)

    Article  ADS  Google Scholar 

  68. M. Liebling, T. Blu, M. Unser, Complex-wave retrieval from a single off-axis hologram. J. Opt. Soc. Am. A 21(3), 367–377 (2004)

    Article  ADS  Google Scholar 

  69. P. Langehanenberg, G. von Bally, B. Kemper, Autofocussing in digital holographic microscopy. 3D Res. 2, 01004 (2011)

    Article  Google Scholar 

  70. P. Marquet et al., Analysis of cellular structure and dynamics with digital holographic microscopy. Proc. SPIE 6633, 66330F (2007)

    Article  Google Scholar 

  71. M. Takeda, H. Ina, S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982)

    Article  ADS  Google Scholar 

  72. T. Kreis, Digital holographic interference-phase measurement using the Fourier-transform method. J. Opt. Soc. Am. A 3, 847–855 (1986)

    Article  ADS  Google Scholar 

  73. S. Rasheed et al., Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33, 1027–1033 (1974)

    Article  Google Scholar 

  74. B. Kemper et al., Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens. Proc. SPIE 8082, 808207 (2011)

    Article  Google Scholar 

  75. F. Dubois et al., Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt. Express 14, 5895–5908 (2006)

    Article  ADS  Google Scholar 

  76. P. Langehanenberg et al., Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Appl. Opt. 47, D176–D182 (2008)

    Article  ADS  Google Scholar 

  77. Y. Sun, S. Duthaler, B.J. Nelson, Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc. Res. Tech. 65, 139–149 (2004)

    Article  Google Scholar 

  78. F.C. Groen, I.T. Young, G. Ligthart, A comparison of different focus functions for use in autofocus algorithms. Cytometry A 6, 81–91 (1985)

    Article  Google Scholar 

  79. L. Firestone et al., Comparison of autofocus methods for automated microscopy. Cytometry 12, 195–206 (1991)

    Article  Google Scholar 

  80. M. Bravo-Zanoguera et al., High-performance autofocus circuit for biological microscopy. Rev. Sci. Instrum. 69, 3966–3977 (1998)

    Article  ADS  Google Scholar 

  81. P. Langehanenberg, B. Kemper, G. von Bally, Autofocus algorithms for digital-holographic microscopy. Proc. SPIE 6633, 66330E (2007)

    Article  ADS  Google Scholar 

  82. P. Langehanenberg et al., Automated 3D-tracking of living cells by digital holographic microscopy. J. Biomed. Opt. 14, 014018 (2009)

    Article  ADS  Google Scholar 

  83. J. Kühn et al., Axial sub-nanometer accuracy in digital holographic microscopy. Meas. Sci. Technol. 19, 074007 (2008)

    Article  ADS  Google Scholar 

  84. S. Kosmeier et al., Multi-wavelength digital holographic microscopy for high resolution inspection of surfaces and imaging of phase specimen. Proc. SPIE 7718, 77180T (2010)

    Article  Google Scholar 

  85. H. Iwai et al., Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. Opt. Lett. 29, 2399–2401 (2004)

    Article  ADS  Google Scholar 

  86. J. Kühn et al., Sub-micrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection. Opt. Lett. 34, 653–655 (2009)

    Article  ADS  Google Scholar 

  87. S. Kosmeier et al., Reduction of parasitic interferences in digital holographic microscopy by numerically decreased coherence length. Appl. Phys. B 106(1), 107–115 (2012)

    Article  ADS  Google Scholar 

  88. B. Kemper, P. Langehanenberg, G. von Bally, Methods and applications for marker-free quantitative digital holographic phase contrast imaging in life cell analysis. Proc. SPIE 6796, 6796E (2007)

    ADS  Google Scholar 

  89. A. Ashkin, Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997)

    Article  ADS  Google Scholar 

  90. J. Guck et al., Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 84(23), 5451 (2000)

    Article  ADS  Google Scholar 

  91. B. Rappaz et al., Measurement of the integral refractive index and dynamic cell morphotometry of living cells with digital holographic microscopy. Opt. Express 13, 9361–9373 (2005)

    Article  ADS  Google Scholar 

  92. W. Choi et al., Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007)

    Article  Google Scholar 

  93. M. Debailleul et al., High-resolution three-dimensional tomographic diractive microscopy of transparent inorganic and biological samples. Opt. Lett. 34, 79–81 (2009)

    Article  ADS  Google Scholar 

  94. S. Kosmeier et al., Determination of the integral refractive index of cells in suspension by digital holographic phase contrast microscopy. Proc. SPIE 6991, 699110 (2008)

    Article  Google Scholar 

  95. M. Kemmler et al., Noninvasive timedependent cytometry monitoring by digital holography. J. Biomed. Opt. 12, 064002 (2007)

    Article  ADS  Google Scholar 

  96. Å. Björk, Numerical Methods for Least Squares Problems (SIAM, Philadelphia, 1996)

    Book  Google Scholar 

  97. C.E. Rommel et al., Contrast enhanced digital holographic imaging of cellular structures by manipulating intracellular refractive index. J. Biomed. Opt. 15, 041509 (2010)

    Article  ADS  Google Scholar 

  98. E. Shaffer et al., Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy. Opt. Lett. 35, 4102–4104 (2010)

    Article  Google Scholar 

  99. E. Shaffer, P. Marquet, C. Depeursinge, Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy. Opt. Express 18, 17392–17403 (2010)

    Article  Google Scholar 

  100. Y. Cotte et al., Realistic 3D coherent transfer function inverse filtering of complex fields. Biomed. Opt. Express 2, 2216–2230 (2011)

    Article  Google Scholar 

  101. Y. Cotte et al., Microscopy image resolution improvement by deconvolution of complex fields. Opt. Express 18, 19462–19478 (2010)

    Article  ADS  Google Scholar 

  102. S.D. Babacan et al., Cell imaging beyond the diffraction limit using sparse deconvolution spatial light interference microscopy. Biomed. Opt. Express 2, 1815–1827 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the German Ministry for Education and Research (BMBF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Kemper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Kemper, B. et al. (2013). Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis. In: Tuchin, V. (eds) Handbook of Coherent-Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5176-1_6

Download citation

Publish with us

Policies and ethics