Skip to main content
  • 937 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Example 1: The Eccentric Cylinder on the Inclined Plane

Example 2: The Formation of Traffic Jam

Unfoldings

The Seven Elementary Catastrophes

The Geometry of the Fold and the Cusp

Further Applications

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Singularity:

Let \({f\colon \mathbb{R}^{n} \to \mathbb{R}^{m}}\) be a differentiable map defined in some open neighborhood of the point \({p \in \mathbb{R}^{n}}\) and \({J_{p}f}\) its Jacobian matrix at p, consisting of the partial derivatives of all components of f with respect to all variables. f is called singular in p if rank \({J_{p}f < \min{\{}n,m{\}}}\). If rank \({J_{p}f = \min{\{}m,n{\}}}\), then f is called regular in p. For \({m = 1}\) (we call the map \({f\colon \mathbb{R}^{n} \to \mathbb{R}}\) a differentiable function) the definition implies: A differentiable function \({f\colon \mathbb{R}^{n} \to \mathbb{R}}\) is singular in \({p \in \mathbb{R}^{n}}\), if \({\operatorname{grad}\,f(p) = 0}\). The point p, where the function is singular, is called a singularity of the function. Often the name “singularity” is used for the function itself if it is singular at a point p. A point where a function is singular is also called critical point. A critical point p of a function f is called a degenerated critical point if the Hessian (a quadratic matrix containing the second order partial derivatives) is singular at p; that means its determinant is zero at p.

Diffeomorphism:

A diffeomorphism is a bijective differentiable map between open sets of \({\mathbb{R}^{n}}\) whose inverse is differentiable, too.

Map germ:

Two continuous maps \({f\colon U \to \mathbb{R}^{k}}\) and \({g\colon V \to \mathbb{R}^{k}}\), defined on neighborhoods U and V of \({p \in \mathbb{R}^{n}}\), are called equivalent as germs at p if there exists a neighborhood \({W \subset U \cap V}\) on which both coincide. Maps or functions, respectively, that are equivalent as germs can be considered to be equal regarding local features. The equivalence classes of this equivalence relation are called germs. The set of all germs of differentiable maps \({\mathbb{R}^{n} \to \mathbb{R}^{k}}\) at a point p is named \({\varepsilon_{p}(n,k)}\) . If p is the origin of \({\mathbb{R}^{n}}\), one simply writes \({\varepsilon(n,k)}\) instead of \({\varepsilon_{0}(n,k)}\). Further, if \({k = 1}\), we write \({\varepsilon(n)}\) instead of \({\varepsilon(n,1)}\) and speak of function germs (also simplified as “germs”) at the origin of \({\mathbb{R}^{n}}\). \({\varepsilon(n,k)}\) is a vector space and \({\varepsilon(n)}\) is an algebra , that is, a vector space with a structure of a ring. The ring \({\varepsilon(n)}\) contains a unique maximal ideal \({\mu(n)={\{}f \in \varepsilon(n)\vert f(0)=0{\}}}\). The ideal \({\mu(n)}\) is generated by the germs of the coordinate functions \({x_{1},\ldots,x_{n}}\). We use the form \({\mu(n) = \langle x_{1},\ldots,x_{n}\rangle\varepsilon(n)}\) to emphasize, that this ideal is generated over the ring \({\varepsilon(n)}\). So a function germ in \({\mu(n)}\) is of the form \( \sum_{i=1}^n a_i(x) \cdot x_i \), with certain function germs \( a_{i}(x) \in \varepsilon(n) \).

r-Equivalence:

Two function germs \({f,g \in \varepsilon(n)}\) are called r-equivalent if there exists a germ of a local diffeomorphism \({h\colon \mathbb{R}^{n} \to \mathbb{R}^{n}}\) at the origin, such that \({g = f \circ h}\).

Unfolding:

An unfolding of a differentiable function germ \({f \in \mu(n)}\) is a germ \({F \in \mu(n+r)}\) with \({F\vert\mathbb{R}^{n} = f}\) (here ∣ means the restriction. The number r is called an unfolding dimension of f. An unfolding F of a germ f is called universal if every other unfolding of f can be received by suitable coordinate transformations, “morphisms of unfoldings ” from F, and the number of unfolding parameters of F is minimal (see “codimension”).

Unfolding morphism:

Suppose \( f \in \varepsilon(n) \) and \( F\colon \mathbb{R}^{n} \times \mathbb{R}^{k} \to \mathbb{R}\) and \({G\colon \mathbb{R}^{n} \times \mathbb{R}^{r} \to \mathbb{R}}\) be unfoldings of f. A right‐morphism from F to G, also called unfolding morphism , is a pair (\({\Phi,\alpha}\)), with \({\Phi \in \varepsilon(n+k,n+r)}\) and \({\alpha \in \mu(k)}\), such that:

  1. 1.

    \({\Phi \vert \mathbb{R}^{n} = {\text{id}}(\mathbb{R}^{n})}\), that is \({\Phi(x,0) = (x,0)}\),

  2. 2.

    If \({\Phi = (\phi,\psi)}\), with \( \phi \in \varepsilon(n+k,n) \), \( \psi \in \varepsilon(n+k,r) \), then \( \psi \in \varepsilon(k,r) \),

  3. 3.

    For all \( (x,u) \in \mathbb{R}^{n} \times \mathbb{R}^{k}\) we get \( F(x,u) = G(\Phi(x,u)) + \alpha(u) \).

Catastrophe:

A catastrophe is a universal unfolding of a singular function germ . The singular function germs are called organization centers of the catastrophes.

Codimension:

The codimension of a singularity f is given by \({{\text{codim}}(f) = {\text{dim}}_{\mathbb{R}}\mu(n)/\langle\partial_{x}f\rangle}\) (quotient space). Here \({\langle\partial_{x}f\rangle}\) is the Jacobian ideal generated by the partial derivatives of f and \({\mu(n)={\{}f \in \varepsilon(n)\vert f(0) = 0{\}}}\) . The codimension of a singularity gives of the minimal number of unfolding parameters needed for the universal unfolding of the singularity.

Potential function:

Let \({f\colon \mathbb{R}^{n} \to \mathbb{R}^{n}}\) be a differentiable map (that is, a differentiable vector field). If there exists a function \({\varphi\colon \mathbb{R}^{n} \to \mathbb{R}}\) with the property that \({\operatorname{grad}\varphi = f}\), then f is called a gradient vector field and φ is called a potential function of f.

Bibliography

Primary Literature

  1. Bröcker T (1975) Differentiable germs and catastrophes. London Mathem. Soc. Lecture Notes Series. Cambridge Univ Press, Cambridge

    Google Scholar 

  2. Golubitsky M, Guillemin V (1973) Stable mappings and their singularities. Springer, New York, GTM 14

    Book  MATH  Google Scholar 

  3. Golubitsky M, Schaeffer DG (1975) Stability of shock waves for a single conservation law. Adv Math 16(1):65–71

    Article  MathSciNet  MATH  Google Scholar 

  4. Guckenheimer J (1975) Solving a single conservation law. Lecture Notes, vol 468. Springer, New York, pp 108–134

    Google Scholar 

  5. Haberman R (1977) Mathematical models – mechanical vibrations, population dynamics, and traffic flow. Prentice Hall, New Jersey

    MATH  Google Scholar 

  6. Lax P (1972) The formation and decay of shockwaves. Am Math Monthly 79:227–241

    Article  MathSciNet  MATH  Google Scholar 

  7. Poston T, Stewart J (1978) Catastrophe theory and its applications. Pitman, London

    MATH  Google Scholar 

  8. Sanns W (2000) Catastrophe theory with mathematica – a geometric approach. DAV, Germany

    Google Scholar 

  9. Sanns W (2005) Genetisches Lehren von Mathematik an Fachhochschulen am Beispiel von Lehrveranstaltungen zur Katastrophentheorie. DAV, Germany

    Google Scholar 

  10. Saunders PT (1980) An introduction to catastrophe theory. Cambridge University Press, Cambridge. Also available in German: Katastrophentheorie. Vieweg (1986)

    Book  MATH  Google Scholar 

  11. Sinha DK (1981) Catastrophe theory and applications. Wiley, New York

    MATH  Google Scholar 

  12. Wassermann G (1974) Stability of unfoldings. Lect Notes Math, vol 393. Springer, New York

    Book  Google Scholar 

Books and Reviews

  1. Arnold VI (1984) Catastrophe theory. Springer, New York

    MATH  Google Scholar 

  2. Arnold VI, Afrajmovich VS, Il’yashenko YS, Shil’nikov LP (1999) Bifurcation theory and catastrophe theory. Springer

    Google Scholar 

  3. Bruce JW, Gibblin PJ (1992) Curves and singularities. Cambridge Univ Press, Cambridge

    MATH  Google Scholar 

  4. Castrigiano D, Hayes SA (1993) Catastrophe theory. Addison Wesley, Reading

    MATH  Google Scholar 

  5. Chillingworth DRJ (1976) Differential topology with a view to applications. Pitman, London

    MATH  Google Scholar 

  6. Demazure M (2000) Bifurcations and catastrophes. Springer, Berlin

    Book  MATH  Google Scholar 

  7. Fischer EO (1985) Katastrophentheorie und ihre Anwendung in der Wirtschaftswissenschaft. Jahrb f Nationalök u Stat 200(1):3–26

    Google Scholar 

  8. Förster W (1974) Katastrophentheorie. Acta Phys Austr 39(3):201–211

    Google Scholar 

  9. Gilmore R (1981) Catastrophe theory for scientists and engineers. Wiley, New York

    MATH  Google Scholar 

  10. Golubistky M (1978) An introduction to catastrophe theory. SIAM 20(2):352–387

    Article  MathSciNet  Google Scholar 

  11. Golubitsky M, Schaeffer DG (1985) Singularities and groups in bifurcation theory. Springer, New York

    MATH  Google Scholar 

  12. Guckenheimer J (1973) Catastrophes and partial differential equations. Ann Inst Fourier Grenoble 23:31–59

    Article  MathSciNet  MATH  Google Scholar 

  13. Gundermann E (1985) Untersuchungen über die Anwendbarkeit der elementaren Katastrophentheorie auf das Phänomen “Waldsterben”. Forstarchiv 56:211–215

    Google Scholar 

  14. Jänich K (1974) Caustics and catastrophes. Math Ann 209:161–180

    Google Scholar 

  15. Lu JC (1976) Singularity theory with an introduction to catastrophe theory. Springer, Berlin

    Book  Google Scholar 

  16. Majthay A (1985) Foundations of catastrophe theory. Pitman, Boston

    MATH  Google Scholar 

  17. Mather JN (1969) Stability of \({\text{C}^{\infty}}\)-mappings. I: Annals Math 87:89–104; II: Annals Math 89(2):254–291

    Google Scholar 

  18. Poston T, Stewart J (1976) Taylor expansions and catastrophes. Pitman, London

    MATH  Google Scholar 

  19. Stewart I (1977) Catastrophe theory. Math Chronicle 5:140–165

    Google Scholar 

  20. Thom R (1975) Structural stability and morphogenesis. Benjamin Inc., Reading

    MATH  Google Scholar 

  21. Thompson JMT (1982) Instabilities and catastrophes in science and engineering. Wiley, Chichester

    MATH  Google Scholar 

  22. Triebel H (1989) Analysis und mathematische Physik. Birkhäuser, Basel

    MATH  Google Scholar 

  23. Ursprung HW (1982) Die elementare Katastrophentheorie: Eine Darstellung aus der Sicht der Ökonomie. Lecture Notes in Economics and Mathematical Systems, vol 195. Springer, Berlin

    Book  Google Scholar 

  24. Woodcock A, Davis M (1978) Catastrophe theory. Dutton, New York

    MATH  Google Scholar 

  25. Zeeman C (1976) Catastrophe theory. Sci Am 234(4):65–83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Sanns, W. (2012). Catastrophe Theory. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_4

Download citation

Publish with us

Policies and ethics