Skip to main content

Laser Speckle Imaging of Cerebral Blood Flow

  • Reference work entry
  • First Online:
Book cover Handbook of Coherent-Domain Optical Methods

Abstract

Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.U. Frerichs, G.Z. Feuerstein, Laser Doppler flowmetry: a review of its application for measuring cerebral and spinal cord blood flow. Mol. Chem. Neuropathol. 12, 55–61 (1990)

    Article  Google Scholar 

  2. U. Dirnagl, B. Kaplan, M. Jacewicz, W. Pulsinelli, Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J. Cereb. Blood Flow Metab. 9, 589–596 (1989)

    Article  Google Scholar 

  3. B.M. Ances, J.H. Greenberg, J.A. Detre, Laser Doppler imaging of activation-flow coupling in the rat somatosensory cortex. Neuroimage 10, 716–723 (1999)

    Article  Google Scholar 

  4. M. Lauritzen, M. Fabricius, Real time laser-Doppler perfusion imaging of cortical spreading depression in rat neocortex. Neuroreport 6, 1271–1273 (1995)

    Article  Google Scholar 

  5. D.A. Zimnyakov, J.D. Briers, V.V. Tuchin, Speckle technologies for monitoring and imaging of tissues and tissuelike phantoms, in Handbook of Optical Biomedical Diagnostics, ed. by V.V. Tuchin, vol. PM107 (SPIE Press, Bellingham, 2002), pp. 987–1036

    Google Scholar 

  6. D.A. Zimnyakov, V.V. Tuchin, Laser tomography, in Medical Applications of Lasers, ed. by D.R. Vij, K. Mahesh (Kluwer, Boston, 2002), pp. 147–194

    Chapter  Google Scholar 

  7. E.I. Galanzha, G.E. Brill, Y. Aizu, S.S. Ulyanov, V.V. Tuchin, Speckle and Doppler methods of blood and lymph flow monitoring, in Handbook of Optical Biomedical Diagnostics, ed. by V.V. Tuchin, vol. PM107 (SPIE Press, Bellingham, 2002), pp. 881–937

    Google Scholar 

  8. R. Bullock, P. Statham, J. Patterson, D. Wyper, D. Hadley, E. Teasdale, The time course of vasogenic oedema after focal human head injury-evidence from SPECT mapping of blood brain barrier defects. Acta Neurochir. Suppl. 51, 286–288 (1990)

    Google Scholar 

  9. M. Schröder, J.P. Muizelaar, R. Bullock, J.B. Salvant, J.T. Povlishock, Focal ischemia due to traumatic contusions, documented by SPECT, stable Xenon CT, and ultrastructural studies. J. Neurosurg. 82, 966–971 (1995)

    Article  Google Scholar 

  10. A. Alavi, R. Dann, J. Chawluk et al., Positron emission tomography imaging of regional cerebral glucose metabolism. Semin. Nucl. Med. 16, 2–34 (1996)

    Google Scholar 

  11. W.D. Heiss, O. Pawlik, K. Herholz et al., Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [18 F]-2-fluoro-2-deoxy-d-glucose. J. Cereb. Blood Flow Metab. 3, 250–253 (1984)

    Google Scholar 

  12. L.P. Carter, Surface monitoring of cerebral cortical blood flow. Cerebrovasc. Brain Metab. Rev. 3, 246–261 (1991)

    Google Scholar 

  13. C.A. Dickman, L.P. Carter, H.Z. Baldwin et al., Technical report. Continuous regional cerebral blood flow monitoring in acute craniocerebral trauma. Neurosurgery 28(467–472) (1991)

    Google Scholar 

  14. O. Sakurada, C. Kennedy, J. Jehle, J.D. Brown, G.L. Carbin, Sokoloff measurement of local cerebral blood flow with iodo [14C] antipyrine. Am. J. Physiol. 234, H59–H66 (1978)

    Google Scholar 

  15. D.S. Williams, J.A. Detre, J.S. Leigh et al., Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc. Natl. Acad. Sci. U.S.A. 89, 212–216 (1992)

    Article  ADS  Google Scholar 

  16. F. Calamante, D.L. Thomas, G.S. Pell, J. Wiersma, R. Turner, Measuring cerebral blood flow using magnetic resonance imaging techniques. J. Cereb. Blood Flow Metab. 19, 701–735 (1999)

    Article  Google Scholar 

  17. A.F. Fercher, J.D. Briers, Flow visualization by means of single-exposure speckle photography. Opt. Commun. 37, 326–329 (1981)

    Article  ADS  Google Scholar 

  18. J.D. Briers, S. Webster, Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow. J. Biomed. Opt. 1, 174–179 (1996)

    Article  ADS  Google Scholar 

  19. K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, H. Abe, Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry. Am. J. Ophthalmol. 129, 734–739 (2000)

    Article  Google Scholar 

  20. B. Ruth, Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method. Med. Eng. Phys. 16, 105–111 (1994)

    Article  Google Scholar 

  21. A.K. Dunn, H. Bolay, M.A. Moskowitz, D.A. Boas, Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab. 21, 195–201 (2001)

    Article  Google Scholar 

  22. H. Bolay, U. Reuter, A.K. Dunn, Z. Huang, D.A. Boas, A.M. Moskowitz, Intrinsic brain activity triggers trigeminal meningeal afferernts in a migraine model. Nat. Med. 8, 136–142 (2002)

    Article  Google Scholar 

  23. R. Bandyopadhyay, A.S. Gittings, S.S. Suh, P.K. Dixon, D.J. Durian, Speckle-visibility spectroscopy: a tool to study time-varying dynamics. Rev. Sci. Instrum. 76, 093110 (2005)

    Article  ADS  Google Scholar 

  24. R. Bonner, R. Nossal, Model for laser Doppler measurements of blood flow in tissue. Appl. Opt. 20, 2097–2107 (1981)

    Article  ADS  Google Scholar 

  25. J.K. Sean, D.D. Donald, M.W. Elaine, Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging. Opt. Lett. 33, 2886–2888 (2008)

    Article  Google Scholar 

  26. S. Liu, P. Li, Q. Luo, Fast blood flow visualization of highresolution laser speckle imaging data using graphics processing unit. Opt. Express 16, 14321–14329 (2008)

    Article  ADS  Google Scholar 

  27. J. Owens, A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26, 80–113 (2007)

    Article  Google Scholar 

  28. X. Tang, N. Feng, X. Sun, P. Li, Q. Luo, Portable laser speckle perfusion imaging system based on digital signal processor. Rev. Sci. Instrum. 81, 125110 (2010)

    Article  ADS  Google Scholar 

  29. C. Jiang, H.Y. Zhang, J. Wang, Y.R. Wang, H. He, R. Liu, F.Y. Zhou, J.L. Deng, P.C. Li, Q.M. Luo, Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging. J. Biomed. Opt. 16(116008) (2011)

    Google Scholar 

  30. Z. Wang, Q.M. Luo, H.Y. Cheng, W.H. Luo, H. Gong, Q. Lu, Blood flow activation in rat somatosensory cortex under sciatic nerve stimulation revealed by laser speckle imaging. Prog. Nat. Sci. U.S.A. 13(7), 522–527 (2006)

    Google Scholar 

  31. R. Greger, U. Windhorst, Comprehensive Human Physiology (Springer, Berlin, 1996), pp. 561–578

    Google Scholar 

  32. A.C. Ngai, J.R. Meno, H.R. Winn, Simultaneous measurements of pial arteriolar diameter and Laser-Doppler Flow during somatosensory stimulation. J. Cereb. Blood Flow Metab. 15, 124–127 (1995)

    Article  Google Scholar 

  33. A.C. Silva, S. Lee, G. Yang, C. Iadecola, S. Kim, Simultaneous blood oxygenation level-dependent and cerebral blood flow function magnetic resonance imaging during forepaw stimulation in the rat. J. Cereb. Blood Flow Metab. 19, 871–879 (1999)

    Article  Google Scholar 

  34. T. Matsuura, I. Kanno, Quantitative and temporal relationship between local cerebral blood flow and neuronal activation induced by somatosensory stimulation in rats. Neurosci. Res. 40, 281–290 (2001)

    Article  Google Scholar 

  35. D. Kleinfeld, P.P. Mitra, F. Helmchen, W. Denk, Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. U.S.A. 95, 15741–15746 (1998)

    Article  ADS  Google Scholar 

  36. M.E. Raichle, Neuroenergetics: relevance for functional brain imaging, in Human Frontier Science Program (Bureaux Europe, Strasbourg, 2001), pp. 65–68

    Google Scholar 

  37. R.D. Hall, E.P. Lindholm, Organization of motor and somatosensory neocortex in the albino rat. Brain Res. 66, 23–28 (1974)

    Article  Google Scholar 

  38. A.C. Ngai, K.R. Ko, S. Morii, H.R. Winn, Effects of sciatic nerve stimulation on pial arterioles in rats. Am. J. Physiol. 269, H133–H139 (1988)

    Google Scholar 

  39. A.C. Ngai, M.A. Jolley, R. D’Ambrosio, J.R. Meno, H.R. Winn, Frequency-dependent changes in cerebral blood flow and evoked by potentials during somatosensory stimulation in the rat. Brain Res. 837, 221–228 (1999)

    Article  Google Scholar 

  40. J.A. Detre, B.M. Ances, K. Takahashi, J.H. Greenberg, Signal averaged Laser Doppler measurements of activation-flow coupling in the rat forepaw somatosensory cortex. Brain Res. 796, 91–98 (1998)

    Article  Google Scholar 

  41. R. Steinmeier, I. Bondar, C. Bauhuf, R. Fahlbusch, Laser Doppler flowmetry mapping of cerebrocortical microflow characteristics and limitations. Neuroimage 15, 107–119 (2002)

    Article  Google Scholar 

  42. G. Taubes, Play of light opens a new window into the body. Science 27, 1991–1993 (1997)

    Article  Google Scholar 

  43. A.N. Bashkatov, E.A. Genina, V.I. Kochubey, Y.P. Sinichkin, A.A. Korobov, N.A. Lakodina, V.V. Tuchin, In vitro study of control of human dura mater optical properties by acting of osmotical liquids. Proc. SPIE 4162, 182–188 (2000)

    Article  ADS  Google Scholar 

  44. A.N. Bashkatov, E.A. Genina, Y.P. Sinichkin, V.I. Kochubey, N.A. Lakodina, V.V. Tuchin, Glucose and mannitol diffusion in human dura mater. Biophys. J. 85, 3310–3318 (2003)

    Article  ADS  Google Scholar 

  45. E. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, A.J. Welch, Effects of compression on soft tissue optical properties. IEEE J. Select. Topics Quantum. Electron. 2, 943–950 (1997)

    Article  Google Scholar 

  46. I.F. Cilesiz, A.J. Welch, Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta. Appl. Opt. 32, 477–487 (1993)

    Article  ADS  Google Scholar 

  47. V.V. Tuchin, I.L. Maksimova, D.A. Zimnyakov, I.L. Kon, A.K. Mavlutov, A.A. Mishin, Light propagation in tissues with controlled optical properties. J. Biomed. Opt. 2, 401–417 (1997)

    Article  ADS  Google Scholar 

  48. V.V. Bakutkin, I.L. Maksimova, T.N. Semyonova, V.V. Tuchin, I.L. Kon, Controlling of optical properties of sclera. Proc. SPIE 2393, 137–141 (1995)

    Article  ADS  Google Scholar 

  49. B. Nemati, A. Dunn, A.J. Welch, H.G. Rylander, Optical model for light distribution during transscleral cyclophotocoagulation. App. Opt. 37, 764–771 (1998)

    Article  ADS  Google Scholar 

  50. G. Vargas, E.K. Chan, J.K. Barton, H.G. Rylander, A.J. Welch, Use of an agent to reduce scattering in skin. Lasers Surg. Med. 24, 133–141 (1999)

    Article  Google Scholar 

  51. G. Vargas, K.F. Chan, S.L. Thomsen, A.J. Welch, Use of osmotically active agents to alter optical properties of tissue: effects on the detected fluorescence signal measured through skin. Lasers Surg. Med. 29, 213–220 (2001)

    Article  Google Scholar 

  52. H.Y. Cheng, Q.M. Luo, S.Q. Zeng, J. Cen, W.X. Liang, Optical dynamic imaging of the regional blood flow in the rat mesentery under the effect of noradrenalin. Prog. Nat. Sci. 13, 198–201 (2003)

    Google Scholar 

  53. H.Y. Cheng, Q.M. Luo, Z. Wang, S.Q. Zeng, Laser speckle imaging system of monitoring the regional velocity distribution. Chinese J. Sci. Instrum. 25(3), 409–412 (2004)

    Google Scholar 

  54. E.I. Galanzha, V.V. Tuchin, A.V. Solovieva, T.V. Stepanova, Q.M. Luo, H.Y. Cheng, Skin backreflectance and microvascular system functioning at the action of osmotic agents. J. Phys. D: Appl. Phys. 36, 1739–1746 (2003)

    Article  ADS  Google Scholar 

  55. H. Liu, B. Beauvoit, M. Kimura, B. Chance, Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity. J. Biomed. Opt. 1, 200–211 (1996)

    Article  ADS  Google Scholar 

  56. Y.R. Tran Dinh, C. Thurel, A. Serrie, G. Cunin, J. Seylaz, Glycerol injection into the trigeminal ganglion provokes a selective increase in human cerebral blood flow. Pain 46, 13–16 (1991)

    Article  Google Scholar 

  57. E. Jungermann, N.O.V. Sonntag, Glycerine: A Key Cosmetic Ingredient (Marcel Dekker, New York, 1991)

    Google Scholar 

  58. J.B. Segur, Uses of glycerine, in Glycerol, ed. by C.S. Miner, N.N. Dalton (Reinhold, New York, 1953), pp. 238–330

    Google Scholar 

  59. A. Grinvald, R.D. Frostig, R.M. Siegel, E. Bartfeld, High-resolution optical imaging of functional brain architecture in the awake monkey. Proc. Natl. Acad. Sci. U.S.A. 88, 11559–11563 (1991)

    Article  ADS  Google Scholar 

  60. L.M. Chen, B. Heider, G.V. Williams, F.L. Healy, B.M. Ramsden, A.W. Roe, A chamber and artificial dura method for long-term optical imaging in the monkey. J. Neurosci. Methods 113, 41–49 (2002)

    Article  Google Scholar 

  61. Z. Wang, W.H. Luo, P.C. Li, J.J. Qiu, Q.M. Luo, Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging. J. Biomed. Opt. 13, 064023 (2008)

    Article  ADS  Google Scholar 

  62. A.L. McCall, Cerebral glucose metabolism in diabetes mellitus. Eur. J. Pharmacol. 490(1–3), 147–158 (2004)

    Article  Google Scholar 

  63. A. Gorji, Spreading depression: a review of the clinical relevance. Brain Res. Rev. 38(1–2), 33–60 (2001)

    Article  Google Scholar 

  64. M.A. Vilensky, D.N. Agafonov, D.A. Zimnyakov, V.V. Tuchin, R.A. Zdrazhevskii, Speckle-correlation analysis of the microcapillary blood circulation in nail bed. Quantum Electron. 41(4), 324–328 (2011)

    Article  ADS  Google Scholar 

  65. M.J. Leahy, F.F.M. de Mul, G.E. Nilsson, R. Maniewski, Principles and practice of the laser-Doppler perfusion technique. Technol. Health Care 7, 143–162 (1999)

    Google Scholar 

  66. K. Yaoeda, M. Shirakashi, S. Funaki, T. Nakatsue, H. Abe, Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry. Am. J. Ophthalmol. 129, 734–739 (2000)

    Article  Google Scholar 

  67. S. Hanazawa, R.L. Prewitt, J.K. Terzis, The effect of pentoxifylline on ischemia and reperfusion injury in the rat cremaster muscle. J. Reconstr. Microsurg. 10, 21–26 (1994)

    Article  Google Scholar 

  68. J.B. Dixon, D.C. Zawieja, A.A. Gashev, G.L. Coté, Measuring microlymphatic flow using fast video microscopy. J. Biomed. Opt. 10, 064016 (2005)

    Article  ADS  Google Scholar 

  69. H.H. Lipowsky, N.U. Sheikh, D.M. Katz, Intravital microscopy of capillary hemodynamics in sickle cell disease. J. Clin. Invest. 80, 117–127 (1987)

    Article  Google Scholar 

  70. Z.P. Chen, T.E. Milner, D. Dave, J.S. Nelson, Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt. Lett. 22, 64–66 (1997)

    Article  ADS  Google Scholar 

  71. P.R. Schvartzman, R.D. White, Magnetic resonance imaging, in Textbook of Cardiovascular Medicine, ed. by E.J. Topol (Lippincott Williams & Wilkins, Philadelphia, 2002)

    Google Scholar 

  72. H.Y. Cheng, Q.M. Luo, S.Q. Zeng, S.B. Chen, J. Cen, H. Gong, A modified laser speckle imaging method with improved spatial resolution. J. Biomed. Opt. 8, 559–564 (2003)

    Article  ADS  Google Scholar 

  73. H.Y. Cheng, D. Zhu, Q.M. Luo, S.Q. Zeng, Z. Wang, S.S. Ul’yanov, Optical monitoring of the dynamic change of blood perfusion. Chin. J. Lasers 30, 668–672 (2003) (in Chinese)

    Google Scholar 

  74. J. Ohtsubo, T. Asakura, Velocity measurement of a diffuse object by using time-varying speckles. Opt. Quantum Electron. 8, 523–529 (1976)

    Article  ADS  Google Scholar 

  75. J.D. Briers, Laser Doppler and time-varying speckle: reconciliation. J. Opt. Soc. Am. A 13, 345–350 (1996)

    Article  ADS  Google Scholar 

  76. P.S. Liu, The optical bases of speckle statistic (Science Press, Beijing, 1987) (in Chinese)

    Google Scholar 

  77. M. Linden, H. Golster, S. Bertuglia, A. Colantuoni, F. Sjoberg, G. Nilsson, Evaluation of enhanced high-resolution laser Doppler imaging in an in vitro tube model with the aim of assessing blood flow in separate microvessel. Microvasc. Res. 56, 261–270 (1998)

    Article  Google Scholar 

  78. D. Kleinfeld, P.P. Mitra, F. Helmchen, W. Denk, Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. U.S.A. 95, 15741–15746 (1998)

    Article  ADS  Google Scholar 

  79. A. Serov, W. Steenbergen, F.F.M. de Mul, Laser Doppler perfusion with a complimentary metal oxide semiconductor image sensor. Opt. Lett. 27, 300–302 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Science Fund for Creative Research Group of China (Grant No.61121004), the National Natural Science Foundation of China (Grant Nos. 30970964, 30070215, 30170306, 60178028), NSFC for distinguished young scholars (Grant No. 60025514) and the Program for New Century Excellent Talents in University (Grant No. NCET-08-0213). It was also partly supported by RFBR grants No. 11-02-00560-а and No. 12-02-31204, grant № 224014 PHOTONICS4LIFE of FP7-ICT-2007-2, project №1.4.09 of RF Ministry of Education and Science, RF Governmental contracts 02.740.11.0770, 02.740.11.0879, 11.519.11.2035, 14.B37.21.0728, and 14.B37.21.0563; FiDiPro, TEKES Program (40111/11), Finland; SCOPES Project IZ74ZO_137423/1 of Swiss National Science Foundation; and 1177.2012.2 “Support for the Leading Scientific Schools” from the President of the RF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingming Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Luo, Q. et al. (2013). Laser Speckle Imaging of Cerebral Blood Flow. In: Tuchin, V. (eds) Handbook of Coherent-Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5176-1_5

Download citation

Publish with us

Policies and ethics