Skip to main content

Diagnostics of Structure and Physiological State of Birefringent Biological Tissues: Statistical, Correlation and Topological Approaches

  • Reference work entry
  • First Online:

Abstract

Optical techniques for investigation of the structure of biological tissues are classified. Both polarization and correlation characteristics for real object fields of tissues, including their images, are analyzed. The development of novel approaches to the analysis of tissue optical images and the search for the novel polarization, interference, and correlation diagnostics of BT structure associated with the tissue physiological state is the main goal of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, vol. PM 166 (SPIE Press, Bellingham, 2007)

    Google Scholar 

  2. O.V. Angelsky, A.G. Ushenko, Y.A. Ushenko, V.P. Pishak, Statistical and fractal structure of biological tissue Mueller matrix images, in Optical Correlation Techniques and Applications, ed. by O.V. Angelsky (Society of Photo-Optical Instrumentation Engineers, Washington, 2007), pp. 213–266

    Chapter  Google Scholar 

  3. A.G. Ushenko, V.P. Pishak, Laser polarimetry of biological tissue: principles and applications, in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, ed. by V.V. Tuchin (Kluwer, Boston, 2004), pp. 93–138

    Google Scholar 

  4. E. Wolf, Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 312, 263–267 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  5. O.V. Angelsky, A.G. Ushenko, G.Y. Ushenko, Investigation of the correlation structure of biological tissue polarization images during the diagnostics of their oncological changes. Phys. Med. Biol. 50, 4811–4822 (2005)

    Article  Google Scholar 

  6. J. Ellis, A. Dogariu, S. Ponomarenko, E. Wolf, Interferometric measurement of the degree of polarization and control of the contrast of intensity fluctuations. Opt. Lett. 29, 1536–1538 (2004)

    Article  ADS  Google Scholar 

  7. J.F. de Boer, T.E. Milner, M.G. Ducros, S.M. Srinivas, J.S. Nelson, Polarization-sensitive optical coherence tomography, in Handbook of Optical Coherence Tomography, ed. by B.E. Bouma, G.J. Tearney (Marcel Dekker, New York, 2002), pp. 237–274

    Google Scholar 

  8. O.V. Angel’skii, A.G. Ushenko, A.D. Arkhelyuk, S.B. Ermolenko, D.N. Burkovets, Structure of matrices for the transformation of laser radiation by biofractals. Quantum Electron. 29, 1074–1077 (1999)

    Article  ADS  Google Scholar 

  9. F. Zernike, The concept of degree of coherence and its applications to optical problems. Physica 5, 785–795 (1938)

    Article  ADS  Google Scholar 

  10. G. Parrent, P. Roman, On the matrix formulation of the theory of partial polarization in terms of observables. Nuovo Cimento 15, 370–388 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.G. Ushenko, Polarization structure of laser scattering fields. Opt. Eng. 34, 1088–1093 (1995)

    Article  ADS  Google Scholar 

  12. A.G. Ushenko, Laser polarimetry of polarization-phase statistical moments of the object field of optically anisotropic scattering layers. Opt. Spectrosc. 91, 313–316 (2001)

    Article  ADS  Google Scholar 

  13. S.C. Cowin, How is a tissue built? J. Biomed. Eng. 122, 553–568 (2000)

    Google Scholar 

  14. A.G. Ushenko, Correlation processing and wavelet analysis of polarization images of biological tissues. Opt. Spectrosc. 91, 773–778 (2002)

    Article  ADS  Google Scholar 

  15. A.G. Ushenko, Laser probing of biological tissues and the polarization selection of their images. Opt. Spectrosc. 91, 932–936 (2001)

    Article  ADS  Google Scholar 

  16. A.G. Ushenko, The vector structure of laser biospeckle fields and polarization diagnostics of collagen skin structures. Laser Phys. 10, 1143–1149 (2000)

    Google Scholar 

  17. A.G. Ushenko, Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering. Opt. Spectrosc. 91, 937–940 (2001)

    Article  ADS  Google Scholar 

  18. A.G. Ushenko, Polarization correlometry of angular structure in the microrelief pattern or rough surfaces. Opt. Spectrosc. 92, 227–229 (2002)

    Article  ADS  Google Scholar 

  19. O.V. Angelsky, P.P. Maksimyak, S. Hanson, The Use of Optical – Correlation Techniques for Characterizing Scattering Object and Media, vol. PM71 (SPIE Press, Bellingham, 1999)

    Google Scholar 

  20. A.G. Ushenko, I.Z. Misevich, V. Istratiy, I. Bachyns’ka, A.P. Peresunko, O.K. Numan, T.G. Moiysuk, Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes. Adv. Opt. Technol. 2010, 423145 (2010)

    Google Scholar 

  21. O.V. Dubolazov, A.G. Ushenko, V.T. Bachynsky, A.P. Peresunko, O.Y. Vanchulyak, On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals. Adv. Opt. Technol. 2010, 162832 (2010)

    Google Scholar 

  22. J.F. de Boer, T.E. Milner, Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt. 7, 359–371 (2002)

    Article  Google Scholar 

  23. A.F. Fercher, Optical coherence tomography – principles and applications. Rep. Prog. Phys. 66, 239–303 (2003)

    Article  ADS  Google Scholar 

  24. N. Wiener, Generalized harmonic analysis. Acta Math. 55, 117–258 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Wolf, Coherence properties of partially polarized electromagnetic radiation. Nuovo Cimento 13, 1165–1181 (1959)

    Article  MATH  Google Scholar 

  26. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, G. Guattari, Beam coherence-polarization matrix. Pure Appl. Opt. 7, 941–951 (1998)

    Article  ADS  Google Scholar 

  27. E. Wolf, Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 312, 263–267 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  28. J. Tervo, T. Setala, A. Friberg, Degree of coherence for electromagnetic fields. Opt. Express 11, 1137–1143 (2003)

    Article  ADS  Google Scholar 

  29. J.M. Movilla, G. Piquero, R. Martínez-Herrero, P.M. Mejías, Parametric characterization of non-uniformly polarized beams. Opt. Commun. 149, 230–234 (1998)

    Article  ADS  Google Scholar 

  30. J. Ellis, A. Dogariu, Complex degree of mutual polarization. Opt. Lett. 29, 536–538 (2004)

    Article  ADS  Google Scholar 

  31. C. Mujat, A. Dogariu, Statistics of partially coherent beams: a numerical analysis. J. Opt. Soc. Am. A 21, 1000–1003 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  32. F. Gori, Matrix treatment for partially polarized, partially coherent beams. Opt. Lett. 23, 241–243 (1998)

    Article  ADS  Google Scholar 

  33. M. Mujat, A. Dogariu, Polarimetric and spectral changes in random electromagnetic fields. Opt. Lett. 28, 2153–2155 (2003)

    Article  ADS  Google Scholar 

  34. J. Ellis, A. Dogariu, S. Ponomarenko, E. Wolf, Interferometric measurement of the degree of polarization and control of the contrast of intensity fluctuations. Opt. Lett. 29, 1536–1538 (2004)

    Article  ADS  Google Scholar 

  35. A.G. Ushenko, Stokes-correlometry of biotissues. Laser Phys. 10, 1286–1292 (2000)

    Google Scholar 

  36. O. Korotkova, E. Wolf, Spectral degree of coherence of a random three-dimensional electromagnetic field. J. Opt. Soc. Am. A 21, 2382–2385 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  37. O.V. Angelsky, A.G. Ushenko, Y.G. Ushenko, Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state. J. Biomed. Opt. 10, 060502 (2005)

    Article  ADS  Google Scholar 

  38. J.F. Nye, M. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. J.F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics, Bristol, 1999)

    MATH  Google Scholar 

  40. М. Soskin, V. Denisenko, R. Egorov, Topological networks of paraxial ellipse speckle-fields. J. Opt. A: Pure Appl. Opt. 6, S281–S287 (2004)

    Article  ADS  Google Scholar 

  41. J.F. Nye, Polarization effects in the diffraction of electromagnetic waves: the role of disclinations. Proc. R. Soc. Lond. A 387, 105–132 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  42. J.F. Nye, The motion and structure of dislocations in wave fronts. Proc. R. Soc. Lond. A 378, 219–239 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. J.F. Nye, Lines of circular polarization in electromagnetic wave fields. Proc. R. Soc. Lond. A 389, 279–290 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  44. J.V. Hajnal, Singularities in the transverse fields of electromagnetic waves. I. Theory. Proc. R. Soc. Lond. A 414, 433–446 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  45. J.V. Hajnal, Singularities in the transverse fields of electromagnetic waves II. Observations on the electric field. Proc. R. Soc. Lond. A 414, 447–468 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  46. O.V. Angelsky, I.I. Mokhun, A.I. Mokhun, M.S. Soskin, Interferometric methods in diagnostics of polarization singularities. Phys. Rev. E 65, 036602 (2002)

    Article  ADS  Google Scholar 

  47. O.V. Angelsky, A.G. Ushenko, Y.G. Ushenko, Y.Y. Tomka, Polarization singularities of biological tissues images. J. Biomed. Opt. 11, 054030 (2006)

    Article  ADS  Google Scholar 

  48. O. Angelsky, A. Mokhun, I. Mokhun, M. Soskin, The relationship between topological characteristics of component vortices and polarization singularities. Opt. Commun. 207, 57–65 (2002)

    Article  ADS  Google Scholar 

  49. O.V. Angelsky, A.G. Ushenko, Y.A. Ushenko, Y.G. Ushenko, Polarization singularities of the object field of skin surface. J. Phys. D: Appl. Phys. 39, 3547–3558 (2006)

    Article  ADS  Google Scholar 

  50. M.S. Soskin, V. Denisenko, I. Freund, Optical polarization singularities and elliptic stationary points. Opt. Lett. 28, 1475–1477 (2003)

    Article  ADS  Google Scholar 

  51. M.R. Dennis, Polarization singularities in paraxial vector fields: morphology and statistics. Opt. Commun. 213, 201–221 (2002)

    Article  ADS  Google Scholar 

  52. M.V. Berry, J.H. Hannay, Umbilic points on Gaussian random surfaces. J. Phys. A: Math. Gen. 10, 1809–1821 (1977)

    Article  ADS  Google Scholar 

  53. Y.O. Ushenko, Y.Y. Tomka, I.Z. Misevich, A.-P. Angelsky, V.T. Bachinsky, Polarization-singular processing of phase-inhomogeneous layers laser images to diagnose and classify their optical properties. Adv. Electr. Comp. Eng. 11, 3–10 (2011)

    Article  Google Scholar 

  54. M.S. Soskin, V.G. Denisenko, R.I. Egorov, Singular elliptic light fields: genesis of topology and morphology. Proc. SPIE 6254, 625404 (2006)

    Article  Google Scholar 

  55. R.W. Schoonover, T.D. Visser, Polarization singularities of focused, radially polarized fields. Opt. Express 14, 5733–5745 (2006)

    Article  ADS  Google Scholar 

  56. M.V. Berry, M.R. Dennis, Polarization singularities in isotropic random vector waves. Proc. R. Soc. Lond. A 457, 141–155 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. O.V. Angelsky, A.G. Ushenko, Y.G. Ushenko, 2-D Stokes polarimetry of biospeckle tissues images in pre-clinic diagnostics of their pre-cancer states. J. Hologr. Speckle 2, 26–33 (2005)

    Article  Google Scholar 

  58. D.J. Whitehouse, Fractal or fiction? Wear 249, 345–353 (2001)

    Article  Google Scholar 

  59. A.G. Ushenko, Laser diagnostics of biofractals. Quantum Electron. 29, 1–7 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii A. Ushenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Ushenko, Y.A., Boychuk, T.M., Bachynsky, V.T., Mincer, O.P. (2013). Diagnostics of Structure and Physiological State of Birefringent Biological Tissues: Statistical, Correlation and Topological Approaches. In: Tuchin, V. (eds) Handbook of Coherent-Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5176-1_3

Download citation

Publish with us

Policies and ethics