Skip to main content

Organic Pollutants in Water Using DSA Electrodes, In-Cell Mediated (via Active Chlorine) Electrochemical Oxidation

  • Reference work entry
  • First Online:
Book cover Encyclopedia of Applied Electrochemistry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gattrell M, Kirk DW (1990) The electrochemical oxidation of aqueous phenol carbon electrode. Can J Chem Eng 68(6):997–1003

    CAS  Google Scholar 

  2. Anglada Á, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84(12):1747–1755

    CAS  Google Scholar 

  3. Rajkumar D, Palanivelu K (2004) Electrochemical treatment of industrial wastewater. J Hazard Mater 113:123–129

    CAS  Google Scholar 

  4. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39(11–12):1857–1862

    CAS  Google Scholar 

  5. Beer HB (1980) The invention and industrial development of metal anodes. J Electrochem Soc 127(8):303C–307C

    CAS  Google Scholar 

  6. Duby P (1993) The history of progress in dimensionally stable anodes. J Miner Met Mater Soc 45(3):41–43

    CAS  Google Scholar 

  7. Holden HS, Kolb JM, Holden HS, Kolb JM (1981) Metal anodes. In: Encyclopedia of chemical technology, vol 15. Wiley, New York

    Google Scholar 

  8. O’Leary KJ, Navin TJ (1974) Morphology of dimensionally stable anodes. In: Chlorine bicentennial symposium, San Francisco. p 174

    Google Scholar 

  9. Trasatti S, O’Grady WE (1981) Properties and applications of ruthenium oxide based electrodes. In: Gerisher H, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering, vol 12. Wiley, New York, pp 177–261

    Google Scholar 

  10. Trasatti S (1980) Electrodes of conductive metal oxides, part A. Elsevier, Amsterdam

    Google Scholar 

  11. Trasatti S (1981) Electrodes of conductive metal oxides, part B. Elsevier, Amsterdam

    Google Scholar 

  12. Rolewicz J, Comninellis C, Plattner E, Hinden J (1988) Charactérisation des électrodes de type DSA pour le dégagement de O2-I. L’électrode Ti/IrO2Ta2O5. Electrochim Acta 33(4):573–580

    CAS  Google Scholar 

  13. Comninellis C (1989) Characterization of DSA-type oxygen evolving anodes. In: Hine F (ed) Performance of electrodes for industrial processes. The Electrochemical Society, Princeton

    Google Scholar 

  14. Rodrigo MA, Michaud PA, Duo I, Panizza M, Cerisola G, Comninellis C (2001) Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J Electrochem Soc 148(5):D60–D64

    CAS  Google Scholar 

  15. Chatzisymeon E, Dimou A, Mantzavinos D, Katsaounis A (2009) Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO2 anode. J Hazard Mater 167(1–3):268–274

    CAS  Google Scholar 

  16. Randtke S (2010) White’s handbook of chlorination and alternative disinfectants. Wiley, Hoboken

    Google Scholar 

  17. Weil I, Morris JC (1949) Kinetic studies on the chloramines. I. The rates of formation of monochloramine, N-chlormethylamine and N-chlordimethylamine. J Am Chem Soc 71(5):1664–1671

    CAS  Google Scholar 

  18. Qiang Z, Adams CD (2004) Determination of monochloramine formation rate constants with stopped-flow spectrophotometry. Environ Sci Technol 38(5):1435–1444

    CAS  Google Scholar 

  19. Fair G, Morris J, Chang S, Weil I, Burden RP (1948) The behavior of chlorine as a water disinfectant. J Am Water Work Assoc 40:1051

    CAS  Google Scholar 

  20. Saguinsin L, Morris J (1975) Disinfection – water and wastewater. Ann Arbor Science, Ann Arbor

    Google Scholar 

  21. Kapałka A, Katsaounis A, Michels NL, Leonidova A, Souentie S, Comninellis C, Udert KM (2010) Ammonia oxidation to nitrogen mediated by electrogenerated active chlorine on Ti/PtOx-IrO2. Electrochem Commun 12(9):1203–1205

    Google Scholar 

  22. Lee W, Westerhoff P (2009) Formation of organic chloramines during water disinfection - chlorination versus chloramination. Water Res 43(8):2233–2239

    CAS  Google Scholar 

  23. Bergmann MEH, Koparal AS (2005) Studies on electrochemical disinfectant production using anodes containing RuO2. J Appl Electrochem 35(12):1321–1329

    CAS  Google Scholar 

  24. Tasaka A, Tojo T (1985) Anodic oxidation mechanism of hypochlorite ion on platinum electrode in alkaline solution. J Electrochem Soc 132(8):1855–1859

    CAS  Google Scholar 

  25. Trasatti S (1987) Progress in the understanding of the mechanism of chlorine evolution at oxide electrodes. Electrochim Acta 32(3):369–382

    CAS  Google Scholar 

  26. Kraft A (2008) Electrochemical water disinfection: a short review. Platin Met Rev 52(3):177–185

    CAS  Google Scholar 

  27. Bonfatti F, Ferro S, Lavezzo F, Malacarne M, Lodi G, De Battisti A (2000) Electrochemical incineration of glucose as a model organic substrate II. Role of active chlorine mediation. J Electrochem Soc 147(2):592–596

    CAS  Google Scholar 

  28. Zhou M, Wu Z, Wang D (2002) Electrocatalytic degradation of phenol in acidic and saline wastewater. J Environ Sci Health A Tox Hazard Subst Environ Eng 37(7):1263–1275

    Google Scholar 

  29. Iniesta J, González-García J, Expósito E, Montiel V, Aldaz A (2001) Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes. Water Res 35(14):3291–3300

    CAS  Google Scholar 

  30. Panizza M, Cerisola G (2003) Influence of anode material on the electrochemical oxidation of 2-naphthol: part 1. Cyclic voltammetry and potential step experiments. Electrochim Acta 48(23):3491–3497

    CAS  Google Scholar 

  31. Panizza M, Cerisola G (2003) Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine. Electrochim Acta 48(11):1515–1519

    CAS  Google Scholar 

  32. Panizza M, Cerisola G (2008) Electrochemical degradation of methyl red using BDD and PbO2 anodes. Ind Eng Chem Res 47(18):6816–6820

    CAS  Google Scholar 

  33. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569

    CAS  Google Scholar 

  34. Martínez-Huitle CA, Andrade LS (2011) Electrocatalysis in wastewater treatment: recent mechanism advances. Quimica Nova 34(5):850–858

    Google Scholar 

  35. Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340

    Google Scholar 

  36. Martínez-Huitle CA, Ferro S, De Battisti A (2004) Electrochemical incineration of oxalic acid: role of electrode material. Electrochim Acta 49(22–23 SPEC. ISS.):4027–4034

    Google Scholar 

  37. Martínez-Huitle CA, Quiroz MA, Comninellis C, Ferro S, De Battisti A (2004) Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes. Electrochim Acta 50(4):949–956

    Google Scholar 

  38. Quiroz MA, Reyna S, Martínez-Huitle CA, Ferro S, De Battisti A (2005) Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. Appl Catal Environ 59(3–4):259–266

    CAS  Google Scholar 

  39. Chatzisymeon E, Fierro S, Karafyllis I, Mantzavinos D, Kalogerakis N, Katsaounis A (2010) Anodic oxidation of phenol on Ti/IrO2 electrode: experimental studies. Catal Today 151(1–2):185–189

    CAS  Google Scholar 

  40. Landolt D, Ibl N (1970) On the mechanism of anodic chlorate formation in concentrated NaCl solutions. Electrochim Acta 15(7):1165–1183

    CAS  Google Scholar 

  41. Landolt D, Ibl N (1972) Anodic chlorate formation on platinized titanium. J Appl Electrochem 2(3):201–210

    CAS  Google Scholar 

  42. Landolt D, Ibl N (1968) On the mechanism of anodic chlorate formation in dilute NaCl solutions. J Electrochem Soc 115(7):713–720

    Google Scholar 

  43. Foerster F (1924) Trans Am Electrochem Soc 46:23

    Google Scholar 

  44. Palmas S, Polcaro AM, Vacca A, Mascia M, Ferrara F (2007) Characterization of boron doped diamond during oxidation processes: relationship between electronic structure and electrochemical activity. J Appl Electrochem 37(1):63–70

    CAS  Google Scholar 

  45. Kraft A, Stadelmann M, Blaschke M, Kreysig D, Sandt B, Schröder F, Rennau J (1999) Electrochemical water disinfection. Part I: hypochlorite production from very dilute chloride solutions. J Appl Electrochem 29(7):861–868

    CAS  Google Scholar 

  46. Kraft A, Wünsche M, Stadelmann M, Blaschke M (2003) Electrochemical water disinfection. Recent Res Dev Electrochem 6:27–55

    CAS  Google Scholar 

  47. Mieluch J, Sadkowski A, Wild J, Zoltowski P (1975) Electrochemical oxidation of phenolic compounds in aqueous solutions. Przemysl Chemiczny 54(9):513–516

    CAS  Google Scholar 

  48. Comninellis C, Nerini A (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J Appl Electrochem 25(1):23–28

    CAS  Google Scholar 

  49. Gotsi M, Kalogerakis N, Psillakis E, Samaras P, Mantzavinos D (2005) Electrochemical oxidation of olive oil mill wastewaters. Water Res 39(17):4177–4187

    CAS  Google Scholar 

  50. Cossu R, Polcaro AM, Lavagnolo MC, Mascia M, Palmas S, Renoldi F (1998) Electrochemical treatment of landfill leachate: oxidation at Ti/PbO2 and Ti/SnO2 anodes. Environ Sci Technol 32(22):3570–3573

    CAS  Google Scholar 

  51. Panizza M, Delucchi M, Sirés I (2010) Electrochemical process for the treatment of landfill leachate. J Appl Electrochem 40(10):1721–1727

    CAS  Google Scholar 

  52. Turro E, Giannis A, Cossu R, Gidarakos E, Mantzavinos D, Katsaounis A (2011) Electrochemical oxidation of stabilized landfill leachate on DSA electrodes. J Hazard Mater 190(1–3):460–465

    CAS  Google Scholar 

  53. Chiang LC, Chang JE, Wen TC (1995) Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res 29(2):671–678

    CAS  Google Scholar 

  54. Shi Y, Yu H, Xu D, Zheng X (2012) Degradation of landfill leachate by combined three-dimensional electrode and electro-Fenton. Adv Mater Res 347–353:440–443

    Google Scholar 

  55. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal Environ 87(3–4):105–145

    Google Scholar 

  56. Catanho M, Malpass GRP, Motheo AJ (2006) Photoelectrochemical treatment of the dye reactive red 198 using DSA® electrodes. Appl Catal Environ 62(3–4):193–200

    CAS  Google Scholar 

  57. del Río AI, Molina J, Bonastre J, Cases F (2009) Influence of electrochemical reduction and oxidation processes on the decolourisation and degradation of C.I. Reactive Orange 4 solutions. Chemosphere 75(10):1329–1337

    Google Scholar 

  58. Panakoulias T, Kalatzis P, Kalderis D, Katsaounis A (2010) Electrochemical degradation of Reactive Red 120 using DSA and BDD anodes. J Appl Electrochem 40(10):1759–1765

    CAS  Google Scholar 

  59. Aquino JM, Rocha-Filho RC, Bocchi N, Biaggio SR (2010) Electrochemical degradation of the Acid Blue 62 dye on a β-PbO2 anode assessed by the response surface methodology. J Appl Electrochem 40(10):1751–1757

    CAS  Google Scholar 

  60. Aquino JM, Rocha-Filho RC, Bocchi N, Biaggio SR (2010) Electrochemical degradation of the reactive red 141 dye on a β-PbO2 anode assessed by the response surface methodology. J Braz Chem Soc 21(2):324–330

    CAS  Google Scholar 

  61. Rajkumar D, Song BJ, Kim JG (2007) Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dye Pigment 72(1):1–7

    Google Scholar 

  62. Vaghela SS, Jethva AD, Mehta BB, Dave SP, Adimurthy S, Ramachandraiah G (2005) Laboratory studies of electrochemical treatment of industrial azo dye effluent. Environ Sci Technol 39(8):2848–2855

    CAS  Google Scholar 

  63. De Oliveira GR, Fernandes NS, Melo JVD, Da Silva DR, Urgeghe C, Martínez-Huitle CA (2011) Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters. Chem Eng J 168(1):208–214

    Google Scholar 

  64. Solano AMS, Rocha JHB, Fernandes NS, Da Silva DR, Martinez-Huitle CA (2011) Direct and indirect electrochemical oxidation process for decolourisation treatment of synthetic wastewaters containing dye. Oxid Commun 34(1):218–229

    CAS  Google Scholar 

  65. Papastefanakis N, Mantzavinos D, Katsaounis A (2010) DSA electrochemical treatment of olive mill wastewater on Ti/RuO2 anode. J Appl Electrochem 40(4):729–737

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Katsaounis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Katsaounis, A., Souentie, S. (2014). Organic Pollutants in Water Using DSA Electrodes, In-Cell Mediated (via Active Chlorine) Electrochemical Oxidation. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_122

Download citation

Publish with us

Policies and ethics