Skip to main content

Clinical Flow Cytometry in Molecular Genetic Pathology

  • Reference work entry
  • First Online:
Book cover Molecular Genetic Pathology
  • 3097 Accesses

Abstract

Flow cytometry is a powerful diagnostic tool most commonly used for immunophenotyping of hematopoietic neoplasms and primary/secondary immunodeficiencies. Other applications include cell sorting, detection of chromosomal abnormalities based on in situ hybridization or polymerase chain reaction, and evaluation of various cellular functions such as proliferation, apoptosis, calcium efflux, and phosphorylation. Flow cytometry measures physical and antigenic properties of particles including cells, chromosomes, and individual molecules. Owing to the availability of numerous antibodies and ever expanding array of fluorochromes, flow cytometry is capable of simultaneous evaluation of multiple parameters. In hematolymphoid malignancies, flow cytometry can be used at the time of the initial diagnosis and for follow-up and prognostication. The diagnosis is based on aberrant immunophenotypes and maturation patterns, different from those typically seen in normal hematopoietic populations. This chapter focuses on the diagnostic applications of flow cytometry and presents a current approach to sample preparation, selection of antibody panels, and essential aspects of analysis and interpretation. In addition, a complete review of immunophenotypic features of major entities of 2008 World Health Organization classification of hematolymphoid neoplasms is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Adriaansen H, Boekhorst PAW, Hagemeijer AM, et al. Acute myeloid leukemia M4 with bone marrow eosinophilia (M4Eo) and inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood. 1993;81:3043–51.

    PubMed  CAS  Google Scholar 

  • Andrieu V, Radford-Weiss I, Troussard X, et al. Molecular detection of t(8;21)/AML1-ETO in AML M1/M2: correlation with cytogenetics, morphology and immunophenotype. Br J Haematol. 1996;92:855–65.

    Article  PubMed  CAS  Google Scholar 

  • Beck RC, Stahl S, O’Keefe CL, et al. Detection of mature T cell leukemias by flow cytometry using anti T cell receptor V beta antibodies. Am J Clin Pathol. 2003;120:785–94.

    Article  PubMed  CAS  Google Scholar 

  • Borowitz MJ, Rubnitz J, Nash M, et al. Surface antigen phenotype can predict TEL-AML1 rearrangement in childhood B-precursor ALL: a Pediatric Oncology Group study. Leukemia. 1998;12:1764–70.

    Article  PubMed  CAS  Google Scholar 

  • Borowitz MJ, Craig FE, Digiuseppe JA, et al. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytometry B Clin Cytom. 2010;78:211–30.

    PubMed  Google Scholar 

  • Chen I-M, Chakerian A, Combs D, et al. Post-PCR multiplex fluorescent ligation detection assay and flow cytometry for rapid detection of gene-specific translocations in leukemia. Am J Clin Pathol. 2004;122:783–93.

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Kesler MV, Karandikar NJ, et al. Flow cytometric features of angioimmunoblastic T cell lymphoma. Cytometry Part B (Clin Cyto). 2006;70B:142–8.

    Article  Google Scholar 

  • Ciudad J, Orfao A, Vidriales B, et al. Immunophenotypic analysis of CD19+ precursors in normal human adult bone marrow: implications for minimal residual disease detection. Haematologica. 1998;83:1069–75.

    PubMed  CAS  Google Scholar 

  • Domingo-Claros A, Larriba I, Rozmann M, et al. Acute erythroid neoplastic proliferations. A biological study based on 62 patients. Haematologica. 2002;87:148–53.

    PubMed  Google Scholar 

  • Edwards BS, Oprea T, Prossnitz ER, et al. Flow cytometry for high-throughput, high-content screening. Curr Opin Chem Biol. 2004;8:392–8.

    Article  PubMed  CAS  Google Scholar 

  • Gorczyca W. Differential diagnosis of T cell lymphoproliferative disorders by flow cytometry multicolor immunophenotyping. Correlation with Morphology. Methods Cell Biol. 2004;75:595–621.

    Article  PubMed  Google Scholar 

  • Harbott J, Mancini M, Verellen-Dumoulin C, et al. Hematological malignancies with a deletion of 11q23: cytogenetic and clinical aspects. Leukemia. 1998;12:823–7.

    Article  PubMed  CAS  Google Scholar 

  • Helleberg C, Knudsen H, Hansen PB, et al. CD34+ megakaryoblastic leukaemic cells are CD38−, but CD61+ and glycophorin A+: improved criteria for diagnosis of AML-M7? Leukemia. 1997;11:830–4.

    Article  PubMed  CAS  Google Scholar 

  • Human cell differentiation molecules. http://www.hcdm.org.

  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    Article  PubMed  CAS  Google Scholar 

  • Kohno T, Yamada Y, Akamatsu N, et al. Possible origin of adult T cell leukemia/lymphoma cells from human T lymphotropic virus type-1-infected regulatory T cells. Cancer Sci. 2005;96:527–33.

    Article  PubMed  CAS  Google Scholar 

  • Krasinskas AM, Wasik MA, Kamoun M, et al. The usefulness of CD64, other monocyte-associated antigens, and CD45 gating in the subclassification of acute myeloid leukemias with monocytic differentiation. Am J Clin Pathol. 1998;110:797–805.

    PubMed  CAS  Google Scholar 

  • Kussick SJ, Wood BL. Four-color flow cytometry identifies virtually all cytogenetically abnormal bone marrow samples in the workup of non-CML myeloproliferative disorders. Am J Clin Pathol. 2003;120:854–65.

    Article  PubMed  Google Scholar 

  • Li S, Eshleman JR, Borowitz MJ. Lack of surface immunoglobulin light chain expression by flow cytometric immunophenotyping can help diagnose peripheral B cell lymphoma. Am J Clin Pathol. 2002;118:229–34.

    Article  PubMed  CAS  Google Scholar 

  • Lo Coco F, Avvisati G, Diverio D, et al. Rearrangements of the RAR-alpha gene in acute promyelocytic leukaemia: correlations with morphology and immunophenotype. Br J Haematol. 1991;78:494–9.

    Article  PubMed  CAS  Google Scholar 

  • Loken MR, Shah VO, Dattilio KL, et al. Flow cytometric analysis of human bone marrow: I. normal erythroid development. Blood. 1987;69:255–63.

    PubMed  CAS  Google Scholar 

  • Macedo A, Orfao A, Ciudad J, et al. Phenotypic analysis of CD34 subpopulations in normal human bone marrow and its application for the detection of minimal residual disease. Leukemia. 1995;9:1896–901.

    PubMed  CAS  Google Scholar 

  • Matreo G, Castellanos M, Rasillo A, et al. Genetic abnormalities and patterns of antigenic expression in multiple myeloma. Clin Cancer Res. 2005;11:3661–7.

    Article  Google Scholar 

  • Ogata K, Nakamura K, Yokose N, et al. Clinical significance of phenotypic features of blasts in patients with myelodysplastic syndrome. Blood. 2002;100:3887–96.

    Article  PubMed  CAS  Google Scholar 

  • Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: unraveling the immune system. Nat Rev Immunol. 2004;4:648–55.

    Article  PubMed  CAS  Google Scholar 

  • Petrella T, Bagot M, Willemze R, et al. Blastic NK cell lymphomas (Agranular CD4 + CD56 + hematodermic neoplasms). Am J Clin Pathol. 2005;123:662–75.

    Article  PubMed  Google Scholar 

  • San Miguel JF, Vidriales MB, Ocio E, et al. Immunophenotypic analysis of Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;2:187–95.

    Google Scholar 

  • Stelzer GT, Shults KE, Loken MR. CD45 gating for routine flow cytometric analysis of human bone marrow specimens. Ann N Y Aca Sci.. 1993;677:265–81.

    Article  CAS  Google Scholar 

  • Stetler-Stevenson M, Arthur DC, Jabbour N, et al. Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood. 2001;98:979–87.

    Article  PubMed  CAS  Google Scholar 

  • Stewart CC, Behm FG, Carey JL, et al. U.S.-Canadian consensus recommendations on immunophenotypic analysis of hematologic neoplasia by flow cytometry: selection of antibody combinations. Cytometry. 1997;30:231–5.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow SH, Campo E, Harris NL, et al., editors. World Health Organization classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008.

    Google Scholar 

  • Tabernero MD, Bortoluci AM, Alaejos I, et al. Adult precursor B-ALL with BCR/ABL gene rearrangements displays a unique immunophenotype based on the pattern of CD10, CD34, CD13 and CD38 expression. Leukemia. 2001;15:406–14.

    Article  PubMed  CAS  Google Scholar 

  • Terstappen LWMM, Safford M, Loken MR. Flow cytometric analysis of human bone marrow III. Neutrophil maturation. Leukemia. 1990;4:657–63.

    PubMed  CAS  Google Scholar 

  • Terstappen LWMM, Huang S, Picker LJ. Flow cytometric assessment of human T cell differentiation in thymus and bone marrow. Blood. 1992;79:666–77.

    PubMed  CAS  Google Scholar 

  • van Lochem EG, van der Velden VHJ, Wind HK, et al. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow. Reference patterns for age-related changes and disease-induced shifts. Cytometry. 2004;60B:1–13.

    Article  Google Scholar 

  • Wells DA, Benesch M, Loken MR, et al. Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation. Blood. 2003;102:394–403.

    Article  PubMed  CAS  Google Scholar 

  • Wood BL, Arroz M, Barnett D, et al. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin Cytom. 2007;72(Suppl 1):S14–22.

    PubMed  Google Scholar 

  • Wu JM, Borowitz MJ, Weir EG. The usefulness of CD71 expression by flow cytometry for differentiating indolent from aggressive CD10+ B cell lymphomas. Am J Clin Pathol. 2006;126:1–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Czader, M. (2013). Clinical Flow Cytometry in Molecular Genetic Pathology. In: Cheng, L., Zhang, D., Eble, J. (eds) Molecular Genetic Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4800-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4800-6_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4799-3

  • Online ISBN: 978-1-4614-4800-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics