Skip to main content

Extreme Events in Socio-economic and Political Complex Systems, Predictability of

  • Reference work entry
Complex Systems in Finance and Econometrics

Article Outline

Glossary

Definition of the Subject

Introduction

Common Elements of Data Analyzes

Elections

US Economic Recessions

Unemployment

Homicide Surges

Summary: Findings and Emerging Possibilities

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Complexity:

A definitive feature of nonlinear systems of interacting elements. It comprises high instability with respect to initial and boundary conditions, and complex but non‐random behavior patterns (“order in chaos”).

Extreme events:

Rare events having a large impact. Such events are also known as critical phenomena, disasters, catastrophes, and crises. They persistently reoccur in hierarchical complex systems created, separately or jointly, by nature and society.

Fast acceleration of unemployment (FAU):

The start of a strong and lasting increase of the unemployment rate.

Pattern recognition of rare events:

The methodology of artificial intelligence' kind aimed at studying distinctive features of complex phenomena, in particular – at formulating and testing hypotheses on these features.

Premonitory patterns:

Patterns of a complex system's behavior that emerge most frequently as an extreme event approaches.

Recession:

The American National Bureau of Economic Research defines recession as “a significant decline in economic activity spread across the economy, lasting more than a few months”. A recession may involve simultaneous decline in coincident measures of overall economic activity such as industrial production, employment, investment, and corporate profits.

Start of the homicide surge (SHS):

The start of a strong and lasting increase in the smoothed homicide rate.

Bibliography

Primary Literature

  1. Allègre CJ, Le Mouël J-L, Ha Duyen C, Narteau C (1995) Scaling organization of fracture tectonics (SOFT) and earthquake mechanism. Phys Earth Planet Inter 92:215–233

    Google Scholar 

  2. Armstrong JS, Cuzan AG (2005) Index methods for forecasting: An application to american presidential elections. Foresight Int J Appl Forecast 3:10–13

    Google Scholar 

  3. Blanter EM, Shnirman MG, Le Mouël JL, Allègre CJ (1997) Scaling laws in blocks dynamics and dynamic self‐organized criticality. Phys Earth Planet Inter 99:295–307

    Google Scholar 

  4. Bongard MM, Vaintsveig MI, Guberman SA, Izvekova ML, Smirnov MS (1966) The use of self‐learning prog in the detection of oil containing layers. Geol Geofiz 6:96–105

    Google Scholar 

  5. Burridge R, Knopoff L (1967) Model and theoretical seismicity. Bull Seismol Soc Am 57:341–360

    Google Scholar 

  6. Carlson SM (1998) Uniform crime reports: Monthly weapon‐specific crime and arrest time series 1975–1993 (National, State, 12-City Data), ICPSR 6792 Inter‐university Consortium for Political and Social Research. Ann Arbor

    Google Scholar 

  7. Farmer JD, Sidorowich J (1987) Predicting chaotic time series. Phys Rev Lett 59:845

    Article  Google Scholar 

  8. Gabrielov A, Keilis‐Borok V, Zaliapin I, Newman WI (2000) Critical transitions in colliding cascades. Phys Rev E 62:237–249

    Google Scholar 

  9. Gabrielov A, Keilis‐Borok V, Zaliapin I (2007) Predictability of extreme events in a branching diffusion model. arXiv:0708.1542

    Google Scholar 

  10. Gabrielov AM, Zaliapin IV, Newman WI, Keilis‐Borok VI (2000) Colliding cascade model for earthquake prediction. Geophys J Int 143(2):427–437

    Google Scholar 

  11. Gelfand IM, Guberman SA, Keilis‐Borok VI, Knopoff L, Press F, Ranzman IY, Rotwain IM, Sadovsky AM (1976) Pattern recognition applied to earthquake epicenters in California. Phys Earth Planet Inter 11:227–283

    Google Scholar 

  12. Gell-Mann M (1994) The quark and the jaguar: Adventures in the simple and the complex. Freeman, New York

    Google Scholar 

  13. Crutchfield JP, Farmer JD, Packard NH, Shaw RS (1986) Chaos Sci Am 255:46–57

    Google Scholar 

  14. Gvishiani AD, Kosobokov VG (1981) On found of the pattern recognition results applied to earthquake‐prone areas. Izvestiya Acad Sci USSR. Phys Earth 2:21–36

    Google Scholar 

  15. Holland JH (1995) Hidden order: How adaptation builds complexity. Addison, Reading

    Google Scholar 

  16. IMF (1997) International monetary fund, international financial statistics. CD-ROM

    Google Scholar 

  17. Kadanoff LP (1976) Scaling, universality and operator algebras. In: Domb C, Green MS (eds) Phase transitions and critical phenomena, vol 5a. Academic, London, pp 1–34

    Google Scholar 

  18. Keilis‐Borok VI, Lichtman AJ (1993) The self‐organization of American society in presidential and senatorial elections. In: Kravtsov YA (ed) Limits of predictability. Springer, Berlin, pp 223–237

    Google Scholar 

  19. Keilis‐Borok VI, Press F (1980) On seismological applications of pattern recognition. In: Allègre CJ (ed) Source mechanism and earthquake prediction applications. Editions du centre national du la recherché scientifique, Paris, pp 51–60

    Google Scholar 

  20. Keilis‐Borok VI, Soloviev AA (eds) (2003) Nonlinear dynamics of the lithosphere and earthquake prediction. Springer, Berlin

    Google Scholar 

  21. Keilis‐Borok V, Soloviev A (2007) Pattern recognition methods and algorithms. Ninth workshop on non‐linear dynamics and earthquake prediction, Trieste ICTP 1864-11

    Google Scholar 

  22. Keilis‐Borok VI, Sorondo MS (2000) (eds) Science for survival and sustainable development. The proceedings of the study-week of the Pontifical Academy of Sciences, 12–16 March 1999. Pontificiae Academiae Scientiarvm Scripta Varia, Vatican City

    Google Scholar 

  23. Keilis‐Borok V, Stock JH, Soloviev A, Mikhalev P (2000) Pre‐recession pattern of six economic indicators in the USA. J Forecast 19:65–80

    Google Scholar 

  24. Keilis‐Borok VI, Gascon DJ, Soloviev AA, Intriligator MD, Pichardo R, Winberg FE (2003) On predictability of homicide surges in megacities. In: Beer T, Ismail‐Zadeh A (eds) Risk science and sustainability. Kluwer, Dordrecht (NATO Sci Ser II Math, Phys Chem 112), pp 91–110

    Google Scholar 

  25. Keilis‐Borok VI, Soloviev AA, Allègre CB, Sobolevskii AN, Intriligator MD (2005) Patterns of macroeconomic indicators preceding the unemployment rise in Western Europe and the USA. Pattern Recogn 38(3):423–435

    Google Scholar 

  26. Keilis‐Borok V, Soloviev A, Gabrielov A, Zaliapin I (2007) Change of scaling before extreme events in complex systems. In: Proceedings of the plenary session on “predictability in science: Accuracy and limitations”, Pontificiae Academiae Scientiarvm Scripta Varia, Vatican City

    Google Scholar 

  27. Kravtsov YA (ed) (1993) Limits of predictability. Springer, Berlin

    Google Scholar 

  28. Lichtman AJ, Keilis‐Borok VI (1989) Aggregate‐level analysis and prediction of midterm senatorial elections in the United States, 1974–1986. Proc Natl Acad Sci USA 86(24):10176–10180

    Google Scholar 

  29. Lichtman AJ (1996) The keys to the White House. Madison Books, Lanham

    Google Scholar 

  30. Lichtman AJ (2005) The keys to the White House: Forecast for 2008. Foresight Int J Appl Forecast 3:5–9

    Google Scholar 

  31. Lichtman AJ (2008) The keys to the White House, 2008 edn. Rowman/Littlefield, Lanham

    Google Scholar 

  32. Ma Z, Fu Z, Zhang Y, Wang C, Zhang G, Liu D (1990) Earthquake prediction: Nine major earthquakes in china. Springer, New York

    Google Scholar 

  33. Mason IB (2003) Binary events. In: Jolliffe IT, Stephenson DB (eds) Forecast verification. A practitioner's guide in atmospheric science. Wiley, Chichester, pp 37–76

    Google Scholar 

  34. Molchan GM (1990) Strategies in strong earthquake prediction. Phys Earth Planet Inter 61:84–98

    Article  Google Scholar 

  35. Molchan GM (1991) Structure of optimal strategies of earthquake prediction. Tectonophysics 193:267–276

    Article  Google Scholar 

  36. Molchan GM (1994) Models for optimization of earthquake prediction. In: Chowdhury DK (ed) Computational seismology and geodynamics, vol 1. Am Geophys Un, Washington, pp 1–10

    Google Scholar 

  37. Molchan GM (1997) Earthquake prediction as a decision‐making problem. Pure Appl Geophys 149:233–237

    Article  Google Scholar 

  38. Molchan GM (2003) Earthquake prediction strategies: A theoretical analysis. In: Keilis‐Borok VI, Soloviev AA (eds) Nonlinear dynamics of the lithosphere and earthquake prediction. Springer, Berlin, pp 209–237

    Google Scholar 

  39. Molchan G, Keilis‐Borok V (2008) Earthquake prediction: Probabilistic aspect. Geophys J Int 173(3):1012–1017

    Google Scholar 

  40. NACJD: http://www.icpsr.umich.edu/NACJD/index.html

  41. NBER: http://www.nber.org/cycles/cyclesmain.html

  42. Newman W, Gabrielov A, Turcotte DL (eds) (1994) Nonlinear dynamics and predictability of geophysical phenomena. Am Geophys Un, Int Un Geodesy Geophys, Washington

    Google Scholar 

  43. OECD (1997) Main economic indicators: Historical statistics 1960–1996. Paris, CD-ROM

    Google Scholar 

  44. Press F, Briggs P (1975) Chandler wobble, earthquakes, rotation and geomagnetic changes. Nature 256:270–273, London

    Article  Google Scholar 

  45. Press F, Briggs P (1977) Pattern recognition applied to uranium prospecting. Nature 268:125–127

    Article  Google Scholar 

  46. Press F, Allen C (1995) Patterns of seismic release in the southern California region. J Geophys Res 100(B4):6421–6430

    Article  Google Scholar 

  47. Soloviev A (2007) Application of the pattern recognition techniques to earthquake‐prone areas determination. Ninth workshop on non‐linear dynamics and earthquake prediction, Trieste ICTP 1864-9

    Google Scholar 

  48. Stock JH, Watson MW (1989) New indexes of leading and coincident economic indicators. NBER Macroecon Ann 4:351–394

    Article  Google Scholar 

  49. Stock JH, Watson MW (1993) A procedure for predicting recessions with leading indicators. In: Stock JH, Watson MW (eds) Business cycles, indicators, and forecasting (NBER Studies in Business Cycles, vol 28), pp 95–156

    Google Scholar 

  50. Tukey JW (1977) Exploratory data analysis. Addison‐wesley series in behavioral science: Quantitative methods. Addison, Reading

    Google Scholar 

  51. Turcotte DL, Newman WI, Gabrielov A (2000) A statistical physics approach to earthquakes. In: Geocomplexity and the physics of earthquakes. Am Geophys Un, Washington

    Google Scholar 

  52. Zaliapin I, Keilis‐Borok V, Ghil M (2003) A Boolean delay model of colliding cascades, II: Prediction of critical transitions. J Stat Phys 111(3–4):839–861

    Google Scholar 

Books and Reviews

  1. Bongard MM (1967) The problem of recognition. Nauka, Moscow

    Google Scholar 

  2. Brito DL, Intriligator MD, Worth ER (1998) In: Eliassson G, Green C (eds) Microfoundations of economic growth: A Schumpeterian perspective. University of Michigan Press, Ann Arbor

    Google Scholar 

  3. Bui Trong L (2003) Risk of collective youth violence in french suburbs. A clinical scale of evaluation, an alert system. In: Beer T, Ismail‐Zadeh A (eds) Risk science and sustainability. Kluwer, Dordrecht (NATO Sci Ser II Math Phys Chem 112)

    Google Scholar 

  4. Engle RF, McFadden DL (1994) (eds) Handbook of econometrics, vol 4. North‐Holland, Amsterdam

    Google Scholar 

  5. Klein PA, Niemira MP (1994) Forecasting financial and economic cycles. Wiley, New York

    Google Scholar 

  6. Messner SF (1983) Regional differences in the economic correlates of the urban homicide rate. Criminology 21:477–488

    Article  Google Scholar 

  7. Mitchell WC (1951) What happens during business cycles: A progress report. NBER, New York

    Google Scholar 

  8. Mitchell WC, Burns AF (1946) Measuring business cycles. NBER, New York

    Google Scholar 

  9. Moore GH (ed) (1961) Business cycle indicators. NBER, New York

    Google Scholar 

  10. Mostaghimi M, Rezayat F (1996) Probability forecast of a downturn in US economy using classical statistical theory. Empir Econ 21:255–279

    Article  Google Scholar 

  11. Watson MW (1994) In: Engle RF, McFadden DL (eds) Handbook of econometrics, vol IV. North‐Holland, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Keilis-Borok, V., Soloviev, A., Lichtman, A. (2009). Extreme Events in Socio-economic and Political Complex Systems, Predictability of. In: Meyers, R. (eds) Complex Systems in Finance and Econometrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7701-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7701-4_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7700-7

  • Online ISBN: 978-1-4419-7701-4

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics