Skip to main content

Light Scattering Spectroscopy: From Elastic to Inelastic

  • Reference work entry
  • First Online:

Abstract

This chapter reviews light scattering spectroscopic techniques in which coherent effects are critical because they define the structure of the spectrum. In the case of elastic light scattering spectroscopy, the targets themselves, such as aerosol particles in environmental science or cells and subcellular organelles in biomedical applications, play the role of microscopic optical resonators. In the case of inelastic light scattering spectroscopy or Raman spectroscopy, the spectrum is created due to light scattering from vibrations in molecules or optical phonons in solids. We will show that light scattering spectroscopic techniques, both elastic and inelastic, are emerging as very useful tools in material and environmental science and in biomedicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1969)

    Google Scholar 

  2. I.J. Bigio, J.R. Mourant, Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys. Med. Biol. 42, 803–814 (1997)

    Article  Google Scholar 

  3. J.R. Mourant, J. Boyer, T. Johnson, J. Lacey, I.J. Bigio, Detection of gastrointestinal cancer by elastic scattering and absorption spectroscopies with the Los Alamos optical biopsy system. Proc. SPIE 2387, 210–217 (1995)

    Article  ADS  Google Scholar 

  4. L.T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J.M. Crawford, M.S. Feld, Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution. Phys. Rev. Lett. 80, 627–630 (1998)

    Article  ADS  Google Scholar 

  5. V. Backman, M. Wallace, L.T. Perelman, R. Gurjar, G. Zonios, M.G. Müller, Q. Zhang, T. Valdez, J.T. Arendt, H.S. Levin, T. McGillican, K. Badizadegan, M. Seiler, S. Kabani, I. Itzkan, M. Fitzmaurice, R.R. Dasari, J.M. Crawford, J. Van Dam, M.S. Feld, Detection of preinvasive cancer cells. Early-warning changes in precancerous epithelial cells can be spotted in situ. Nature 406(6791), 35–36 (2000)

    Article  ADS  Google Scholar 

  6. M. Wallace, L.T. Perelman, V. Backman, J.M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. Shields, I. Itzkan, R.R. Dasari, J. Van Dam, M.S. Feld, Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light scattering spectroscopy. Gastroenterology 119, 677–682 (2000)

    Article  Google Scholar 

  7. H. Fang, M. Ollero, E. Vitkin, L.M. Kimerer, P.B. Cipolloni, M.M. Zaman, S.D. Freedman, I.J. Bigio, I. Itzkan, E.B. Hanlon, L.T. Perelman, Noninvasive sizing of subcellular organelles with light scattering spectroscopy. IEEE J. Sel. Top. Quantum Electron. 9, 267–276 (2003)

    Article  Google Scholar 

  8. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C.W. Boone, R.R. Dasari, M.S. Feld, Measuring cellular structure at submicrometer scale with light scattering spectroscopy. IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001)

    Article  Google Scholar 

  9. V. Backman, R. Gurjar, L.T. Perelman, V. Gopal, M. Kalashnikov, K. Badizadegan, A. Wax, I. Georgakoudi, M. Mueller, C.W. Boone, I. Itzkan, R.R. Dasari, M.S. Feld, Imaging and measurement of cell organization with submicron accuracy using light scattering spectroscopy, in Optical Biopsy IV, ed. by R.R. Alfano. Proceedings of SPIE, 4613 (SPIE Press, Bellingham, 2002), pp. 101–110

    Google Scholar 

  10. L.T. Perelman, V. Backman, Light scattering spectroscopy of epithelial tissues: principles and applications, in Handbook on Optical Biomedical Diagnostics PM107, ed. by V.V. Tuchin (SPIE Press, Bellingham, 2002), pp. 675–724

    Google Scholar 

  11. A. Brunsting, F. Mullaney, Differential light scattering from spherical mammalian cells. Biophys. J. 14, 439–453 (1974)

    Article  Google Scholar 

  12. J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, T.M. Johnson, Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnosis. Appl. Opt. 37, 3586–3593 (1998)

    Article  ADS  Google Scholar 

  13. R. Drezek, A. Dunn, R. Richards-Kortum, Light scattering from cells: finite-difference time-domain simulations and goniometric measurements. Appl. Opt. 38, 3651–3661 (1999)

    Article  ADS  Google Scholar 

  14. V. Backman, R. Gurjar, K. Badizadegan, R. Dasari, I. Itzkan, L.T. Perelman, M.S. Feld, Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. IEEE J. Sel. Top. Quantum Electron. 5, 1019–1027 (1999)

    Article  Google Scholar 

  15. G. Zonios, L.T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, M.S. Feld, Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl. Opt. 38, 6628–6637 (1999)

    Article  ADS  Google Scholar 

  16. I. Georgakoudi, B.C. Jacobson, J. Van Dam, V. Backman, M.B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G.A. Thomas, L.T. Perelman, M.S. Feld, Fluorescence, reflectance and light scattering spectroscopies for evaluating dysplasia in patients with Barrett’s esophagus. Gastroenterology 120, 1620–1629 (2001)

    Article  Google Scholar 

  17. T.J. Farrell, M.S. Patterson, B.C. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties. Med. Phys. 19, 879–888 (1992)

    Article  Google Scholar 

  18. O.W. van Assendelft, Spectrophotometry of Haemoglobin Derivatives (C. C. Thomas, Springfield, 1970)

    Google Scholar 

  19. G.L. Tipoe, F.H. White, Blood vessel morphometry in human colorectal lesions. Histol. Histopathol. 10, 589–596 (1995)

    Google Scholar 

  20. S.A. Skinner, G.M. Frydman, P.E. O’Brien, Microvascular structure of benign and malignant tumors of the colon in humans. Dig. Dis. Sci. 40, 373–384 (1995)

    Article  Google Scholar 

  21. V. Backman, L.T. Perelman, J.T. Arendt, R. Gurjar, M.G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, T. Valdez, J. Van Dam, M. Wallace, K. Badizadegan, J.M. Crawford, M. Fitzmaurice, S. Kabani, H.S. Levin, M. Seiler, R.R. Dasari, I. Itzkan, M.S. Feld, Light scattering spectroscopy: a new technique for clinical diagnosis of precancerous and cancerous changes in human epithelia. Lasers Life Sci. 9, 255–263 (2001)

    Google Scholar 

  22. B.J. Reid, R.C. Haggitt, C.E. Rubin, G. Roth, C.M. Surawicz, G. Vanbelle, K. Lewin, W.M. Weinstein, D.A. Antonioli, H. Goldman, W. Macdonald, D. Owen, Observer variation in the diagnosis of dysplasia in Barrett’s esophagus. Hum. Pathol. 19, 166–178 (1988)

    Article  Google Scholar 

  23. R.H. Riddell, H. Goldman, D.F. Ransohoff, H.D. Appelman, C.M. Fenoglio, R.C. Haggitt, C. Ahren, P. Correa, S.R. Hamilton, B.C. Morson, S.C. Sommers, J.H. Yardley, Dysplasia in inflammatory bowel disease: standardized classification with provisional clinical applications. Hum. Pathol. 14, 931–986 (1983)

    Article  Google Scholar 

  24. R.C. Haggitt, Barrett’s esophagus, dysplasia, and adenocarcinoma. Hum. Pathol. 25, 982–993 (1994)

    Article  Google Scholar 

  25. M. Pagano, K. Gauvreau, Principles of Biostatistics (Duxbury Press, Belmont, 1993)

    Google Scholar 

  26. L. Qiu, D. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J.D. Goldsmith, M.D. Modell, E.B. Hanlon, I. Itzkan, L.T. Perelman, Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus. Nat. Med. 16, 603–606 (2010)

    Article  Google Scholar 

  27. L. Qiu, V. Turzhitsky, L. Guo, E. Vitkin, I. Itzkan, E.B. Hanlon, L.T. Perelman, Early cancer detection with scanning light scattering spectroscopy. IEEE J. Sel. Top. Quantum Electron. 99, 1–11 (2011). doi:10.1109/JSTQE.2011.2161575

    Google Scholar 

  28. I. Itzkan, L. Qiu, H. Fang, M.M. Zaman, E. Vitkin, L.C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L.M. Kimerer, P.B. Cipolloni, K.-H. Lim, S.D. Freedman, I. Bigio, B.P. Sachs, E.B. Hanlon, L.T. Perelman, Confocal light absorption & scattering spectroscopic (CLASS) microscopy monitors organelles in live cells with no exogenous labels. Proc. Natl. Acad. Sci. U. S. A. 104, 17255–17260 (2007)

    Article  ADS  Google Scholar 

  29. T. Wilson, A.R. Carlini, Size of the detector in confocal imaging systems. Opt. Lett. 12, 227–229 (1987)

    Article  ADS  Google Scholar 

  30. B.A. Scalettar, J.R. Swedlow, J.W. Sedat, D.A. Agard, Dispersion, aberration and deconvolution in multi-wavelength fluorescence images. J. Microsc. 182, 50–60 (1996)

    Article  Google Scholar 

  31. J.C. Yarrow, Y. Feng, Z.E. Perlman, T. Kirchhausen, T.J. Mitchison, Phenotypic screening of small molecule libraries by high throughput cell imaging. Comb. Chem. High Throughput Screen. 6, 279–286 (2003)

    Article  Google Scholar 

  32. M. El Mouedden, G. Laurent, M.P. Mingeot-Leclercq, P.M. Tulkens, Gentamicin-induced apoptosis in renal cell lines and embryonic rat fibroblasts. Toxicol. Sci. 56, 229–239 (2000)

    Article  Google Scholar 

  33. F. Van Bambeke, C. Gerbaux, J.M. Michot, M.B. d’Yvoire, J.P. Montenez, P.M. Tulkens, Lysosomal alterations induced in cultured rat fibroblasts by long-term exposure to low concentrations of azithromycin. J. Antimicrob. Chemother. 42, 761–767 (1998)

    Article  Google Scholar 

  34. S. Carryn, H. Chanteux, C. Seral, M.-P. Mingeot-Leclercq, F. Van Bambeke, P.M. Tulkens, Intracellular pharmacodynamics of antibiotics. Infect. Dis. Clin. North Am. 17, 615–634 (2003)

    Article  Google Scholar 

  35. S.P. Mulvaney, C.D. Keating, Raman Spectroscopy. Anal. Chem. 72, 145R–157R (2000)

    Google Scholar 

  36. J.M. Chalmers, P.R. Grifiths (eds.), Handbook of Vibrational Spectroscopy (Wiley, Chichester, 2002)

    Google Scholar 

  37. L.R. Lewis, H.G.M. Edwards (eds.), Handbook of Raman Spectroscopy (Marcel Dekker, New York, 2001)

    Google Scholar 

  38. D. Pappas, B.W. Smith, J.D. Winefordner, Raman spectroscopy in bioanalysis. Talanta 51, 121–144 (2000)

    Article  Google Scholar 

  39. L.P. Choo-Smith, H.G.M. Edwards, H.P. Endtz, J.M. Kroz, F. Heule, H. Barr, J.S. Robinson Jr., H.A. Bruining, G.J. Puppels, Medical applications of Raman spectroscopy: from proof of principle to clinical implementation. Biopolymers (Biospectroscopy) 67, 1–9 (2002)

    Article  Google Scholar 

  40. E.D. Hanlon, R. Manoharan, T.-W. Koo, K.E. Shafer, J.T. Motz, M. Fitzmaurice, J.R. Kramer, I. Itzkan, R.R. Dasari, M.S. Feld, Prospects for in vivo Raman spectroscopy. Phys. Med. Biol. 45, R1–R59 (2000)

    Article  ADS  Google Scholar 

  41. A. Mahavedan-Jensen, R. Richards-Kortum, Raman spectroscopy for the detection of cancers and precancers. J. Biomed. Opt. 1, 31–70 (1996)

    Article  ADS  Google Scholar 

  42. R. Petry, M. Schmitt, J. Popp, Raman spectroscopy – a prospective tool in the life sciences. Chemphyschem 4, 14–30 (2003)

    Article  Google Scholar 

  43. R.K. Dukor, Vibrational spectroscopy in the detection of cancer, in Handbook of Vibrational Spectroscopy, ed. by J.M. Chalmers, P.R. Grifiths (Wiley, Chichester, 2002)

    Google Scholar 

  44. M.J. Pelletier, Raman Instrumentation, in Analytical Applications of Raman Spectroscopy, ed. by M.J. Pelletier (Blackwell, Oxford, 1999), pp. 53–105

    Google Scholar 

  45. J.B. Slater, J.M. Tedesco, R.C. Fairchild, I.R. Lewis, Raman spectrometry and its adaptation to the industrial environment, in Handbook of Raman Spectroscopy, ed. by I.R. Lewis, H.G.M. Edwards (Marcel Dekker, New York, 2001), pp. 41–144

    Google Scholar 

  46. U. Utzinger, R. Richards-Kortum, Fiber-optic probes for biomedical optical spectroscopy. J. Biomed. Opt. 8, 121–147 (2003)

    Article  ADS  Google Scholar 

  47. J.B. Tedesco, K.L. Davis, Calibration of Raman process analyzers. Proc. SPIE 3537, 200–212 (1998)

    Article  ADS  Google Scholar 

  48. D.E. Bettey, J.B. Slater, R. Wludyka, H. Owen, D.M. Pallister, M.D. Morris, Axial transmissive f/1.8 imaging Raman spectrograph with volume-phase holographic filter and grating. Appl. Spectrosc. 47, 1913–1919 (1993)

    Article  ADS  Google Scholar 

  49. H. Owens, Holographic optical components for laser spectroscopy applications. Proc. SPIE 1732, 324–332 (1993)

    Article  ADS  Google Scholar 

  50. A. Molckovsky, L.-M. Wong Kee Song, M.G. Shim, N.E. Marcon, B.C. Wilson, Diagnostic potential of near-infrared Raman spectroscopy of colon: differentiating adenomatous from hyperplastic polyps. Gastrointest. Endosc. 57, 396–402 (2003)

    Article  Google Scholar 

  51. U. Utzinger, D.L. Heintselman, A. Mahadevan-Jansen, A. Malpica, M. Follen, R. Richards-Kortum, Near-infrared Raman spectroscopy for in vivo detection of cervical precancers. Appl. Spectrosc. 55, 955–959 (2001)

    Article  ADS  Google Scholar 

  52. A.K.M. Enejder, T.-W. Koo, J. Oh, M. Hunter, S. Sasic, M. Feld, Blood analysis by Raman spectroscopy. Opt. Lett. 27, 2004–2006 (2002)

    Article  ADS  Google Scholar 

  53. M.G. Shim, L.-M. WongKeeSong, N.N. Marcon, B.C. Wilson, In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. Photochem. Photobiol. 72, 146–150 (2000)

    Google Scholar 

  54. Y. Guan, E.N. Lewis, I.W. Levin, Biomedical applications of Raman spectroscopy: tissue differentiation and potential clinical usage, in Analytical Applications of Raman Spectroscopy, ed. by M.J. Pelletier (Blackwell, Oxford, 1999), pp. 276–327

    Google Scholar 

  55. A. Mahadevan-Jansen, M. Follen Mitchell, N. Ramanujam, U. Utzinger, R. Richard Kortum, Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo. Photochem. Photobiol. 68, 427–431 (1998)

    Article  Google Scholar 

  56. A. Otto, Surface-enhanced Raman scattering: ‘classical’ and ‘chemical’ origins, in Light Scattering in Solids IV, ed. by M. Cardona, G. Guntherodt (Springer, Berlin, 1984), p. 289

    Chapter  Google Scholar 

  57. C.S. Schatz, R.P. Van Duyne, Electromagnetic mechanism of surface-enhanced spectroscopy, in Handbook of Vibrational Spectroscopy, ed. by J.M. Chalmers, P.R. Grifiths (Wiley, Chichester, 2002)

    Google Scholar 

  58. M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985)

    Article  ADS  Google Scholar 

  59. K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, M.S. Feld, Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99, 2957–2975 (1999)

    Article  Google Scholar 

  60. K. Kneipp, Y. Wang, H. Kneipp, L.T. Pereleman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997)

    Article  ADS  Google Scholar 

  61. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Book  Google Scholar 

  62. K. Kneipp, H. Kneipp, P. Corio, D.M. Brown, K. Shafer, J. Motz, L.T. Perelman, E.B. Hanlon, A. Marucci, G. Dresselhaus, M.S. Dresselhaus, Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 84, 3470–3473 (2000)

    Article  ADS  Google Scholar 

  63. K. Kneipp, L.T. Perelman, H. Kneipp, V. Backman, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Coupling and intensity exchange between phonon modes observed in strongly enhanced Raman spectra of single-wall carbon nanotubes on silver colloidal clusters. Phys. Rev. B 63, 6319 (2001)

    Google Scholar 

  64. K.E. Shafer-Peltier, C.L. Haynes, M.R. Glucksberg, R.P. Van Duyne, Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 125, 588–593 (2003)

    Article  Google Scholar 

  65. A. Ishimaru, Wave Propagation and Scattering in Random media (Academic, Orlando, 1978)

    Google Scholar 

  66. J. Landis, G. Koch, The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  67. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd edn. (Academic, Boston, 1990)

    Google Scholar 

  68. H. Martens, T. Naes, Multivariate Calibration (Wiley, New York, 1989)

    MATH  Google Scholar 

  69. M.J. Pelletier (ed.), Analytical Applications of Raman Spectroscopy (Blackwell, Oxford, 1999)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation grants CBET-0922876 and CBET-0943180, the National Institutes of Health grants R01 EB003472, R01 EB006462, and R33 RR017361, and in part by the Department of Veterans Affairs, Office of Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev T. Perelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Perelman, L.T., Modell, M.D., Vitkin, E., Hanlon, E.B. (2013). Light Scattering Spectroscopy: From Elastic to Inelastic. In: Tuchin, V. (eds) Handbook of Coherent-Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5176-1_12

Download citation

Publish with us

Policies and ethics