Skip to main content

Nuclear and Radiochemistry: the First 100 Years

  • Reference work entry

Abstract

This chapter gives a brief overview of the development of nuclear and radiochemistry from Mme. Curie’s chemical isolation of radium toward the end of the twentieth century. The first four sections deal with fairly distinct time periods: (1) the pioneering years when the only radioactive materials available were the naturally occurring ones; (2) the decade of rapid growth and expansion of both the fundamental science and its applications following the discoveries of the neutron and artificial radioactivity; (3) the World War II period characterized by the intense exploration of nuclear fission and its ramifications; (4) what can be called the “golden era” – the 3 to 4 decades following World War II when nuclear science was generously supported and therefore flourished. In the final section, research trends pursued near the end of the century are briefly touched upon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   3,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abazov AI, Anosov OL, Faizov EL et al (1991) Search for neutrinos from the sun using the reaction 71Ga (νe, e-) 71Ge. Phys Rev Lett 67:3332

    CAS  Google Scholar 

  • Alvarez LW (1937) Nuclear K electron capture. Phys Rev 52:134

    CAS  Google Scholar 

  • Anger HO (1958) Scintillation camera. Rev Sci Instrum 29:27

    CAS  Google Scholar 

  • Anselmann P, Hampel W, Heusser G et al (1992a) Solar neutrinos observed by GALLEX at Gran Sasso. Phys Lett B 285:376

    CAS  Google Scholar 

  • Anselmann P, Hampel W, Heusser G et al (1992b) Implications of the GALLEX determination of the solar neutrino flux. Phys Lett B 285:390

    CAS  Google Scholar 

  • Arima A, Iachello F (1975) Collective nuclear states as representations of a SU(6) group. Phys Rev Lett 35:1069

    CAS  Google Scholar 

  • Armbruster P (1984) On the production of heavy elements by cold fusion: the elements 106 to 109. Ann Rev Nucl Part Sci 35:135

    Google Scholar 

  • Baranov VI, Kretschmer SI (1935) Verwendung von Lichtplatten mit dicker Emulsionsschicht zur Erforschung der Verteilung radioaktiver Elemente in Naturobjekten. Compt Rend Acad Sci URSS I:546

    Google Scholar 

  • Becquerel H (1896) Sur les radiations émises par phosphorescence. Compt Rend 122:420; Sur les radiations invisibles émises par les corps phosphorescents. Compt Rend 122:501, 559, 689, 762, 1086

    Google Scholar 

  • Bender M, Rutz K, Reinhard PG et al (1999) Shell structure of superheavy nuclei in self-consistent mean-field models. Phys Rev C 60:034304

    Google Scholar 

  • Berson SE, Yalow RS (1957) Kinetics of reaction between insulin and insulin-binding antibody. J Clin Invest 36:873

    Google Scholar 

  • Bertolini G, Coche A (eds) (1968) Semiconductor Detectors. North-Holland, Amsterdam

    Google Scholar 

  • Bethe HA (1939) Energy production in stars. Phys Rev 55:434

    CAS  Google Scholar 

  • Blumgart HL, Weiss S (1927) Studies of the velocity of blood flow II, The velocity of blood flow in normal resting individuals and a critique of the method used. J Clin Invest 4:16

    Google Scholar 

  • Bodu R, Bouzigues H, Morin N et al (1972) Sur l’existence d’anomalies isotopiques rencontrées dans l’uranium du Gabon. Compt Rend D 275:1731

    CAS  Google Scholar 

  • Bohr A, Mottelson BR (1953) Collective and individual particle aspects of nuclear structure. Danske Vidensk Selsk Mat-fys Medd 27, No. 16

    Google Scholar 

  • Bohr N (1913) Constitution of atoms and molecules I, II. Phil Mag 26:1, 476

    Google Scholar 

  • Bohr N (1936) Neutron capture and nuclear constitution. Nature 137:344

    CAS  Google Scholar 

  • Bohr N (1939) Resonance in uranium and thorium disintegrations and the phenomenon of nuclear fission. Phys Rev 55:418

    CAS  Google Scholar 

  • Bohr N, Kalckar F (1937) On the transmutation of atomic nuclei by impact of material particles I, General theoretical remarks. Danske Vidensk Selsk Mat-fys Medd 14, No. 10

    Google Scholar 

  • Bohr N, Wheeler JA (1939) The mechanism of nuclear fission. Phys Rev 56:426

    CAS  Google Scholar 

  • Boltwood B (1907) On the ultimate disintegration products of the radioactive elements. Am J Sci 23:77

    CAS  Google Scholar 

  • Bromley DA (1984) The development of heavy-ion nuclear physics. In: Bromley DA (ed) Treatise on heavy-ion science, vol 1. Plenum, New York, pp 3–50

    Google Scholar 

  • Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957) Synthesis of the elements in stars. Rev Mod Phys 29:547

    Google Scholar 

  • Calvin M, Benson AA (1949) The path of carbon in photosynthesis IV. The identity and sequence of the intermediates in sucrose synthesis. Science 109:140

    CAS  Google Scholar 

  • Calvin M, Heidelberger Ch, Reid JC et al (1949) Isotopic carbon: techniques in its measurement and chemical manipulation. Wiley, New York

    Google Scholar 

  • Cameron AT (1910) Radiochemistry. J. M. Dent, London

    Google Scholar 

  • Campbell NR, Wood A (1906) The radioactivity of the alkali metals. Proc Cambr Philos Soc 14:15

    Google Scholar 

  • Cassen B, Curtis L, Reed C et al (1951) Instrumentation for I131 use in medical studies. Nucleonics 9(2):46

    Google Scholar 

  • Chadwick J (1932) The existence of a neutron. Proc Roy Soc A (Lond) 136:692

    CAS  Google Scholar 

  • Chiewitz O, Hevesy G (1935) Radioactive indicators in the study of phosphorus metabolism in rats. Nature 136:754

    CAS  Google Scholar 

  • Christiansen JA, Hevesy G, Lomholt S (1924) Recherches, par une méthode radiochimique, sur la circulation du bismuth dans l’organisme. Compt Rend 178:1324

    CAS  Google Scholar 

  • Cleveland BT, Daily T, Davis R Jr et al (1998) Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys J 496:505

    CAS  Google Scholar 

  • Cockcroft JD, Walton ETS (1930) Experiments with high velocity positive ions. Proc Roy Soc A (Lond) 129:477

    CAS  Google Scholar 

  • Cockcroft JD, Walton ETS (1932) Further developments in the method of obtaining high-velocity positive ions. Proc Roy Soc A (Lond) 136:619

    CAS  Google Scholar 

  • Corson DR, MacKenzie KR, Segrè E (1940a) Possible production of radioactive isotopes of element 85. Phys Rev 57:459

    CAS  Google Scholar 

  • Corson DR, MacKenzie KR, Segrè E (1940b) Artificially radioactive element 85. Phys Rev 58:672

    CAS  Google Scholar 

  • Coryell CD, Sugarman N (eds) (1951) Radiochemical studies: the fission products, vol 1–3. McGraw-Hill, New York

    Google Scholar 

  • Cowan JJ, Thielemann F-K, Truran JW (1991) The r-process and nucleochronology. Phys Rep 208:267

    CAS  Google Scholar 

  • Cunningham BB, Werner LB (1949) The first isolation of plutonium. J Am Chem Soc 71:1521

    CAS  Google Scholar 

  • Curie I, Joliot F (1934) Un nouveau type de radioactivité. Compt Rend 198:254; Séparation chimique des nouveaux radioéléments émetteurs d’électrons positifs. Compt Rend 198:559

    CAS  Google Scholar 

  • Curie I, Savitch P (1938) Sur les radio-éléments formés dans l’uranium irradié par les neutrons II. J Phys Radium 9:355

    Google Scholar 

  • Curie M (1902) Sur le poids atomique du radium. Compt Rend 135:161

    CAS  Google Scholar 

  • Curie P, Curie MS (1898) Sur une substance nouvelle radio-active, contenue dans la pechblende. Compt Rend 127:175

    Google Scholar 

  • Curie P, Curie M, Bémont G (1898) Sur une nouvelle substance fortement radio-active contenue dans la pechblende. Compt Rend 127:1215

    CAS  Google Scholar 

  • Curtis L, Cassen B (1952) Speeding up and improving contrast of thyroid scintigrams. Nucleonics 10(9):58

    Google Scholar 

  • D’Agostino O (1935) Nuovi elementi radioattivi arteficiale. Gazz Chim Ital 65:1071

    Google Scholar 

  • Davis R Jr, Harmer DS, Hoffman KC (1968) Search for neutrinos from the sun. Phys Rev Lett 20:1205

    CAS  Google Scholar 

  • Debierne A (1899) Sur une nouvelle matière radio-active. Compt Rend 129:593

    Google Scholar 

  • Demarçay E (1898) Sur l’espectre d’une substance radio-active. Compt Rend 127:1218

    Google Scholar 

  • Dostrovsky I, Fraenkel Z, Friedlander G (1959) Monte Carlo calculations of nuclear evaporation processes III, Applications to low-energy reactions. Phys Rev 116:683

    CAS  Google Scholar 

  • Düllmann Ch, Brüchle W, Dressler R et al (2002) Chemical investigation of hassium (element 108). Nature 418:859

    Google Scholar 

  • Eckelman WC, Richards P (1970) Instant 99mTc DTPA. J Nucl Med 11:761

    CAS  Google Scholar 

  • Eddington AS (1926) The source of stellar energy. Nature 117(Suppl):25

    Google Scholar 

  • Eichler R, Brüchle W, Dressler R et al (2000) Chemical characterization of bohrium (element 107). Nature 407:63

    CAS  Google Scholar 

  • Elsasser WR (1933) Sur le principe de Pauli dans les noyaux I. J Phys Radium 4:549

    CAS  Google Scholar 

  • Elsasser WR (1934) Sur le principe de Pauli dans les noyaux II, III. J Phys Radium 5:389, 635

    CAS  Google Scholar 

  • Fajans K (1913) Die Stellung der Radioelemente im Periodischen System. Physik Z 14:136

    CAS  Google Scholar 

  • Faure G, Powell JL (1972) Strontium isotope geology. Springer, Berlin

    Google Scholar 

  • Fermi E (1934a) Versuch einer Theorie der β-Strahlen. Z Phys 88:161

    CAS  Google Scholar 

  • Fermi E (1934b) Possible production of elements of atomic number higher than 92. Nature 133:898

    CAS  Google Scholar 

  • Fermi E, Amaldi E, D’Agostino O et al (1934) Artificial radioactivity produced by neutron bombardment. Proc Roy Soc A (Lond) 146:483

    CAS  Google Scholar 

  • Fermi E, Rasetti F (1935) Ricerche sui neutroni lenti. Nuovo Cimento 12:201

    CAS  Google Scholar 

  • Fiset EO, Nix JR (1972) Calculations of half-lives for superheavy nuclei. Nucl Phys A 193:647

    CAS  Google Scholar 

  • Flerov GN, Petrzhak KA (1940) Spontaneous fission of uranium. Phys Rev 58:89

    CAS  Google Scholar 

  • Flerov GN, Oganessian YuTs, Lobanov YuV et al (1971) On the synthesis of element 105. Nucl Phys A 160:181

    CAS  Google Scholar 

  • Fowler WA (1984) Experimental and theoretical nuclear astrophysics, The quest for the origin of the elements. Rev Mod Phys 56:149

    CAS  Google Scholar 

  • Frenkel Y (1936) Über das Festkörpermodell schwerer Kerne. Physik Z Sowj 9:533

    CAS  Google Scholar 

  • Fricke B (1975) Superheavy elements. A prediction of their chemical and physical properties. Struct Bond 21:89

    CAS  Google Scholar 

  • Friedlander G, Kennedy JW (1949) Introduction to radiochemistry. Wiley, New York

    Google Scholar 

  • Friedlander G, Kennedy JW (1955) Nuclear and radiochemistry. Wiley, New York

    Google Scholar 

  • Frisch OR (1939) Physical evidence for the division of heavy nuclei under neutron bombardment. Nature 143:276

    CAS  Google Scholar 

  • Gäggeler HW, Jost DT, Kovacs U et al (1992) Gas phase chromatography experiments with bromides of tantalum and element 105. Radiochim Acta 57:93

    Google Scholar 

  • Gamow G (1928) Zur Quantentheorie des Atomkerns. Z Phys 51:204

    CAS  Google Scholar 

  • Gamow G (1929) Über die Struktur der Atomkerne. Physik Z 30:717

    Google Scholar 

  • Gamow G (1946) Expanding universe and the origin of elements. Phys Rev 70:572

    CAS  Google Scholar 

  • Geiger H, Müller W (1928) Elektronenzählrohr zur Messung schwächster Aktivitäten. Naturwiss 16:617

    CAS  Google Scholar 

  • Geiger H, Nuttall JM (1911) The ranges of the α-particles from various radioactive substances and a relation between range and period of transformation. Phil Mag 22:613

    CAS  Google Scholar 

  • Gentner W, Kley W (1955) Zur geologischen Altersbestimmung nach der Kalium-Argon-Methode. Z Naturforsch 10a:832

    CAS  Google Scholar 

  • Ghiorso A, Harvey BG, Choppin GR et al (1955a) New element mendelevium, atomic number 101. Phys Rev 98:1518

    CAS  Google Scholar 

  • Ghiorso A, Thompson SG, Higgins GH et al (1955b) New elements einsteinium and fermium, atomic numbers 99 and 100. Phys Rev 99:1048

    CAS  Google Scholar 

  • Ghiorso A, Nurmia M, Eskola K et al (1970) New element hahnium, atomic number 105. Phys Rev Lett 24:1498

    CAS  Google Scholar 

  • Giesel F (1902) Über Radium und radioaktive Stoffe. Ber Dtsch Chem Ges 35:3608

    CAS  Google Scholar 

  • Glückauf E, Fay JWJ (1936) Direct production of organic compounds containing artificial radioelements. J Chem Soc 1936:390

    Google Scholar 

  • Green JH, Maddock AG (1949) (n, γ) Recoil effects in potassium chromate and dichromate. Nature 164:788

    CAS  Google Scholar 

  • Guillaumont R, Adloff JP, Peneloux A (1989) Kinetic and thermodynamic aspects of tracer-scale and single-atom chemistry. Radiochim Acta 46:169

    CAS  Google Scholar 

  • Guillaumont R, Adloff JP, Peneloux A et al (1991) Sub-tracer scale behaviour of radionuclides, Application to actinide chemistry. Radiochim Acta 54:1

    CAS  Google Scholar 

  • Gurney RW, Condon EU (1928) Wave mechanics and radioactive disintegration. Nature 122:439

    CAS  Google Scholar 

  • Gurney RW, Condon EU (1929) Quantum mechanics and radioactive disintegration. Phys Rev 33:127

    CAS  Google Scholar 

  • Hahn O (1922) Über das Uran Z und seine Muttersubstanz. Z Physik Chem 103:461

    Google Scholar 

  • Hahn O (1936) Applied radiochemistry. Cornell University Press), Ithaca

    Google Scholar 

  • Hahn O, Meitner L (1918) Die Muttersubstanz des Actiniums, ein neues radioaktives Element von langer Lebensdauer. Physik Z 19:208

    CAS  Google Scholar 

  • Hahn O, Meitner L, Strassmann F (1936) Neue Umwandlungs-Prozesse bei Neutronen-Bestrahlung des Urans: Elemente jenseits Uran. Ber Dtsch Chem Ges 69:905

    Google Scholar 

  • Hahn O, Strassmann F (1939a) Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle. Naturwiss 27:11

    CAS  Google Scholar 

  • Hahn O, Strassmann F (1939b) Nachweis der Entstehung aktiver Bariumisotope aus Uran und Thorium durch Neutronenbestrahlung, Nachweis weiterer aktiver Bruchstücke bei der Uranspaltung. Naturwiss 27:89

    CAS  Google Scholar 

  • Hahn O, Strassmann F, Mattauch J et al (1943) Geologische Altersbestimmung mit der Strontiummethode. Chemiker Ztg 67:55

    CAS  Google Scholar 

  • Hamilton JG, Soley MH (1939) Studies in iodine metabolism by the use of a new radioactive isotope of iodine. Am J Physiol 127:557

    CAS  Google Scholar 

  • Hamilton JG, Soley MH (1940) Studies in iodine metabolism of the thyroid gland in situ by the use of radio-iodine in normal subjects and in patients with various types of goiter. Am J Physiol 131:135

    CAS  Google Scholar 

  • Haxel O, Jensen JHD, Suess HE (1950) Modellmässige Deutung der ausgezeichneten Nukleonenzahlen im Kernbau. Z Phys 128:295

    CAS  Google Scholar 

  • Herrmann G (1979) Superheavy-element research. Nature 280:543

    CAS  Google Scholar 

  • Herrmann G (2003) Historical reminiscences. In: Schädel M (ed) The chemistry of the superheavy elements. Kluwer, Dordrecht, pp 291–316

    Google Scholar 

  • Herrmann G, Trautmann N (1982) Rapid chemical methods for identification and study of short-lived nuclides. Ann Rev Nucl Part Sci 32:117

    CAS  Google Scholar 

  • Hevesy G (1915) Über den Austausch der Atome zwischen festen und flüssigen Phasen. Physik Z 16:52

    Google Scholar 

  • Hevesy G (1923) Absorption and translocation of lead by plants, A contribution to the application of the method of radioactive indicators to the investigation of the change of substance in plants. Biochem J 17:439

    CAS  Google Scholar 

  • Hevesy G, Levi H (1936) The action of neutrons on rare earth elements. Danske Vidensk Selsk Mat-fys Medd 14, No. 5

    Google Scholar 

  • Hevesy G, Paneth F (1913) Die Löslichkeit des Bleisulfids und Bleichromats. Z Anorg Chem 82:323

    Google Scholar 

  • Hofmann S, Reisdorf W, Münzenberg G et al (1982) Proton radioactivity of 151Lu. Z Phys A 305:111

    CAS  Google Scholar 

  • Hönigschmid O, Horovitz S (1914) Sur le poids atomique du plomb de la pechblende. Compt Rend 158:1796

    Google Scholar 

  • Ido T, Wan C-N, Casella V et al (1978) Labeled 2-deoxy-D-glucose analogs, 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Labelled Compd Radiopharm 14:175

    CAS  Google Scholar 

  • IUPAC (1997) International Union of Pure and Applied Chemistry: names and symbols of transfermium elements. Pure Appl Chem 69:2471

    Google Scholar 

  • Jauncey GEM (1946) The early years of radioactivity. Am J Phys 14:226

    CAS  Google Scholar 

  • Jones AG (1995) Technetium in nuclear medicine. Radiochim Acta 70/71:289

    CAS  Google Scholar 

  • Kamen MD (1963) Early history of carbon-14. Science 140:584

    Google Scholar 

  • Katz JJ, Morss LR, Seaborg GT (1986) Summary and comparative aspects of the actinide elements. In: Katz JJ, Seaborg GT, Morss LR (eds) The chemistry of the actinide elements, 2nd edn. Chapman & Hall, London, pp 1121–1193

    Google Scholar 

  • Kaufmann R, Wolfgang R (1959) Complex nucleon transfer reaction of heavy ions. Phys Rev Lett 3:232

    CAS  Google Scholar 

  • Kaufmann R, Wolfgang R (1961) Nucleon transfer reactions in grazing collisions of heavy ions. Phys Rev 121:192

    CAS  Google Scholar 

  • Kennedy JW, Seaborg GT, Segrè E, Wahl AC (1946) Properties of 94 (239). Phys Rev 70:555

    Google Scholar 

  • Kim JL (1986) Chemical behaviour of transuranic elements in natural aquatic systems. In: Freeman AJ, Keller C (eds) Handbook on the physics and chemistry of the actinides, vol 4. North-Holland, Amsterdam, pp 413–455

    Google Scholar 

  • Kirsten T (1978) Time and the solar system. In: Dermott SF (ed) Origin of the solar system. Wiley, Chichester, pp 267–346

    Google Scholar 

  • Kluge H-J, Bollen G (1992) Ion traps: recent applications and developments. Nucl Instr Meth B 70:473

    Google Scholar 

  • Kratz JV, Zimmermann HP, Scherer UW et al (1989) Chemical properties of element 105 in aqueous solution, Halide complex formation and anion exchange into triisooctyl amine. Radiochim Acta 48:121

    CAS  Google Scholar 

  • Lawrence EO, Livingston MS (1931) The production of high-speed protons without the use of high voltages. Phys Rev 38:834

    CAS  Google Scholar 

  • Lebowitz E, Greene MW, Fairchild R et al (1975) Thallium-201 for medical use. J Nucl Med 16:151

    CAS  Google Scholar 

  • Libby WF (1946) Atmospheric helium three and radiocarbon from cosmic radiation. Phys Rev 69:671

    CAS  Google Scholar 

  • Libby WF (1952) Radiocarbon dating. University of Chicago Press, Chicago

    Google Scholar 

  • Litherland AE (1980) Ultrasensitive mass spectrometry with accelerators. Ann Rev Nucl Part Sci 30:437

    CAS  Google Scholar 

  • Livingston MS, Blewett JP (1962) Particle accelerators. McGraw-Hill, New York

    Google Scholar 

  • Marckwald W (1903) Über den radioaktiven Bestandtheil des Wismuths aus Joachimsthaler Pechblende. Ber Dtsch Chem Ges 36:2662

    CAS  Google Scholar 

  • Marinsky JA, Glendenin LE, Coryell CD (1947) The chemical identification of radioisotopes of neodymium and of element 61. J Am Chem Soc 69:2781

    CAS  Google Scholar 

  • Maurette M (1976) Fossil nuclear reactors. Ann Rev Nucl Sci 26:319

    CAS  Google Scholar 

  • Mayer MG (1950) Nuclear configurations in the spin-orbit coupling model I, Empirical evidence. Phys Rev 78:16; II, Theoretical considerations. Phys Rev 78:22

    Google Scholar 

  • McMillan E (1939) Recoils from uranium activated by neutrons. Phys Rev 55:510

    CAS  Google Scholar 

  • McMillan E, Abelson PH (1940) Radioactive element 93. Phys Rev 57:1185

    CAS  Google Scholar 

  • Meitner L, Frisch OR (1939) Disintegration of uranium by neutrons. A new type of nuclear reaction. Nature 143:239

    CAS  Google Scholar 

  • Meitner L, Hahn O, Strassmann F (1937) Über die Umwandlungsreihen des Urans, die durch Neutronenbestrahlung erzeugt werden. Z Phys 106:249

    CAS  Google Scholar 

  • Meldner H (1966) Predictions of new magic regions and masses for super-heavy nuclei from calculations with realistic shell model single particle Hamiltonians. In: Forsling W, Herrlander CJ, Ryde H (eds) Nuclides far off the stability line, Almqvist & Wiksell, Stockholm, pp 593–601; also Arkiv Fysik 36:593

    Google Scholar 

  • Metropolis N, Bivins R, Storm M et al (1958a) Monte Carlo calculations on intranuclear cascades I, Low-energy studies. Phys Rev 110:185

    CAS  Google Scholar 

  • Metropolis N, Bivins R, Storm M et al (1958b) Monte Carlo calculations on intranuclear cascades II, High energy studies and pion processes. Phys Rev 110:204

    CAS  Google Scholar 

  • Meyer St, Hess VF, Paneth F (1914) Neue Reichweitenbestimmungen an Polonium, Ionium und Actiniumpräparaten. Sitzungsber Akad Wiss Wien, Math-naturw Kl IIa 123:1459

    Google Scholar 

  • Meyer St, Schweidler ER von (1916, 1927) Radioaktivität, 1st and 2nd edn. B. G. Teubner, Leipzig.

    Google Scholar 

  • Molinski VI (1982) A review of 99mTc generator technology. Int J Appl Radiat Isot 33:811

    CAS  Google Scholar 

  • Moseley HGJ (1913, 1914) The high-frequency spectra of the elements I. Phil Mag 26:1024; II Phil Mag 27:703

    Google Scholar 

  • Mössbauer RL (1958) Kernresonanzfluoreszenz von Gammastrahlung in 191Ir. Z Phys 151:124

    Google Scholar 

  • Mössbauer RL (1962) Recoilless nuclear resonance absorption. Ann Rev Nucl Sci 12:123

    Google Scholar 

  • Mueller AC, Sherrill BM (1993) Nuclei at the limits of particle stability. Ann Rev Nucl Part Sci 43:529

    CAS  Google Scholar 

  • Münzenberg G, Hofmann S, Hessberger FP et al (1981) Identification of element 107 by correlation chains. Z Phys A 300:107

    Google Scholar 

  • Münzenberg G, Armbruster P, Hessberger FP et al (1982) Observation of one correlated α-decay in the reaction 58Fe on 209Bi → 267109. Z Phys A 309:89

    Google Scholar 

  • Myers WD, Swiatecki WJ (1966) Nuclear masses and deformations. Nucl Phys 81:1

    CAS  Google Scholar 

  • Neuilly M, Bussac J, Frèjaques C et al (1972) Sur l’existence dans un passé reculé d’une réaction en chaine naturelle de fissions, dans le gisement d’uranium d’Oklo (Gabon). Compt Rend D 275:1847

    CAS  Google Scholar 

  • Nier AO (1935) Evidence for the existence of an isotope of potassium of mass 40. Phys Rev 48:283

    CAS  Google Scholar 

  • Nier AO (1938) Variations in the relative abundances of the isotopes of common lead from various sources. J Am Chem Soc 60:1571

    CAS  Google Scholar 

  • Nier AO, Booth ET, Dunning JR et al (1940) Nuclear fission of separated uranium isotopes. Phys Rev 57:546, 748

    CAS  Google Scholar 

  • Nilsson SG (1955) Binding states of individual nucleons in strongly deformed nuclei. Danske Vidensk Selsk Mat-fys Medd 29, No. 16

    Google Scholar 

  • Nilsson SG, Thompson SG, Tsang CF (1969) Stability of superheavy nuclei and their possible occurrence in nature. Phys Lett B 28:458

    CAS  Google Scholar 

  • Oganessian YuTs, Iljinov A, Demin AG et al (1975) Experiments on the production of fermium neutron-deficient isotopes and new possibilities of synthesizing elements with Z b 100. Nucl Phys A 239:353

    Google Scholar 

  • Oganessian YuTs, Utyonkov VK, Lobanov YuV et al (2000a) Synthesis of superheavy nuclei in the 48Ca + 244Pu reaction: 288114. Phys Rev C 62:041604

    Google Scholar 

  • Oganessian YuTs, Utyonkov VK, Lobanov YuV et al (2000b) Observation of the decay of 292116. Phys Rev C 63:011301

    Google Scholar 

  • Oppenheimer JR, Phillips M (1935) Note on the transmutation function for deuterons. Phys Rev 48:599

    Google Scholar 

  • Otten EW (1989) Nuclear radii and moments of unstable isotopes. In: Bromley DA (ed) Treatise on heavy-ion science, vol 8. Plenum, New York, pp 517–638

    Google Scholar 

  • Paneth FA, Reasbeck P, Mayne KI (1953) Production by cosmic rays of helium-3 in meteorites. Nature 172:200

    CAS  Google Scholar 

  • Patterson C (1956) Age of meteorites and the Earth. Geochim Cosmochim Acta 10:230

    CAS  Google Scholar 

  • Pauli W (1994) On the earlier and more recent history of the neutrino. In: Pauli W (ed) Writings on physics and philosophy (English trans: Enz CP, von Meyenn K). Springer, Berlin, pp 193–217

    Google Scholar 

  • Perey M (1939a) Sur un élément 87, dérivé de l’actinium. Compt Rend 208:97

    CAS  Google Scholar 

  • Perey M (1939b) L’élément 87: AcK, dérivé de l’actinium. J Phys Radium 10:435

    CAS  Google Scholar 

  • Perrier C, Segrè E (1937a) Radioactive isotopes of element 43. Nature 140:193

    CAS  Google Scholar 

  • Perrier C, Segrè E (1937b) Some chemical properties of element 43. J Chem Phys 5:712

    CAS  Google Scholar 

  • Perrin J (1919) Matière et lumière, Essai de synthèse de la méchanique chimique #49: L’évolution des astres. Ann Physique 11:89

    Google Scholar 

  • Petrzhak KA, Flerov GN (1940) Über die spontane Teilung von Uran. Compt Rend Acad Sci URSS 28:500

    Google Scholar 

  • Piggott CS (1936) Apparatus to secure core samples from the ocean bottom. Bull Geol Soc Am 47:675

    Google Scholar 

  • Pitzer KS (1975) Are elements 112, 114, and 118 relatively inert gases? J Chem Phys 63:1032

    CAS  Google Scholar 

  • Polikanov SM, Druin VA, Karnaukhov VA et al (1962) Spontaneous fission with an anomalously short period. Sov Phys JETP 15:1016; J Exptl Theor Phys USSR 42:1464

    Google Scholar 

  • Pontecorvo B (1935) Sulle proprietà dei neutroni lenti. Nuovo Cimento 12:211

    CAS  Google Scholar 

  • Price WJ (1958, 1964) Nuclear radiation detection, 1st and 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • PUAE (1956) Proceedings of the international conference on the peaceful uses of atomic energy, vols 1–17. United Nations, New York

    Google Scholar 

  • Ravn HL (1979) Experiments with intense secondary beams of radioactive ions. Phys Rep 54:201

    CAS  Google Scholar 

  • Reines F, Cowan CL (1953) Detection of the free neutrino. Phys Rev 92:830

    CAS  Google Scholar 

  • Reines F, Cowan CL, Harrison FB et al (1960) Detection of the free antineutrino. Phys Rev 117:159

    CAS  Google Scholar 

  • Rhodes R (1986) The making of the atomic bomb. Simon & Schuster, New York

    Google Scholar 

  • Richards P, Tucker WD, Srivastava SC (1982) Technetium-99m: an historical perspective. Int J Appl Radiat Isot 33:793

    CAS  Google Scholar 

  • Richards TW, Lembert ME (1914) The atomic weight of lead of radioactive origin. J Am Chem Soc 36:1309

    Google Scholar 

  • Rieder W, Broda E, Erber J (1950) Dissoziation von Permanganationen durch lokale Energiezufuhr. Monatsh Chem 81:656

    Google Scholar 

  • Roberts RB, Hafstad LR, Meyer RC et al (1939) The delayed neutron emission which accompanies fission of uranium and thorium. Phys Rev 55:664

    CAS  Google Scholar 

  • Rose HJ, Jones GA (1984) A new kind of natural radioactivity. Nature 307:245

    CAS  Google Scholar 

  • Rosenblum S (1930) Structure fine du spectre magnétique des rayons α. Compt Rend 190:1124

    CAS  Google Scholar 

  • Ruben S, Kamen MD (1940a) Radioactive carbon of long half-life. Phys Rev 57:549

    CAS  Google Scholar 

  • Ruben S, Kamen MD (1940b) Photosynthesis with radioactive carbon IV, Molecular weight of the intermediate products and a tentative theory of photosynthesis. J Am Chem Soc 62:3451

    CAS  Google Scholar 

  • Ruben S, Kamen MD (1941) Long-lived radioactive carbon: C14. Phys Rev 59:349

    CAS  Google Scholar 

  • Ruben S, Kamen M, Hassid WZ (1940) Photosynthesis with radioactive carbon II, Chemical properties of the intermediates. J Am Chem Soc 62:3443

    CAS  Google Scholar 

  • Rutherford E (1900) A radio-active substance emitted from thorium compounds. Phil Mag 49:1

    CAS  Google Scholar 

  • Rutherford E (1906) The mass and velocity of the α particles expelled from radium and actinium. Phil Mag 12:348

    CAS  Google Scholar 

  • Rutherford E (1911) The scattering of α and β particles by matter and the structure of the atom. Phil Mag 21:669

    CAS  Google Scholar 

  • Rutherford E (1919) Collision of α particles with light atoms IV, An anomalous effect in nitrogen. Phil Mag 37:581

    CAS  Google Scholar 

  • Rutherford E, Soddy F (1902) The cause and nature of radioactivity I, II. Phil Mag 4:370, 569

    CAS  Google Scholar 

  • Rutherford E, Soddy F (1903) Radioactive change. Phil Mag 5:576

    CAS  Google Scholar 

  • Schädel M, Brüchle W, Dressler R et al (1997) Chemical properties of element 106 (seaborgium). Nature 388:55

    Google Scholar 

  • Schaeffer OA (1968) Nuclear chemistry of the earth and meteorites. In: Yaffe L (ed) Nuclear chemistry, vol 2. Academic, New York, pp 371–393

    Google Scholar 

  • Schaeffer OA, Zähringer J (1966) Potassium-argon dating. Springer, Berlin

    Google Scholar 

  • Schroeder WU, Huizenga JR (1977) Damped heavy-ion collisions. Ann Rev Nucl Sci 27:465

    CAS  Google Scholar 

  • Seaborg GT (1940) Artificial radioactivity. Chem Revs 27:199

    CAS  Google Scholar 

  • Seaborg GT (1945) The chemical and radioactive properties of the heavy elements. Chem Eng News 23:2190

    CAS  Google Scholar 

  • Seaborg GT (1954) Coordination of properties as actinide transition series. In: Seaborg GT, Katz JJ (eds) The actinide elements. McGraw-Hill, New York, pp 733–768

    Google Scholar 

  • Seaborg GT, Katz JJ (eds) (1954) The actinide elements. McGraw-Hill, New York

    Google Scholar 

  • Seaborg GT, Wahl AC (1948) The chemical properties of elements 94 and 93. J Am Chem Soc 70:1128

    CAS  Google Scholar 

  • Seaborg GT, McMillan EM, Kennedy JW, Wahl AC (1946a) Radioactive element 94 from deuterons on uranium. Phys Rev 69:366

    CAS  Google Scholar 

  • Seaborg GT, Wahl AC, Kennedy JW (1946b) Radioactive element 94 from deuterons on uranium. Phys Rev 69:367

    CAS  Google Scholar 

  • Seaborg GT, James RA, Morgan LO (1949a) The new element americium (atomic number 95). In: Seaborg GT, Katz JJ, Manning WM (eds) The transuranium elements, research papers II. McGraw-Hill, New York, pp 1525–1553

    Google Scholar 

  • Seaborg GT, James RA, Ghiorso A (1949b) The new element curium (atomic number 96). In: Seaborg GT, Katz JJ, Manning WM (eds) The transuranium elements, research papers II. McGraw-Hill, New York, pp 1554–1571

    Google Scholar 

  • Seelmann-Eggebert W, Strassmann F (1947) Über die bei der Uranspaltung noch zu erwartenden Bruchstücke. Z Naturforsch 2a:80

    CAS  Google Scholar 

  • Segrè E, Halford RS, Seaborg GT (1939) Chemical separation of nuclear isomers. Phys Rev 55:321

    Google Scholar 

  • Serber R (1947) Nuclear reactions at high energies. Phys Rev 72:1114

    CAS  Google Scholar 

  • Siegel JM (1946) Nuclei formed in fission: decay characteristics, fission yields, and chain relationships. J Am Chem Soc 68:2411

    CAS  Google Scholar 

  • Silva RJ (1986) Transeinsteinium elements. In: Katz JJ, Seaborg GT, Morss LR (eds) The chemistry of the actinide elements, 2nd edn. Chapman & Hall, London, pp 1085–1115

    Google Scholar 

  • Sklodowska Curie M (1898) Rayons émis par les composés de l’uranium et du thorium. Compt Rend 126:1101

    Google Scholar 

  • Sobiczewski A, Gareev FA, Kalinkin BN (1966) Closed shells for Z b 82 and N b 128 in a diffuse potential well. Phys Lett B 22:500

    CAS  Google Scholar 

  • Soddy F (1911) Radioactivity. Ann Rep Progr Chem 7:285

    Google Scholar 

  • Soddy F (1913a) Intra-atomic charge. Nature 92:400

    Google Scholar 

  • Soddy F (1913b) The radio-elements and the periodic law. Chem News 107:97

    CAS  Google Scholar 

  • Soddy F (1975) In: Trenn TT (ed) Radioactivity and atomic theory: facsimile reproduction of the annual progress reports on radioactivity 1904–1920 to the chemical society by Frederick Soddy F.R.S. Taylor & Francis, London

    Google Scholar 

  • Stöcklin G, Pike VW (eds) (1993) Radiopharmaceuticals for positron emission tomography: methodological aspects. Kluwer, Dordrecht

    Google Scholar 

  • Strassmann F, Hahn O (1942) Über die Isolierung und einige Eigenschaften des Elements 93. Naturwiss 30:256

    CAS  Google Scholar 

  • Strutinsky VM (1967) Shell effects in nuclear masses and deformation energies. Nucl Phys A 95:420

    Google Scholar 

  • Suess HE, Urey HC (1956) Abundances of the elements. Rev Mod Phys 28:53

    CAS  Google Scholar 

  • Szilard L, Chalmers TA (1934) Chemical separation of the radioactive element from its bombarded isotope in the Fermi effect. Nature 134:462

    CAS  Google Scholar 

  • Tanihata I, Hamagaki H, Hashimoto O et al (1985) Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys Rev Lett 55:2676

    CAS  Google Scholar 

  • Thompson SG, Ghiorso A, Seaborg GT (1950a) Element 97. Phys Rev 77:838

    CAS  Google Scholar 

  • Thompson SG, Street K Jr, Ghiorso A, Seaborg GT (1950b) Element 98. Phys Rev 78:298

    CAS  Google Scholar 

  • Thomson JJ (1913) Positive rays of electricity. Nature 91:362

    Google Scholar 

  • Urey HC, Brickwedde FG, Murphy GM (1932) Hydrogen isotope of mass 2 and its concentration. Phys Rev 40:1

    CAS  Google Scholar 

  • Van de Graaff RJ, Compton KT, Van Atta LC (1933) Electrostatic production of high voltage. Phys Rev 43:149

    Google Scholar 

  • von Gunten HR (1969) Distribution of mass in spontaneous and neutron-induced fission. Actinide Revs 1(4):275

    Google Scholar 

  • Wahl AC, Bonner NA (1951) Radioactivity applied to chemistry. Wiley, New York

    Google Scholar 

  • Watters RL, Hakonson TE, Lane LJ (1983) The behavior of actinides in the environments. Radiochim Acta 32:89

    CAS  Google Scholar 

  • Weizsäcker CF von (1935) Zur Theorie der Kernmassen. Z Phys 96:431

    Google Scholar 

  • Weizsäcker CF von (1937) Über die Möglichkeit eines dualen β-Zerfalls von Kalium. Physik Z 38:623

    Google Scholar 

  • Wetherill GW (1971) Of time and the Moon. Science 173:383

    CAS  Google Scholar 

  • Wetherill GW (1975) Radiometric chronology of the early solar system. Ann Rev Nucl Sci 25:283

    CAS  Google Scholar 

  • Wilczynski J, Volkov VV, Decowski P (1967) Some features of the mechanism of many-neutron-transfer reactions. Sov J Nucl Phys 5:672; Yad Fiz 5:942

    Google Scholar 

  • Wilkins BD, Steinberg EP, Chasman RR (1976) Scission-point model of nuclear fission based on deformed-shell effects. Phys Rev C 14:1832

    CAS  Google Scholar 

  • Wilkinson DH, Wapstra AH, Ulehla I et al (1993) Discovery of the transfermium elements, Report of the Transfermium Working Group of IUPAC and IUPAP II, Introduction to discovery profiles, III, Discovery profiles of the transfermium elements. Pure Appl Chem 65:1757, 1764

    Google Scholar 

  • Willard JE (1953) Chemical effects of nuclear transformations. Ann Rev Nucl Sci 3:193

    CAS  Google Scholar 

  • Wolf AP (1960) Labeling of organic compounds by recoil methods. Ann Rev Nucl Sci 10:259

    CAS  Google Scholar 

  • Wolf AP (1964) The reactions of energetic tritium and carbon atoms with organic compounds. Adv Phys Organ Chem 2:201

    CAS  Google Scholar 

  • Wolf AP, Redvanly CS (1977) Carbon-11 and radiopharmaceuticals. Int J Appl Radiat Isot 28:29

    CAS  Google Scholar 

  • Yalow RS (1978) Radioimmunoassay: A probe for the fine structure of biologic systems. Science 200:1236

    CAS  Google Scholar 

  • Yankwich PE, Rollefson GK, Norris TH (1946) Chemical forms assumed by C14 produced by neutron irradiation of nitrogenous substances. J Chem Phys 14:13

    Google Scholar 

  • Zvara I, Belov VZ, Domanov VP et al (1971) Chemical isolation of kurchatovium. Sov Radiochem 14:115; Radiokhimia 14:119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Friedlander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Friedlander, G., Herrmann, G. (2011). Nuclear and Radiochemistry: the First 100 Years. In: Vértes, A., Nagy, S., Klencsár, Z., Lovas, R.G., Rösch, F. (eds) Handbook of Nuclear Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0720-2_1

Download citation

Publish with us

Policies and ethics