Skip to main content

Combinatorial Optimization Algorithms

  • Reference work entry
  • First Online:
Handbook of Combinatorial Optimization

Abstract

Identification of targets, generally virus or bacteria, in a biological sample is a relevant problem in medicine. Biologists can use hybridization experiments to determine whether a specific DNA fragment, that represents the virus, is present in a DNA solution. A probe is a segment of DNA or RNA, labeled with a radioactive isotope, dye, or enzyme, used to find a specific target sequence on a DNA molecule by hybridization. Selecting unique probes through hybridization experiments is a difficult task, especially when targets have a high degree of similarity, for instance, in case of closely related viruses.The nonunique probe selection problem is a challenging problem from a biological and computational point of view; a plethora of methods have been proposed in literature ranging from evolutionary algorithms to mathematical programming approaches.In this study, we conducted a survey of the existing computational methods for probe design and selection. We introduced the biological aspects of the problem and examined several issues related to the design and selection of probes: oligonucleotide fingerprinting, maximum distinguishing probe set, minimum cost probe set, and nonunique probe selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,400.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For two strings s and t, the Hamming distance H(s, t) is the number of positions where the characters of the two strings differ.

  2. 2.

    Entropy measures the information content of a probe with respect to the set of sequences. Shannon entropy is introduced in [74].

  3. 3.

    We recall that a clique in a graph G = (V, E) is a subset \(C \subseteq V\), such that each pair of vertices in C is connected by an edge.

  4. 4.

    A graph G with n > 1 vertices is said highly connected if the minimum size of a cut, k(G), is > n ∕ 2. A highly connected subgraph is an induced subgraph that is highly connected.

  5. 5.

    Recall that the Hamming distance between two strings of equal length is defined as the number of positions at which the strings differ.

Recommended Reading

  1. D.G. Albertson, D. Pinkel, Genomic microarrays in human genetic disease and cancer. Hum. Mol. Genet. 12(Review Issue 2), R145 (2003)

    Article  Google Scholar 

  2. R.S.K. Barnes, R.N. Hughes, An Introduction to Marine Ecology (Wiley, Oxford/Malden, 1999)

    Book  Google Scholar 

  3. J.E. Beasley, P.C. Chu, A genetic algorithm for the set covering problem. Eur. J. Oper. Res. 94(2), 392–404 (1996)

    Article  MATH  Google Scholar 

  4. J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry (Looseleaf) (Freeman, San Francisco 2008)

    Google Scholar 

  5. J. Borneman, M. Chrobak, G. Della Vedova, A. Figueroa, T. Jiang, Probe selection algorithms with applications in the analysis of microbial communities. Bioinformatics 17(Suppl 1), S39 (2001)

    Article  Google Scholar 

  6. Z. Bozdech, J. Zhu, M.P. Joachimiak, F.E. Cohen, B. Pulliam, J.L. DeRisi, et al., Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol. 4(2), R9 (2003)

    Article  Google Scholar 

  7. A. Caprara, M. Fischetti, P. Toth, A heuristic method for the set covering problem. Oper. Res. 47(5), 730–743 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Cazalis, T. Milledge, G. Narasimhan, Probe selection problem: structure and algorithms, in Proceedings of the 8th Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2004) (Citeseer, 2004), pp. 124–129

    Google Scholar 

  9. Y. Charbonnier, B. Gettler, P. François, M. Bento, A. Renzoni, P. Vaudaux, W. Schlegel, J. Schrenzel, A generic approach for the design of whole-genome oligoarrays, validated for genomotyping, deletion mapping and gene expression analysis on Staphylococcus aureus. BMC Genomics 6(1), 95 (2005)

    Article  Google Scholar 

  10. H. Chen, B.M. Sharp, Oliz, a suite of Perl scripts that assist in the design of microarrays using 50 mer oligonucleotides from the 3’ untranslated region. BMC Bioinform. 3(1), 27 (2002)

    Article  Google Scholar 

  11. C.C. Chou, C.H. Chen, T.T. Lee, K. Peck, Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression. Nucl. Acids Res. 32(12), e99 (2004)

    Article  Google Scholar 

  12. H.H. Chou, A.P. Hsia, D.L. Mooney, P.S. Schnable, Picky: oligo microarray design for large genomes. Bioinformatics 20(17), 2893–2902 (2004)

    Article  Google Scholar 

  13. F.S. Collins, M. Morgan, A. Patrinos, The Human Genome Project: lessons from large-scale biology. Science 300(5617), 286–290 (2003)

    Article  Google Scholar 

  14. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 2006)

    MATH  Google Scholar 

  15. C. Debouck, P.N. Goodfellow, DNA microarrays in drug discovery and development. Nat. Genet. 21(1 suppl), 48–50 (1999)

    Article  Google Scholar 

  16. P. Deng, M. Thai, Q. Ma, W. Wu, Efficient non-unique probes selection algorithms for DNA microarray. BMC Genomics 9(Suppl 1), S22 (2008)

    Article  Google Scholar 

  17. P.S. de Souza, S.N. Talukdar, Asynchronous organizations for multi-algorithm problems, in Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing: States of the Art and Practice (ACM, New York, 1993), p. 293

    Google Scholar 

  18. D.Z. Du, F.K. Hwang, Pooling Designs: Group Testing in Molecular Biology (World Scientific, New Jersey, 2006)

    Google Scholar 

  19. S.J. Emrich, M. Lowe, A.L. Delcher, PROBEmer: a web-based software tool for selecting optimal DNA oligos. Nucl. Acids Res. 31(13), 3746 (2003)

    Article  Google Scholar 

  20. C.B. Epstein, R.A. Butow, Microarray technology–enhanced versatility, persistent challenge. Curr. Opin. Biotechnol. 11(1), 36–41 (2000)

    Article  Google Scholar 

  21. A. Figueroa, J. Borneman, T. Jiang, Clustering binary fingerprint vectors with missing values for dna array data analysis. J. Comput. Biol. 11(5), 887–901 (2004)

    Article  Google Scholar 

  22. L. Gasieniec, C.Y. Li, P. Sant, P.W.H. Wong, Efficient probe selection in microarray design, in 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, 2006. CIBCB’06, Toronto (IEEE, 2007), pp. 1–8

    Google Scholar 

  23. L. Gasieniec, C.Y. Li, P. Sant, P.W.H. Wong, Randomized probe selection algorithm for microarray design. J. Theor. Biol. 248(3), 512–521 (2007)

    Article  Google Scholar 

  24. L.S. Ghoraie, R. Gras, L. Wang, A. Ngom, Bayesian optimization algorithm for the non-unique oligonucleotide probe selection problem, in Proceedings of the 4th IAPR International Conference on Pattern Recognition in Bioinformatics, Sheffield (Springer, 2009), pp. 365–376

    Google Scholar 

  25. L.S. Ghoraie, R. Gras, L. Wang, A. Ngom, Optimal decoding and minimal length for the non-unique oligonucleotide probe selection problem. Neurocomputing 73(13), 2407–2418 (2010)

    Article  Google Scholar 

  26. P.M.K. Gordon, C.W. Sensen, Osprey: a comprehensive tool employing novel methods for the design of oligonucleotides for DNA sequencing and microarrays. Nucl. Acids Res. 32(17), e133 (2004)

    Article  Google Scholar 

  27. E. Halperin, S. Halperin, T. Hartman, R. Shamir, Handling long targets and errors in sequencing by hybridization. J. Comput. Biol. 10(3–4), 483–497 (2003)

    Article  Google Scholar 

  28. E. Hartuv, A.O. Schmitt, J. Lange, S. Meier-Ewert, H. Lehrach, R. Shamir, An algorithm for clustering cDNA fingerprints. Genomics 66(3), 249–256 (2000)

    Article  Google Scholar 

  29. R. Herwig, A.J. Poustka, C. Muller, C. Bull, H. Lehrach, J. O’Brien, Large-scale clustering of cDNA-fingerprinting data. Genome Res. 9(11), 1093 (1999)

    Article  Google Scholar 

  30. R. Herwig, A.O. Schmitt, M. Steinfath, J. O’Brien, H. Seidel, S. Meier-Ewert, H. Lehrach, U. Radelof, Information theoretical probe selection for hybridisation experiments. Bioinformatics 16(10), 890 (2000)

    Article  Google Scholar 

  31. D.S. Hochba, Approximation algorithms for NP-hard problems. ACM SIGACT News 28(2), 40–52 (1997)

    Article  Google Scholar 

  32. J.H. Holland, Adaptation in Natural and Artificial Systems (MIT, Cambridge, 1992)

    Google Scholar 

  33. N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J.V. Pearson, D.A. Stephan, S.F. Nelson, D.W. Craig, Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet. 4(8), e1000167 (2008)

    Article  Google Scholar 

  34. A.K. Jain, R.C. Dubes, Algorithms for Clustering Data (Prentice-Hall, Englewood Cliffs, 1988)

    MATH  Google Scholar 

  35. L. Kaderali, A. Schliep, Selecting signature oligonucleotides to identify organisms using DNA arrays. Bioinformatics 18(10), 1340 (2002)

    Article  Google Scholar 

  36. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. G.W. Klau, S. Rahmann, A. Schliep, M. Vingron, K. Reinert, Optimal robust non-unique probe selection using integer linear programming. Bioinformatics 20(suppl 1), i186 (2004)

    Article  Google Scholar 

  38. G.W. Klau, S. Rahmann, A. Schliep, M. Vingron, K. Reinert, Integer linear programming approaches for non-unique probe selection. Discret. Appl. Math. 155(6–7), 840–856 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. D.P. Kreil, R.R. Russell, S. Russell, [4] microarray oligonucleotide probes. Methods Enzymol. 410, 73–98 (2006)

    Google Scholar 

  40. J.K. Lanctot, M. Li, B. Ma, S. Wang, L. Zhang, Distinguishing string selection problems, in Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, 1999, pp. 633–642

    Google Scholar 

  41. P. Larranaga, J.A. Lozano, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation (Springer, Berlin, 2002)

    Book  Google Scholar 

  42. F. Li, G.D. Stormo, Selection of optimal DNA oligos for gene expression arrays. Bioinformatics 17(11), 1067 (2001)

    Article  Google Scholar 

  43. X. Li, Z. He, J. Zhou, Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucl. Acids Res. 33(19), 6114 (2005)

    Article  Google Scholar 

  44. D. Lipson, P. Webb, Z. Yakhini, Designing specific oligonucleotide probes for the entire S. cerevisiae transcriptome, in Algorithms in Bioinformatics (2002), pp. 491–505

    Google Scholar 

  45. D.J. Lockhart, H. Dong, M.C. Byrne, M.T. Follettie, M.V. Gallo, M.S. Chee, M. Mittmann, C. Wang, M. Kobayashi, H. Horton, et al., Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14(13), 1675 (1996)

    Article  Google Scholar 

  46. J. MacQueen, et al., Some methods for classification and analysis of multivariate observations, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability: Statistics, vol. 1 (University of California Press, Berkeley, California, 1967), p. 281

    Google Scholar 

  47. J. Marmur, P. Doty, Thermal renaturation of deoxyribonucleic acids. J. Mol. Biol. 3(5), 585–594 (1961)

    Article  Google Scholar 

  48. S. Meier-Ewert, Global expression mapping of mammalian enomes, PhD thesis, University College, London, 1994

    Google Scholar 

  49. C.N. Meneses, Z. Lu, C.A.S. Oliveira, P.M. Pardalos, et al., Optimal solutions for the closest-string problem via integer programming. INFORMS J. Comput. 16(4), 419–429 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. C.N. Meneses, P.M. Pardalos, M.A. Ragle, A new approach to the non-unique probe selection problem. Ann. Biomed. Eng. 35(4), 651–658 (2007)

    Article  Google Scholar 

  51. C.N. Meneses, P.M. Pardalos, M. Ragle, Asynchronous teams for probe selection problems. Discret. Optim. 5(1), 74–87 (2008)

    Article  MATH  Google Scholar 

  52. B.G. Mirkin, Mathematical Classification and Clustering (Springer, Heidelberg, 1996)

    Book  MATH  Google Scholar 

  53. R. Mrowka, J. Schuchhardt, C. Gille, Oligodb–interactive design of oligo DNA for transcription profiling of human genes. Bioinformatics 18(12), 1686 (2002)

    Article  Google Scholar 

  54. A. Ngom, L. Rueda, L. Wang, R. Gras, Selection based heuristics for the non-unique oligonucleotide probe selection problem in microarray design. Pattern Recognit. Lett. 31(14), 2113–2125 (2010)

    Article  Google Scholar 

  55. H.B. Nielsen, R. Wernersson, S. Knudsen, Design of oligonucleotides for microarrays and perspectives for design of multi-transcriptome arrays. Nucl. Acids Res. 31(13), 3491 (2003)

    Article  Google Scholar 

  56. E.K. Nordberg, YODA: selecting signature oligonucleotides. Bioinformatics 21(8), 1365 (2005)

    Article  Google Scholar 

  57. M. Pelikan, Bayesian optimization algorithm, in Hierarchical Bayesian Optimization Algorithm (Springer, Berlin/New York, 2005), pp. 31–48

    Google Scholar 

  58. P. Pudil, J. Novovicová, J. Kittler, Floating search methods in feature selection. Pattern Recognit. Lett. 15(11), 1119–1125 (1994)

    Article  Google Scholar 

  59. M.A. Ragle, Computational methods for the design and selection of hybridization probes, PhD thesis, D., University of Florida, 2007

    Google Scholar 

  60. M.A. Ragle, J.C. Smith, P.M. Pardalos, An optimal cutting-plane algorithm for solving the non-unique probe selection problem. Ann. Biomed. Eng. 35(11), 2023–2030 (2007)

    Article  Google Scholar 

  61. S. Rahmann, Fast and sensitive probe selection for dna chips using jumps in matching statistics, in Proceedings of the 2003 IEEE Bioinformatics Conference, 2003. CSB 2003, Stanford (IEEE, Washington, DC, 2003), pp. 57–64

    Google Scholar 

  62. S. Rahmann, Fast large scale oligonucleotide selection using the longest common factor approach. Int. J. Bioinform. Comput. Biol. 1(2), 343–362 (2003)

    Article  Google Scholar 

  63. S. Rahmann, Algorithms for probe selection and DNA microarray design. University of Berlin, Berlin, 208, 2004

    Google Scholar 

  64. J.B. Rampal, DNA Arrays: Methods and Protocols (Humana Press, Totowa, 2001)

    Book  Google Scholar 

  65. S. Rash, D. Gusfield, String barcoding: uncovering optimal virus signatures, in Proceedings of the Sixth Annual International Conference on Computational Biology (ACM, New York, 2002), pp. 254–261

    Google Scholar 

  66. A. Relógio, C. Schwager, A. Richter, W. Ansorge, J. Valcárcel, Optimization of oligonucleotide-based DNA microarrays. Nucl. Acids Res. 30(11), e51 (2002)

    Article  Google Scholar 

  67. N. Reymond, H. Charles, L. Duret, F. Calevro, G. Beslon, J.M. Fayard, ROSO: optimizing oligonucleotide probes for microarrays. Bioinformatics 20(2), 271 (2004)

    Article  Google Scholar 

  68. S. Rimour, D. Hill, C. Militon, P. Peyret, GoArrays: highly dynamic and efficient microarray probe design. Bioinformatics 21(7), 1094 (2005)

    Article  Google Scholar 

  69. J.M. Rouillard, C.J. Herbert, M. Zuker, OligoArray: genome-scale oligonucleotide design for microarrays. Bioinformatics 18(3), 486–487 (2002)

    Article  Google Scholar 

  70. S. Rozen, H. Skaletsky, Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132(3), 365–386 (2000)

    Google Scholar 

  71. J. SantaLucia Jr., H.T. Allawi, P.A. Seneviratne, Improved Nearest-Neighbor Parameters for Predicting DNA Duplex Stability. Biochemistry 35(11), 3555–3562 (1996)

    Article  Google Scholar 

  72. M.P. Sawicki, G. Samara, M. Hurwitz, E. Passaro Jr., Human genome project. Am. J. Surg. 165(2), 258–264 (1993)

    Article  Google Scholar 

  73. A. Schliep, DC Torney, S. Rahmann, Group testing with dna chips: generating designs and decoding experiments. Proc. IEEE Comput. Soc. Bioinform. Conf. 2, 84–91 (2003)

    Google Scholar 

  74. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (Citeseer, 1959)

    Google Scholar 

  75. L. Soltan Ghoraie, R. Gras, L. Wang, A. Ngom, Bayesian optimization algorithm for the non-unique oligonucleotide probe selection problem. Pattern Recognit. Bioinform., 365–376 (2009)

    Google Scholar 

  76. W.K. Sung, W.H. Lee, Fast and accurate probe selection algorithm for large genomes, in Proceedings/IEEE Computer Society Bioinformatics Conference, Stanford, vol. 2, 2003, p. 65

    Google Scholar 

  77. M.T. Thai, T. Znati, On the complexity and approximation of non-unique probe selection using d-disjunct matrix. J. Comb. Optim. 17(1), 45–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  78. N. Tolstrup, P.S. Nielsen, J.G. Kolberg, A.M. Frankel, H. Vissing, S. Kauppinen, OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucl. Acids Res. 31(13), 3758 (2003)

    Article  Google Scholar 

  79. L. Wang, A. Ngom, A model-based approach to the non-unique oligonucleotide probe selection problem, in Second International Conference on Bio-Inspired Models of Network, Information, and Computing Systems, 2007. Bionetics 2007, Budapest (IEEE, 2007), pp. 209–215

    Google Scholar 

  80. L. Wang, A. Ngom, R. Gras, L. Rueda, An evolutionary approach to the non-unique oligonucleotide probe selection problem. Trans. Comput. Syst. Biol. X, 10, 143–162 (2008)

    Article  Google Scholar 

  81. L. Wang, A. Ngom, L. Rueda, Sequential forward selection approach to the non-unique oligonucleotide probe selection problem. Pattern Recognit. Bioinform., 262–275 (2008)

    Google Scholar 

  82. X. Wang, B. Seed, Selection of oligonucleotide probes for protein coding sequences. Bioinformatics 19(7), 796 (2003)

    Article  Google Scholar 

  83. J.D. Watson, F.H.C. Crick, Molecular structure of nucleic acids. Nature 171(4356), 737–738 (1953)

    Article  Google Scholar 

  84. R. Wernersson, A.S. Juncker, H.B. Nielsen, Probe selection for DNA microarrays using OligoWiz. Nat. Protoc. 2(11), 2677–2691 (2007)

    Article  Google Scholar 

  85. R. Wernersson, H.B. Nielsen, OligoWiz 2.0integrating sequence feature annotation into the design of microarray probes. Nucl. Acids Res. 33(suppl 2), W611 (2005)

    Article  Google Scholar 

  86. D. Xu, Y. Xu, G. Li, J. Zhou, A computer program for generating gene-specific fragments for microarrays, in Currents in Computational Molecular Biology (Universal Academy Press, Tokyo, 2000), pp. 3–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Pappalardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Pappalardo, E., Ahlatcioglu Ozkok, B., Pardalos, P.M. (2013). Combinatorial Optimization Algorithms. In: Pardalos, P., Du, DZ., Graham, R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7997-1_67

Download citation

Publish with us

Policies and ethics