Skip to main content

Recycling Technologies

  • Reference work entry

Definition of the Subject and Its Importance

Recycling technologies can be defined as the whole of procedures designed to set up physical-chemical actions, at an industrial scale, that perform the recovery of materials and end-use products resulting from the collection of household or industrial wastes. The materials to be recovered and recycled, obviously, influence both processing technologies and plant layouts. In this section an in-depth analysis of the problems arising when suitable recycling technologies must be designed, implemented, and set up is presented with particular reference to paper, glass, metals, plastics, and textiles (not organics or C onstruction and D emolition(C&D) waste ). Recycling technologies must be approached from a processing perspective, that is, by defining a sequence of steps and actions where the waste flow stream feed, and the different products resulting from the different sequential processing steps, are handled in...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ceramic glass:

Transparent ceramic products with an appearance similar to that of glass. They are characterized by an amorphous phase and one or more crystalline phases.

Classification:

Set of mechanical actions carried out in dry or wet conditions, designed to perform a “classification” of particles systems according to their morphometrical (e.g., size-shape) attributes.

Comminution:

Set of mechanical actions carried out to reduce waste materials in particles of suitable size and shape to be properly handled and processed in order to liberate/remove contaminants.

Cullet:

Particulate solid product resulting from collection-comminution of waste glass.

De-inking:

Mechanical process that removes “ink particles” and “stickies” from waste paper.

Ferrous metal:

Magnetic metals mainly composed of iron.

Flotation:

Mechanical process that selectively separates hydrophobic from hydrophilic materials. Hydrophobic materials are forced to adhere to bubbles and float.

Fluff:

Fine fractions resulting from automotive shredder residue (ASR). Fluff is constituted by materials characterized by intrinsic low specific gravity (e.g., plastics, rubber, synthetic foams, textiles, etc.).

Municipal solid waste (MSW):

All non-hazardous waste resulting from the collection of household, commercial, and institutional waste materials.

Non-ferrous metal:

Metals that contain no iron (e.g., aluminum, copper, brass, bronze, etc.)

Separation:

Set of mechanical actions carried out in dry or wet conditions, designed to perform a “separation” of particles systems according to their physical attributes (e.g., density, surface properties, electrostatic properties, magnetic properties, color, etc.)

Sorting:

Waste particle separation, usually carried out with optical-electronic recognition devices and logics.

Bibliography

Primary Literature

  1. Kahn CH (1979) The art and thought of Heraclitus. Cambridge University Press, Cambridge

    Google Scholar 

  2. Mamedbeii GD (1959) Muhammed Nasir al-Din al-Tusi on the theory of parallel lines and the theory of ratios. (Azerbaijani), Izdat. Akad. Nauk Azerbaijzansk. SSR (Baku)

    Google Scholar 

  3. Dumas M (1955) Lavoisier, théoricien et expérimentateur. Presses Universitaires de France, Paris

    Google Scholar 

  4. Heijungs R, Huppes G, Guinée JB (2010) Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polym Degrad Stab 95(3):422–428

    Article  CAS  Google Scholar 

  5. Bartl A, Hackl A, Mihalyi B, Wistuba M, Marini I (2005) Recycling of fibre materials. Process Safety Environ Protect 8(B4):351–358

    Article  CAS  Google Scholar 

  6. Confederation of European Paper Industries (2009) CEPI sustainability report. Brussels, Belgium

    Google Scholar 

  7. Ochoa JAG (2008) Feasibility of recycling pulp and paper mill sludge in the paper and board industries. Resour Conserv Recycl 52(7):965–972

    Article  Google Scholar 

  8. Wiegand PS, Unwin JP (1994) Alternative management of pulp and paper industry solid wastes. Tappi J 77:91–97

    CAS  Google Scholar 

  9. Wolfer EP, Venkat WB, Maroju BV, Martiny A (1997) Method for recovering fiber from effluent streams. U.S. Patent 5, pp 593–542

    Google Scholar 

  10. Saint Amand FJ (1999) Hydrodynamics of deinking flotation. Int J Miner Process 56:277–316

    Article  Google Scholar 

  11. Tandy S, Healey JR, Nason MA, Williamson JC, Jones DL (2009) Heavy metal fractionation during the co-composting of bio-solids, deinking paper fibre and green waste. Bioresour Technol 100(18):4220–4226

    Article  CAS  Google Scholar 

  12. Moo-Young HK Jr, Zimmie TF (1997) Waste minimization and re-use of paper sludges in landfill covers: a case study. Waste Manag Res 15(6):593–605

    Article  Google Scholar 

  13. Werther J, Ogada T (1999) Sewage sludge combustion. Prog Ener Combust Sci 25(1):55–116

    Article  CAS  Google Scholar 

  14. Safeglass (Europe) Limited, Nasmyth Building, Nasmyth Avenue. East Kilbride. UK G75 0Q. http://www.breakglass.org/Glass_making.html

  15. Höland W, Beall G (2002) Glass–ceramic technology. The American Ceramic Society, Westerville, p 372

    Google Scholar 

  16. Pannhorst W (1997) Glass ceramics: state of the art. J Non-Cryst Solids 219:198–204

    Article  CAS  Google Scholar 

  17. Rem PC (1999) Eddy current separation. Delft University of Technology, Delft

    Google Scholar 

  18. Bonifazi G, D’Addetta A, Massacci P (2002) Classification by neural net of a particle stream in an eddy-current drum separator. Int J Part Part Syst Charact 19:96–102

    Article  Google Scholar 

  19. Jong TPR, de Dalmijn WL (2002) X-ray transmission imaging for process optimisation of solid resources. In: R02, 6th World congress on integrated resources management, Geneva, Switzerland, CD-Paper 173

    Google Scholar 

  20. Bonifazi G (2000) Imaging based sorting logic in solid waste recycling. In: Proceedings of the 16th international conference on solid waste technology and management, vol 6, Philadelphia, USA, pp 14–26

    Google Scholar 

  21. Bonifazi G, Massacci P (2000) Cullets (glass fragments) quality control by artificial vision: a textural based approach. In: 4th World Congress R00 – Recovery, recycling, re-integration, Toronto, Canada, CD-Paper 31, pp 723–728

    Google Scholar 

  22. Bonifazi G, Massacci P (1998) Cullets (glass fragments) quality control by artificial vision: a color based approach. In: Proceedings of international conference on quality control by artificial vision, Takamatsu, Japan, pp 94–99

    Google Scholar 

  23. Serranti S, Bonifazi G, Pohl R (2006) Spectral cullet classification in the mid-infrared field for ceramic glass contaminants detection. Int J Waste Manag Res 24:48–59

    Article  Google Scholar 

  24. Bonifazi G, Serranti S (2006) Imaging spectroscopy based strategies for ceramic glass contaminants removal in glass recycling. Int J Waste Manag 26:627–639

    Article  CAS  Google Scholar 

  25. Cramb AW (1996) A short history of metals. Dept. of Materials Science and Engineering. Carnegie Mellon University. http://neon.mems.cmu.edu/cramb/Processing/history.html

  26. Gascoigne B (2001) History of metallurgy. HistoryWorld. Ongoing. http://www.historyworld.net/wrldhis/PlainTextHistories.asp?historyid=ab16

  27. Alter H (1977) Magnetic separation – Recovery of salable iron and steel from municipal solid waste. Environmental Protection Agency, Cincinnati

    Google Scholar 

  28. Shapiro M, Galperin V (2005) Air classification of solid particles: a review. Chem Engin Process 44:279–285

    Article  CAS  Google Scholar 

  29. Wills BA (1997) Mineral processing technology, 6th edn. Butterworth-Heinmann, Boston, pp 232

    Google Scholar 

  30. Bradley D (1965) The hydrocyclone. Pergamon, New York

    Google Scholar 

  31. Takoungsakdakun T, Pongstabodee S (2007) Separation of mixed post-consumer PET–POM–PVC plastic waste using selective flotation. Sep PurifTechnol 54:248–252

    Article  CAS  Google Scholar 

  32. Buchan R, Yarar B (1995) Recovering plastics for recycling by mineral processing techniques. J Miner Met Mater Soc 47:52–55

    Article  CAS  Google Scholar 

  33. Drelich J, Kim JH, Payne T, Miller JD, Kobler RW (1999) Purification of polyethylene terephthalate from polyvinyl chloride by froth flotation for the plastics (soft-drink bottle) recycling industry. Sep Purif Technol 15:9–17

    Article  CAS  Google Scholar 

  34. Kang H, Schoenung JM (2005) Electronic waste recycling: a review of US infrastructure and technology options. Resour Conserv Recycl 45(4):368–400

    Article  Google Scholar 

  35. Veit HM, Pereira C, Bernardes AM (2002) Using mechanical processing in recycling printed wiring board. J Miner Met Mater Soc 54(6):45–47

    Article  CAS  Google Scholar 

  36. Askvik KM, Hetlesæther S, Sjobölm J, Stenius S (2001) Properties of the lignosulfonate–surfactant complex phase. Colloids Surf A Physicochem Eng Aspects 182:178–189

    Article  Google Scholar 

  37. Singh BP (1998) Wetting mechanism in the flotation separation of plastics. Filtration Sep 35:525–527

    Article  CAS  Google Scholar 

  38. Shen H, Pugh RJ, Forssberg E (2002) Floatability, selectivity and flotation separation of plastics by using a surfactant. Colloids Surf A Physicochem Eng Aspects 196:63–70

    Article  CAS  Google Scholar 

  39. Fraunholcz N (2004) Separation of waste plastics by froth flotation – a review. Part I, Miner Engin 17:261–268

    Article  CAS  Google Scholar 

  40. Andrady AL (2003) Plastics and the environment. Wiley, Hoboken, pp 792

    Book  Google Scholar 

  41. Al-Salem SM, Lettieri P, Baeyens J (2009) Thermal pyrolysis of high density polyethylene (HDPE). In: Proceedings of the 9th European gasification conference: clean energy and chemicals, Düsseldorf, Germany

    Google Scholar 

  42. Scheirs J (1998) Polymer recycling: science, technology and application, 1st edn. Wiley-Blackwell, New York

    Google Scholar 

  43. Dirks E (1996) Energy recovery from plastic waste in waste incineration plants. In: Brandrup J, Bittner M, Menges G, Michaeli W (eds) Recycling and recovery of plastics, 1st edn. Hanser, Munich, pp 746–769

    Google Scholar 

  44. Zia KM, Bhatti HN, Bhatti IA (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React Funct Polym 67(8):675–692

    Article  CAS  Google Scholar 

  45. Hawn K (2001) An overview of commercial recycling technologies and textile applications for the products. In: 6th annual conference on recycling of polymer, textile and carpet waste, Dalton, USA

    Google Scholar 

  46. Cupit MJ (1996) Opportunities and barriers to textile recycling, AEA Technology, Report 0113, Oxfordshire, UK

    Google Scholar 

  47. Passas R, Voillot C, Tarrajat G, Caucal G, Khelifi B, Tourtollet G (2001) Morfi as a novel technology for morphological analysis of fibers. Recents Progres en Genie des Procedes 15:259–264

    CAS  Google Scholar 

  48. Bartl A, Mihalyi B, Marini I (2004) Applications of renewable fibrous materials. Chem Biochem Engin 18:21–28

    Article  CAS  Google Scholar 

  49. Wang Y (1995) Reuse of carpet industrial waste for concrete reinforcement. In: RILEM Proceeding (Disposal and recycling of organic and polymeric construction materials), vol 27, London, pp 297–306

    Google Scholar 

  50. Wang Y (1997) Properties of concrete reinforced with recycled carpet waste fibers. In: Proceedings of International symposium on brittle matrix composites 5, Warsaw, pp 179–186

    Google Scholar 

  51. Wang Y (1999a) Ecotextile’98: sustainable development. In: Proceedings of the Conference, Bolton, pp 165–171

    Google Scholar 

  52. Wang Y (1999) Utilization of recycled carpet waste fibers for reinforcement of concrete and soil. Polym Plast Technol Engin 38:533–546

    Article  CAS  Google Scholar 

  53. Wang Y (2002) Recycling of automotive fibers. In: Proceedings of Joint INDA-TAPPI Conference, Atlanta, pp 160–167

    Google Scholar 

  54. Bohnhoff A, Petershans J (2002) De-centralised technology for the sorting of textile floor coverings. In: 7th annual conference on recycling of polymer, textile and carpet waste, Dalton, USA

    Google Scholar 

  55. Strzelecki C (2004) Modern solutions for shredding, grinding and re-pelletizing post-industrial fiber, nonwovens and carpet scrap. In: Annual conference on recycling of polymer, textile and carpet waste, Dalton, USA

    Google Scholar 

  56. Bacon FC, Holland WR, Holland LH (1998) Method and machine for recycling discarded carpets. U. S. Patent 5, 704, 104

    Google Scholar 

  57. Howe MA, White SH, Locklear SG (2001) Method and apparatus for reclaiming carpet components. US Patent 6, 182, 913

    Google Scholar 

  58. Herlihy J (1997) Recycling in the carpet industry. Carpet and Rug Industry, pp 17–25

    Google Scholar 

  59. Kasserra P (1998) Recycling of polyamide 6.6 and 6. In: Prasad PN et al (eds) Science and technology of polymers and advanced materials. Plenum, New York, pp 629–635

    Google Scholar 

  60. Hagguist JAE, Hume RM (1993) Carpet reclaimer, U.S. Patent 5, 230, 473

    Google Scholar 

  61. Schut JH (1995) Big plans for carpet. Plast World 53:25

    Google Scholar 

  62. Booij M, Hendrix JAJ, Frentzen YH (1997) Process for recycling polyamide-containing carpet waste, European Patent 759, 456

    Google Scholar 

  63. Frentzen YH, Thijert MP, Zwart RL (1997) Process for the recovery of caprolactam from waste containing nylon by extraction with alkyl phenol, World Patent 97, 03, 04

    Google Scholar 

  64. Sarian AK, Handerman AA, Jones S, Davis EA, Adbye A (1998) Recovery of polyamide from composite articles, U.S. Patent 5, 849, 80

    Google Scholar 

  65. Sikorski ME (1993) Recycling of polymeric materials from carpets and other multi-component structures by means of supercritical fluid extraction, U.S. Patent 5, 233, 021

    Google Scholar 

  66. Griffith AT, Park Y, Roberts CB (1999) Separation and recovery of nylon form carpet waste using a supercritical fluid antisolvent technique. Polym Plast Technol Engin 38(3):411–432

    Article  CAS  Google Scholar 

  67. Honeywell Nylon Inc (2005) http://www.infinitynylon.com

  68. Elam CC, Evan RJ, Czernik S (1997) An Integrated approach to the recovery of fuels and chemicals from mixed waste carpets through thermocatalytic processing, Preprint papers -American Chemical Society. Div Fuel Chem 42(4):993–997

    CAS  Google Scholar 

  69. Bajaj P, Sharma ND (1997) In: Gupta VB, Kothari VK (eds) Reuse of polymer and fibre waste in manufactured fibre technology. Chapman & Hall, New York, pp 615

    Google Scholar 

  70. Brown T (2001) Infinity nylon - a never-ending cycle of renewal, 6th annual conference on Recycling of polymer, Textile and Carpet Waste, Dalton, GE, USA. http://hdl.handle.net/1853/10385

  71. Schut JH (1993) A recycling first: carpets! Plast Technol :22–25

    Google Scholar 

  72. Young D, Chlystek S, Malloy R, Rios I (1998) Recycling of carpet scrap, U.S. Patent 5,852,115

    Google Scholar 

  73. Hagberg CG, Dickerson JL (1997) Recycling nylon carpet via reactive extrusion. Plast Engin 53:41–43

    CAS  Google Scholar 

  74. Datta RJ, Polk MB, Kumar S (1995) Reactive compatibilization of polypropylene and nylon. Polym Plast Technol Engin 34(4):551–560

    Article  CAS  Google Scholar 

  75. Dagli SS, Xanthos M, Biesenberger JA (1992) Blends of nylon 6 and polypropylene with potential applications in recycling, effects of reactive extrusion variables on blend characteristics. ACS Symp Ser 513:241–257

    Article  CAS  Google Scholar 

  76. David DJ, Dickerson JL, Sincock TF (1994) Thermoplastic composition and method for producing thermoplastic composition by melt blending carpet, U. S. Patent 5, 294, 384

    Google Scholar 

  77. Muzzy J, Wang Y, Hagberg C, Patel P, Jin K, Samanta S, Bryson L, Shaw B (2004) Long fiber reinforced post-consumer carpet. In: ANTEC 2004, Annual Technical Conference of the society of plastics engineers, Chicago, USA

    Google Scholar 

  78. Jähne B (1993) Digital image processing; concepts, algorithms, and scientific applications, 2nd edn. Springer, Berlin

    Google Scholar 

  79. de Kattentidt HUR, Jong TPR, Dalmijn WL (2003) Multi-sensor identification and sorting of bulk solids. Control Engin Pract 11:4147

    Google Scholar 

  80. Bearmann GH, Levenson RM, Cabib D (eds) (2002) Spectral imaging: basic principles and prospective applications. Kluwer, Dordrecht

    Google Scholar 

  81. Leitner R, Mairer H, Kercek A (2003) Real-time classification of polymers with NIR spectral imaging and blob analysis. Real-Time Imag 9:245–251

    Article  Google Scholar 

  82. American Wood Preservers’ Association (AWPA) (1999) American wood preservers’ association book of standards. American Wood Preservers’ Association, Grandbury

    Google Scholar 

  83. Blassino M, Solo-Gabriele HM, Townsend T (2002) Pilot scale evaluation of sorting technologies for CCA treated wood waste. Waste Manag Res 20:290–301

    Article  Google Scholar 

  84. Kormienko M (1999) Sorting technologies for CCA-treated wood waste. Master of Science Thesis, University of Miami, Coral Gables, USA

    Google Scholar 

  85. Solo-Gabriele H, Townsend T, Kormienko M, Stook K, Gary K, Tolaymat T (2000) Alternative chemicals and improved disposal-end management practices for CCA-treated wood. Final Technical Report #00-03. Florida center for solid and hazardous waste management, Gainesville, USA

    Google Scholar 

  86. de Jong TPR, Dalmijn WL (2002) X-ray transmission imaging for process optimisation of solid resources. In: Proceedings of R’02 congress, Geneva, pp 1–6

    Google Scholar 

  87. Hahn DW, Flower WL, Hencken KR (1997) Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy. Appl Spectrosc 51:1836–1844

    Article  CAS  Google Scholar 

  88. Hahn DW (1998) Laser-induced breakdown spectroscopy for sizing and elemental analysis of discrete aerosol particles. Appl Phys Lett 72:2960–2962

    Article  CAS  Google Scholar 

  89. Radziemski LJ, Cremers DA (1989) Laser-induced plasmas and applications. Marcel Dekker, New York

    Google Scholar 

  90. de Mesina MB, Jong TPR, Dalmijn WL (2007) Automatic sorting of scrap metals with a combined electromagnetic and dual energy X-ray transmission sensor. Int J Miner Process 82:222–232

    Article  CAS  Google Scholar 

  91. Goetz AFH, Vane G, Solomon TE, Rock BN (1985) Imaging spectrometry for earth remote sensing. Science 228:1147–1153

    Article  CAS  Google Scholar 

  92. Hege E, O’Connell D, Johnson W, Basty S, Dereniak E (2003) Hyperspectral imaging for astronomy and space surveillance. Proceedings of the SPIE 5159:380–391

    Article  Google Scholar 

  93. Wood KS, Gulian AM, Fritz GG, Van Vechten D (2002) A QVD detector for focal plane hyperspectral imaging in astronomy. Bull Am Astron Soc 34:1241

    Google Scholar 

  94. Monteiro S, Minekawa Y, Kosugi Y, Akazawa T, Oda K (2007) Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery. ISPRS J Photogram Remote Sens 62(1):2–12

    Article  Google Scholar 

  95. Smail V, Fritz A, Wetzel D (2006) Chemical imaging of intact seeds with NIR focal plane array assists plant breeding. Vibrational Spectroscopy 42(2):215–221

    Article  CAS  Google Scholar 

  96. Lyon RC, Lester DS, Lewis EN, Lee E, Yu LX, Jefferson EH (2002) Near-infrared spectral imaging for quality assurance of pharmaceutical products: analysis of tablets to assess powder blend homogeneity. AAPS Pharm Sci Tech 3(3):17

    Article  Google Scholar 

  97. Rodionova O, Houmøller L, Pomerantsev A, Geladi P, Burger J, Dorofeyev V (2005) NIR spectrometry for counterfeit drug detection: a feasibility study. Anal Chim Acta 549(1–2):151–158

    Article  CAS  Google Scholar 

  98. Roggo Y, Edmond A, Chalus P, Ulmschneider M (2005) Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms. Anal Chim Acta 535(1–2):79–87

    Article  CAS  Google Scholar 

  99. Ferris D, Lawhead R, Dickman E, Holtzapple N, Miller J, Grogan S (2001) Multimodal hyperspectral imaging for the non invasive diagnosis of cervical neoplasia. J Low Genit Tract Dis 5(2):65–72

    CAS  Google Scholar 

  100. Kellicut D, Weiswasser J, Arora S, Freeman J, Lew R, Shuman C (2004) Emerging technology: hyperspectral imaging. Perspect Vasc Surg Endovasc Ther 16(1):53–57

    Article  Google Scholar 

  101. Zheng G, Chen Y, Intes X, Chance B, Glickson JD (2004) Contrast-enhanced near-infrared (NIR) optical imaging for subsurface cancer detection. J Porphyrins Phthalocyanines 8(9):1106–1117

    Article  CAS  Google Scholar 

  102. Serranti S, Bonifazi G (2009) Hyperspectral imaging detection architectures for polyethilene (PE) and polypropylene (PP) identification inside plastic waste streams. In: Proceedings of waste-to-resources, III International symposium MBT&MRF. Hanover, Germany, pp 463–474

    Google Scholar 

  103. Serranti S, Bonifazi G, Bonoli A, Dall’Ara A (2009) Composting products quality assessment and monitoring by hyperspectral imaging based logics. In: Proceedings of waste-to-resources, III International symposium MBT&MRF. Hanover, Germany, pp 584–597

    Google Scholar 

  104. W2Plastics (2008) Collaborative Project 212782 - FP7-ENV-2007-1: magnetic sorting and ultrasound sensor technologies for production of high purity secondary polyolefins from waste

    Google Scholar 

  105. HYSPIMGLASS (2002) CRAFT Programme: CRAF-1999-71817: development of a Novel and high speed spectral imaging system to detect glass-like contaminants in the recyclable, cost-effectively increasing glass recycling and avoiding landfilling

    Google Scholar 

  106. SSOM (2008) Spectral scanner operative manual (Version 2.0). DV Optics S.r.l., Italy http://www.dvoptic.com/index.html

  107. Bonifazi G (2000) Imaging based sorting logic in solid waste recycling. In: The Sixteenth international conference on solid waste technology and management – session 6A: recycling and source reduction. Philadelphia, USA, pp 6.14–26

    Google Scholar 

  108. Geladi P, Isaksson H, Lindqvist L, Wold S, Esbensen K (1989) Principal components analysis of multivariate images. Chemometr Intell Lab Syst 5(3):209–220

    Article  Google Scholar 

Books and Reviews

  • An good paper presenting an excellent review of recent progress in the recycling and recovery of Plastic Solid Waste (PSW), with particular emphasis “on waste generated from polyolefinic sources, which makes up a great percentage of our daily single-life cycle plastic products” is: Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643

    Google Scholar 

  • Beede DN, Bloom DE (1995) Economics of the generation and management of MSW. NBER Working Papers 5116. National Bureau of Economic Research, Inc, Cambridge, MA

    Google Scholar 

  • Caputo AC, Pelagagge PM (2001) Waste-to-energy plant for paper industry sludges disposal: technical-economic study. J Hazard Mater 81(3):265–283

    Article  CAS  Google Scholar 

  • Cofie O, Kone D, Rothenberger S, Moser D, Zubruegg C (2009) Co-composting of faecal sludge and organic solid waste for agriculture: process dynamics. Water Res 43(18):4665–4675

    Article  CAS  Google Scholar 

  • El Haggar S (2007) Sustainable industrial design and waste management: cradle-to-cradle for sustainable development. Academic, St. Louis, pp 424

    Google Scholar 

  • Galperin V, Shapiro M (1999) Separation of solid particles in a fluidized bed air classifier. Powder Handling Process 11:2

    Google Scholar 

  • Gesing A, Berry L, Dalton R, Wolanski R (2002) Assuring continued recyclability of automotive aluminium alloys: grouping of wrought alloys by color, X-ray absorption and chemical composition-based sorting. In: Proceedings annual meeting on automotive alloys and aluminium sheet and plate rolling and finishing technology, Seattle, USA

    Google Scholar 

  • Gesing A, Steward C, Wolanski R, Dalton R, Berry R (2000) Scrap preparation for aluminium alloy sorting. In: Proceedings TMS fall extraction and process metallurgy meeting, Pittsburgh, USA

    Google Scholar 

  • Hosokawa Micron Group (2011) http://www.hmicronpowder.com/application/classification

  • Huth-Fehre Th, van den Broek W (1995) NIR-Remote sensing and artificial neural networks for rapid identification of post consumer plastics. J Mol Struct 348:143–146

    Article  CAS  Google Scholar 

  • Johansson JE (2007) Plastics – the compelling facts and figures. 6th IdentiPlast Biennial Conference on the Recycling and Recovery of Plastics. Brussels, Belgium

    Google Scholar 

  • Kunii D, Levenspiel O (1991) Fluidization engineering, 2nd edn. Butterworth, Heinmann, pp 233

    Google Scholar 

  • Marques GA, Tenorio JAS (2000) Use of froth flotation to separate PVC/PET mixtures. Waste Manag 20:265–269

    Article  CAS  Google Scholar 

  • Méndez A, Fidalgo JM, Guerrero F, Gascó G (2009) Characterization and pyrolysis behaviour of different paper mill waste materials. J Anal Appl Pyrolysis 86(1):66–73

    Article  CAS  Google Scholar 

  • Oshitani J, Kiyoshima K, Tanaka Z (2003) Continuous dry material separation from automobile shredder residue. Kagaku Kogaku Ronbunshu 29:8–14

    Article  CAS  Google Scholar 

  • Pascoe RD (2005) The use of selective depressants for the separation of ABS and HIPS by froth flotation. Miner Eng 18:233–237

    Article  CAS  Google Scholar 

  • Sekito T, Matsuto T, Tanaka N (2006) Application of a gas–solid fluidized bed separator for shredded municipal bulky solid waste separation. Waste Manag 26:1422–1429

    Article  CAS  Google Scholar 

  • Sekito T, Tanaka N, Matsuto T (2006) Batch separation of shredded bulky waste by gas–solid fluidized bed at laboratory scale. Waste Manag 26:1246–1252

    Article  CAS  Google Scholar 

  • Svoboda J (2004) Magnetic techniques for the treatment of materials, Kluver Academic Publisher, New York, USA. pp. 656. http://www.springer.com/earth+sciences+and+geography/book/978-1-4020-2038-4

  • Van Nieuwenhuijzen A, Van der Graaf J (2010) Handbook on particle separation processes. IWA, London, UK, pp 400

    Google Scholar 

  • World Bank (2007) Environmental, health, and safety guidelines for pulp and paper mills. Draft technical document. Environment and Social Development Department, International Finance Corporation, Washington, DC

    Google Scholar 

  • Yoshida M, Oshitani J, Kaname K, Gotoh K (2006) Fluidized bed medium separation (FBMS) of Cl-containing plastics in home electric appliance shredder residue. Kagaku Kogaku Ronbunshu 32:115–121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Bonifazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Bonifazi, G., Serranti, S. (2012). Recycling Technologies . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_116

Download citation

Publish with us

Policies and ethics