Skip to main content

Anaerobic Oxidation of Methane with Sulfate

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Anaerobic oxidation of methane (AOM): microbially mediated oxidation of methane to CO2 by electron acceptors other than oxygen.

Introduction

Methane is the most abundant hydrocarbon in the atmosphere, and an important greenhouse gas (see Methane, Origin). A great deal of research has focused on the cause and climatic consequences of the variation in fluxes of methane to the atmosphere, throughout the Earth’s history. Three key functional groups of microbial organisms play a central role in regulating the fluxes of methane on the Earth, namely the methanogens, the aerobic methanotrophic bacteria, and the more recently discovered anaerobic methanotrophic archaea (ANME) . It is estimated that AOM is a major sink for methane on the Earth, and of similar relevance as its photooxidation in the atmosphere (Hinrichs and Boetius, 2002; Reeburgh, 2007).

Today, most methane is produced by methanogenesis, i.e., the final step in the fermentation of organic matter taking place in soils,...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Alain, K., Holler, T., Musat, F., Elvert, M., Treude, T., and Krüger, M., 2006. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environmental Microbiology, 8, 574–590.

    Article  Google Scholar 

  • Aloisi, G., Bouloubassi, I., Heijs, S. K., Pancost, R. D., Pierre, C., Damsté, J. S. S., Gottschal, J. C., Forney, L. J., and Rouchy, J.M., 2002. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth and Planetary Science Letters, 203, 195–203.

    Article  Google Scholar 

  • Arakawa, S., Sato, T., Sato, R., Zhang, J., Gamo, T., Tsunogai, U., Hirota, A., Yoshida, Y., Usami, R., Inagaki, F., and Kato, C., 2006a. Molecular phylogenetic and chemical analyses of the microbial mats in deep-sea cold seep sediments at the northeastern Japan Sea. Extremophiles, 10, 311–319.

    Article  Google Scholar 

  • Arakawa, S., Sato, T., Yoshida, Y., Usami, R., and Kato, C., 2006b. Comparison of microbial diversity in cold-seep sediments from different depths in the Nankai Trough. Journal of General and Applied Microbiology, 52, 47–54.

    Article  Google Scholar 

  • Barnes, R. O., and Goldberg, E. D., 1976. Methane production and consumption in anoxic marine sediments. Geology, 4, 297-300.

    Article  Google Scholar 

  • Biddle, J. F., Lipp, J. S., Lever, M. A., Lloyd, K. G., Sorensen, K. B., Anderson, R., Fredricks, H. F., Elvert, M., Kelly, T. J., Schrag, D. P., Sogin, M. L., Brenchley, J. E., Teske, A., House, C. H., and Hinrichs, K.-U., 2006. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America, 103, 3846–3851.

    Article  Google Scholar 

  • Blumenberg, M., Seifert, R., Reitner, J., Pape, T., and Michaelis, W., 2004. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proceedings of the National Academy of Sciences of the United States of America United States of America, 101, 11111–11116.

    Article  Google Scholar 

  • Blumenberg, M., Seifert, R., Nauhaus, K., Pape, T., and Michaelis, W., 2005. In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat. Applied and Environmental Microbiology, 71, 4345–4351.

    Article  Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626.

    Article  Google Scholar 

  • Boetius, A., Holler, T., Knittel, K., Felden, J., and Wenzhöfer, F., 2008. The seabed as natural laboratory: lessons from uncultivated methanotrophs. In Epstein, S. S. (ed.), Uncultivated Microorganisms. Heidelberg, Germany: Springer.

    Google Scholar 

  • Brazelton, W. J., Schrenk, M. O., Kelley, D. S., and Baross, J. A., 2006. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Applied and Environmental Microbiology, 72, 6257–6270.

    Article  Google Scholar 

  • Cordes, E. E., Arthur, M. A., Shea, K., Arvidson, R. S., and Fisher, C. R., 2005. Modeling the mutualistic interactions between tubeworms and microbial consortia. PLoS Biology, 3, 1–10.

    Article  Google Scholar 

  • Dhillon, A., Lever, M., Lloyd, K. G., Albert, D. B., Sogin, M. L., and Teske, A., 2005. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin. Applied and Environmental Microbiology, 71, 4592–4601.

    Article  Google Scholar 

  • D'Hondt, S., Jorgensen, B. B., Miller, D. J., Batzke, A., Blake, R., Cragg, B. A., Cypionka, H., Dickens, G. R., Ferdelman, T., Hinrichs, K.-U., Holm, N. G., Mitterer, R., Spivack, A., Wang, G., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S. D., Sass, H., Skilbeck, C. G., Aiello, I. W., Guerin, G., House, C. H., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R. J., Schippers, A., Smith, D. C., Teske, A., Wiegel, J., Padilla, C. N., and Acosta, J. L. S., 2004. Distributions of microbial activities in deep subseafloor sediments. Science, 306, 2216–2221.

    Article  Google Scholar 

  • Durisch-Kaiser, E., Klauser, L., Wehrli, B., and Schubert, C., 2005. Evidence of intense archaeal and bacterial methanotrophic activity in the Black Sea water column. Applied and Environmental Microbiology, 71, 8099–8106.

    Article  Google Scholar 

  • Eller, G., Kanel, L. K., and Kruger, M., 2005. Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plusssee. Applied and Environmental Microbiology, 71, 8925–8928.

    Article  Google Scholar 

  • Ettwig, K. F., Shima, S., van de Pas-Schoonen K. T., Kahnt, J., Medema, M. H., Op den Camp, H. J., Jetten, M. S., Strous, M., 2008. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ. Microbiol. 10, 3164–3173.

    Article  Google Scholar 

  • Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J. C. T., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., Op den Camp, H. J. M., Janssen-Megens, E. M., Francoijs, K.-J., Stunnenberg, H., Weissenbach, J., Jetten, M. S. M., Strous, M., 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464, 543–548.

    Article  Google Scholar 

  • Fang, J. S., Shizuka, A., Kato, C., and Schouten, S., 2006. Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analyses. FEMS Microbiology Ecology, 57, 429–441.

    Article  Google Scholar 

  • Girguis, P. R., Orphan, V. J., Hallam, S. J., and DeLong, E. F., 2003. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Applied and Environmental Microbiology, 69, 5472–5482.

    Article  Google Scholar 

  • Girguis, P. R., Cozen, A. E., and DeLong, E. F., 2005. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Applied and Environmental Microbiology, 71, 3725–3733.

    Article  Google Scholar 

  • Hallam, S. J., Girguis, P. R., Preston, C. M., Richardson, P. M., and DeLong, E. F., 2003. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Applied and Environmental Microbiology, 69, 5483–5491.

    Article  Google Scholar 

  • Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C., Rokhsar, D., Richardson, P. M., and DeLong, E. F., 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science, 305, 1457–1462.

    Article  Google Scholar 

  • Hansen, L. B., Finster, K., Fossing, H., and Iversen, N., 1998. Anaerobic methane oxidation in sulfate depleted sediments: effects of sulfate and molybdate additions. Aquatic Microbial Ecology, 14, 195–204.

    Article  Google Scholar 

  • Heijs, S. K., Sinninghe Damsté, J. S., and Forney, L. J., 2005. Characterization of a deep-sea microbial mat from an active cold seep at the Milano mud volcano in the Eastern Mediterranean Sea. FEMS Microbiology Ecology, 54, 47–56.

    Article  Google Scholar 

  • Heijs, S. K., Haese, R. R., van der Wielen, P., Forney, L. J., and van Elsas, J. D., 2007. Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean cold seep. Microbial Ecology, 53, 384–398.

    Article  Google Scholar 

  • Hinrichs, K.-U., and Boetius, A., 2002. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In Wefer, G., Billett, D., Hebbeln, D., Jørgensen, B. B., Schlüter, M., and van Weering, T. (ed.), Ocean Margin Systems. Berlin, Heidelberg: Springer, pp. 457–477.

    Google Scholar 

  • Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G., and DeLong, E. F., 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398, 802–805.

    Article  Google Scholar 

  • Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 8, 451–463.

    Article  Google Scholar 

  • Inagaki, F., Tsunogai, U., Suzuki, M., Kosaka, A., Machiyama, H., Takai, K., Nunoura, T., Nealson, K. H., and Horikoshi, K., 2004. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Applied and Environmental Microbiology, 70, 7445–7455.

    Article  Google Scholar 

  • Inagaki, F., Kuypers, M. M. M., Tsunogai, U., Ishibashi, J., Nakamura, K., Treude, T., Ohkubo, S., Nakaseama, M., Gena, K., Chiba, H., Hirayama, H., Nunoura, T., Takai, K., Jørgensen, B. B., Horikoshi, K., and Boetius, A., 2006a. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proceedings of the National Academy of Sciences of the United States of America, 103, 14164–14169.

    Article  Google Scholar 

  • Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A., Suzuki, M., Takai, K., Delwiche, M., Colwell, F. S., Nealson, K. H., Horikoshi, K., D'Hondt, S., and Jorgensen, B. B., 2006b. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. Proceedings of the National Academy of Sciences of the United States of America, 103, 2815–2820.

    Article  Google Scholar 

  • Ishii, K., Mußmann, M., MacGregor, B. J., and Amann, R., 2004. An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiology Ecology, 50, 203–212.

    Article  Google Scholar 

  • Iversen, N., and Jørgensen, B. B., 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography, 30, 944–955.

    Article  Google Scholar 

  • Joye, S. B., Boetius, A., Orcutt, B. N., Montoya, J. P., Schulz, H. N., Erickson, M. J., and Lugo, S. K., 2004. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chemical Geology, 205, 219–238.

    Article  Google Scholar 

  • Judd, A., and Hovland, M. (eds.), 2007. Seabed Fluid Flow. Cambridge: Cambridge University Press, p. 475.

    Google Scholar 

  • Kallmeyer, J., and Boetius, A., 2004. Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Applied and Environmental Microbiology, 70, 1231–1233.

    Article  Google Scholar 

  • Kelley, D. S., Karson, J. A., Fruh-Green, G. L., Yoerger, D. R., Shank, T. M., Butterfield, D. A., Hayes, J. M., Schrenk, M. O., Olson, E. J., Proskurowski, G., Jakuba, M., Bradley, A., Larson, B., Ludwig, K., Glickson, D., Buckman, K., Bradley, A. S., Brazelton, W. J., Roe, K., Elend, M. J., Delacour, A., Bernasconi, S. M., Lilley, M. D., Baross, J. A., Summons, R. E., and Sylva, S. P., 2005. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science, 307, 1428–1434.

    Article  Google Scholar 

  • Knittel, K., and Boetius, A., 2009. The anaerobic oxidation of methane - progress with an unknown process. Annual Reviews of Microbiology, 63, 311–334.

    Article  Google Scholar 

  • Knittel, K., Boetius, A., Lemke, A., Eilers, H., Lochte, K., Pfannkuche, O., Linke, P., and Amann, R., 2003. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, OR). Geomicrobiology Journal, 20, 269–294.

    Article  Google Scholar 

  • Knittel, K., Lösekann, T., Boetius, A., Kort, R., and Amann, R., 2005. Diversity and distribution of methanotrophic archaea (ANME) at cold seeps. Applied and Environmental Microbiology, 71, 467–479.

    Article  Google Scholar 

  • Krüger, M., Meyerdierks, A., Glöckner, F. O., Amann, R., Widdel, F., Kube, M., Reinhardt, R., Kahnt, J., Böcher, R., Thauer, R. K., and Shima, S., 2003. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature, 426, 878–881.

    Article  Google Scholar 

  • Lanoil, B. D., La Duc, M. T., Wright, M., Kastner, M., Nealson, K. H., and Bartlett, D., 2005. Archaeal diversity in ODP legacy borehole 892b and associated seawater and sediments of the Cascadia Margin. FEMS Microbiology Ecology, 54, 167–177.

    Article  Google Scholar 

  • Lloyd, K. G., Lapham, L., and Teske, A., 2006. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Applied and Environmental Microbiology, 72, 7218–7230.

    Article  Google Scholar 

  • Lösekann, T., Knittel, K., Nadalig, T., Fuchs, B., Niemann, H., Boetius, A., and Amann, R., 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Applied and Environmental Microbiology, 73, 3348–3362.

    Article  Google Scholar 

  • Martens, C. S., and Berner, R. A., 1977. Interstitial water chemistry of Long Island sound sediments, I, dissolved gases. Limnology and Oceanography, 22, 10–25.

    Article  Google Scholar 

  • Martinez, R. J., Mills, H. J., Story, S., and Sobecky, P. A., 2006. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environmental Microbiology, 8, 1783–1796.

    Article  Google Scholar 

  • Meyerdierks, A., Kube, M., Kostadinov, I., Teeling, H., Glöckner, F. O., Reinhardt, R., and Amann, R., 2009. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environmental Microbiology, 12, 422–439.

    Article  Google Scholar 

  • Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg, M., Knittel, K., Gieseke, A., Peterknecht, K., Pape, T., Boetius, A., Amann, R., Jørgensen, B. B., Widdel, F., Peckmann, J., Pimenov, N. V., and Gulin, M. B., 2002. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 297, 1013–1015.

    Article  Google Scholar 

  • Mills, H. J., Hodges, C., Wilson, K., MacDonald, I. R., and Sobecky, P. A., 2003. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiology Ecology, 46, 39–52.

    Article  Google Scholar 

  • Mills, H. J., Martinez, R. J., Story, S., and Sobecky, P. A., 2004. Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities form Gulf of Mexico cold-seep sediments. Applied and Environmental Microbiology, 70, 5447–5458.

    Article  Google Scholar 

  • Mills, H. J., Martinez, R. J., Story, S., and Sobecky, P. A., 2005. Characterization of microbial community structure in Gulf of mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Applied and Environmental Microbiology, 71, 3225–3247.

    Google Scholar 

  • Nauhaus, K., Boetius, A., Krüger, M., and Widdel, F., 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environmental Microbiology, 4, 296–305.

    Article  Google Scholar 

  • Nauhaus, K., Treude, T., Boetius, A., and Krüger, M., 2005. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I- and ANME-II-communities. Environmental Microbiology, 7, 98–106.

    Article  Google Scholar 

  • Nauhaus, K., Albrecht, M., Elvert, M., Boetius, A., and Widdel, F., 2007. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environmental Microbiology, 9, 187–196.

    Article  Google Scholar 

  • Newberry, C. J., Webster, G., Cragg, B. A., Parkes, R. J., Weightman, A. J., and Fry, J. C., 2004. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, ocean drilling program leg 190. Environmental Microbiology, 6, 274–287.

    Article  Google Scholar 

  • Niemann, H., Elvert, M., Hovland, M., Orcutt, B., Judd, A., Suck, I., Gutt, J., Joye, S., Damm, E., Finster, K., and Boetius, A., 2005. Methane emission and consumption at a North Sea gas seep (Tommeliten Area). Biogeosciences, 2, 335–351.

    Article  Google Scholar 

  • Niemann, H., Duarte, J., Hensen, C., Omoregie, E., Magalhaes, V. H., Elvert, M., Pinheiro, L. M., Kopf, A., and Boetius, A., 2006a. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochimica et Cosmochimica Acta, 70, 5336–5355.

    Article  Google Scholar 

  • Niemann, H., Lösekann, T., DeBeer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E. J., Schlüter, M., Klages, M., Foucher, J. P., and Boetius, A., 2006b. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 443, 854–858.

    Article  Google Scholar 

  • Nunoura, T., Oida, H., Toki, T., Ashi, J., Takai, K., and Horikoshi, K., 2006. Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough. FEMS Microbiology Ecology, 57, 149–157

    Article  Google Scholar 

  • Omoregie, E. O., Mastalerz, V., de Lange, G., Straub, K. L., Kappler, A., et al. 2008. Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren Mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Applied and Environmental Microbiology, 74, 3198–3215.

    Article  Google Scholar 

  • Orcutt, B., Boetius, A., Elvert, M., Samarkin, V., and Joye, S. B., 2005. Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochimica et Cosmochimica Acta, 69, 4267, 5633–5633.

    Google Scholar 

  • Orphan, V. J., Hinrichs, K.-U., Ussler, W. III, Paull, C. K., Taylor, L. T., Sylva, S. P., Hayes, J. M., and DeLong, E. F., 2001a. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology, 67, 1922–1934.

    Article  Google Scholar 

  • Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D., and DeLong, E. F., 2001b. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293, 484–487.

    Article  Google Scholar 

  • Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D., and DeLong, E. F., 2002. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proceedings of the National Academy of Sciences of the United States of America, 99, 7663–7668.

    Article  Google Scholar 

  • Parkes, R. J., Cragg, B. A., Banning, N., Brock, F., Webster, G., Fry, J. C., Hornibrook, E., Pancost, R. D., Kelly, S., Knab, N., Jorgensen, B. B., Rinna, J., and Weightman, A. J., 2007. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environmental Microbiology, 9, 1146–1161.

    Article  Google Scholar 

  • Pernthaler, A., Dekas, A. E., Brown, C. T., Goffredi, S. K., Embaye, T., and Orphan, V. J., 2008. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proceedings of the National Academy of Sciences of the United States of America, 105, 7052–7057.

    Article  Google Scholar 

  • Pimenov, N. V., Rusanov, I. I., Poglazova, M. N., Mityushina, L. L., Sorokin, D. Y., Khmelenina, V. N., and Trotsenko, Y. A., 1997. Bacterial mats on coral-like structures at methane seeps in the Black Sea. Microbiology (translated from Mikrobiologiya), 66, 354–360.

    Google Scholar 

  • Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., Schouten, S., Damsté, J. S. S., Op den Camp, H. J. M., Jetten, M. S. M., and Strous, M., 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440, 918–921.

    Article  Google Scholar 

  • Rappe, M. S., and Giovannoni, S. J., 2003. The uncultured microbial majority. Annual Review of Microbiology, 57, 369–394.

    Article  Google Scholar 

  • Reeburgh, W. S., 1969. Observations of gases in Chesapeake Bay sediments. Limnology and Oceanography, 14, 368–375.

    Article  Google Scholar 

  • Reeburgh, W. S., 1976. Methane consumption in Cariaco trench waters and sediments. Earth and Planetory Science Letters, 28, 337–344.

    Article  Google Scholar 

  • Reeburgh, W. S., 2007. Oceanic methane biogeochemistry. Chemical Reviews, 107, 486–513.

    Article  Google Scholar 

  • Reeburgh, W. S., Ward, B. B., Whalen, S. C., Sandbeck, K. A., Kilpatrick, K. A., and Kerkhof, L. J., 1991. Black Sea methane geochemistry. Deep Sea Research, 38 (Supplement 2), S1189–S1210.

    Google Scholar 

  • Reed, A. J., Lutz, R. A., and Vetriani, C., 2006. Vertical distribution and diversity of bacteria and archaea in sulfide and methane-rich cold seep sediments located at the base of the Florida escarpment. Extremophiles, 10, 199–211.

    Article  Google Scholar 

  • Reitner, J., Peckmann, J., Blumenberg, M., Michaelis, W., Reimer, A., and Thiel, V., 2005a. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 18–30.

    Article  Google Scholar 

  • Reitner, J., Peckmann, J., Reimer, A., Schumann, G., and Thiel, V., 2005b. Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean Shelf (Black Sea). Facies, 51, 66–79.

    Article  Google Scholar 

  • Rossel, P., Fredricks, H., Lipp, J., Arnds, J., Boetius, A., Elvert, M., and Hinrichs, K.-U., 2008. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Organic Geochemistry, 39, 992–999

    Article  Google Scholar 

  • Sahling, H., Rickert, D., Lee, R. W., Linke, P., and Suess, E., 2002. Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Marine Ecology Progress Series, 231, 121–138.

    Article  Google Scholar 

  • Schouten, S., Wakeham, S. G., Hopmans, E. C., and Sinninghe Damsté, J. S., 2003. Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Applied and Environmental Microbiology, 69, 1680–1686.

    Article  Google Scholar 

  • Schreiber, L., Holler, T., Knittel, K., Meyerdierks, A., Amann, R. (in press). Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environmental Microbiology.

    Google Scholar 

  • Schrenk, M. O., Kelley, D. S., Bolton, S. A., and Baross, J. A., 2004. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City hydrothermal field, Mid-Atlantic Ridge. Environmental Microbiology, 6, 1086–1095.

    Article  Google Scholar 

  • Schubert, C. J., Coolen, M. J. L., Neretin, L. N., Schippers, A., Abbas, B., Durisch-Kaiser, E., Wehrli, B., Hopmans, E. C., Sinninghe Damste, J. S., Wakeham, S., and Kuypers, M. M. M., 2006a. Aerobic and anaerobic methanotrophs in the Black Sea water column. Environmental Microbiology, 8, 1844–1856.

    Article  Google Scholar 

  • Schubert, C. J., Durisch-Kaiser, E., Holzner, C. P., Klauser, L., Wehrli, B., Schmale, O., Greinert, J., McGinnis, D. F., DeBatist, M., and Kipfer, R., 2006b. Methanotrophic microbial communities associated with bubble plumes above gas seeps in the Black Sea. Geochemistry, Geophysics, Geosystems, 7, Q04002, doi:10.1029/2005GC001049.

    Article  Google Scholar 

  • Shima, S., and Thauer, R. K., 2005. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic archaea. Current Opinion in Microbiology, 8, 643–648.

    Article  Google Scholar 

  • Sibuet, M., and Olu, K., 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Research II, 45, 517–567.

    Article  Google Scholar 

  • Sorensen, K. B., and Teske, A., 2006. Stratified communities of active archaea in deep marine subsurface sediments. Applied and Environmental Microbiology, 72, 4596–4603.

    Article  Google Scholar 

  • Stadnitskaia, A., Muyzer, G., Abbas, B., Coolen, M. J. L., Hopmans, E. C., Baas, M., van Weering, T. C. E., Ivanov, M. K., Poludetkina, E., and Sinninghe Damsté, J. S., 2005. Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Marine Geology, 217, 67–96.

    Article  Google Scholar 

  • Sturt, H. F., Summons, R. E., Smith, K., Elvert, M., and Hinrichs, K.-U., 2004. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry-new biomarkers for biogeochemistry and microbial ecology. Rapid Communications in Mass Spectrometry, 18, 617–628.

    Article  Google Scholar 

  • Takai, K., and Horikoshi, K., 1999. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics, 152, 1285–1297.

    Google Scholar 

  • Teske, A., Hinrichs, K.-U., Edgcomb, V., de Vera Gomez, A., Kysela, D., Sylva, S. P., Sogin, M. L., and Jannasch, H. W., 2002. Microbial diversity of hydrothermal sediments in the guaymas basin: evidence for anaerobic methanotrophic communities. Applied and Environmental Microbiology, 68, 1994–2007.

    Article  Google Scholar 

  • Thiel, V., Peckmann, J., Richnow, H. H., Luth, U., Reitner, J., and Michaelis, W., 2001. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Marine Chemistry, 73, 97–112.

    Article  Google Scholar 

  • Thiel, V., Blumenberg, M., Pape, T., Seifert, R., and Michaelis, W., 2003. Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Organic Geochemistry, 34, 81–87.

    Article  Google Scholar 

  • Thiel, V., Heim, C., Arp, G., Hahmann, U., Sjovall, P., and Lausmaa, J., 2007. Biomarkers at the microscopic range: ToF-SIMS molecular imaging of archaea-derived lipids in a microbial mat. Geobiology, 5, 413–421.

    Article  Google Scholar 

  • Thomsen, T. R., Finster, K., and Ramsing, N. B., 2001. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Applied and Environmental Microbiology, 67, 1646–1656.

    Article  Google Scholar 

  • Tourova, T. P., Kolganov, T. V., Kuznetsov, B. B., and Pimenov, N. V., 2002. Phylogenetic diversity of the archaeal component in microbial mats on coral-like structures associated with methane seeps in the Black Sea. Microbiology (translated from Mikrobiologiya), 71, 230–236.

    Google Scholar 

  • Treude, T., Boetius, A., Knittel, K., Wallmann, K., and Jørgensen, B. B., 2003. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Marine Ecology Progress Series, 264, 1–14.

    Article  Google Scholar 

  • Treude, T., Knittel, K., Blumenberg, M., Seifert, R., and Boetius, A., 2005a. Subsurface microbial methanotrophic mats in the Black Sea. Applied and Environmental Microbiology, 71, 6375–6378.

    Article  Google Scholar 

  • Treude, T., Krüger, M., Boetius, A., and Jørgensen, B. B., 2005b. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic). Limnology and Oceanography, 50, 1771–1786.

    Article  Google Scholar 

  • Treude, T., Orphan, V., Knittel, K., Gieseke, A., House, C., and Boetius, A., 2007. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Applied and Environmental Microbiology, 73, 2271–2283.

    Article  Google Scholar 

  • Vetriani, C., Tran, H. V., and Kerkhof, L. J., 2003. Fingerprinting microbial assemblages from the oxic/anoxic chemocline of the Black Sea. Applied and Environmental Microbiology, 69, 6481–6488.

    Article  Google Scholar 

  • Wakeham, S. G., Lewis, C. M., Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S., 2003. Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochimica et Cosmochimica Acta, 67, 1359–1374.

    Article  Google Scholar 

  • Webster, G., Parkes, R. J., Cragg, B. A., Newberry, C. J., Weightman, A. J., and Fry, J. C., 2006. Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiology Ecology, 58, 65–85.

    Article  Google Scholar 

  • Wegener, G., Shovitri, M., Knittel, K., Niemann, H., Hovland, M., and Boetius, A., 2008. Gullfaks and Tommeliten: microbiological and geochemical description of two of the most active seepage sites of the North Sea. Biogeosciences, 5, 1127–1144.

    Article  Google Scholar 

  • Zehnder, A. J. B., and Brock, T. D., 1979. Methane formation and methane oxidation by methanogenic bacteria. Journal of Bacteriology, 137, 420–432.

    Google Scholar 

  • Zehnder, A. J. B., and Brock, T. D., 1980. Anaerobic methane oxidation: occurrence and ecology. Applied and Environmental Microbiology, 39, 194–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Knittel, K., Boetius, A. (2011). Anaerobic Oxidation of Methane with Sulfate. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_10

Download citation

Publish with us

Policies and ethics