Skip to main content

Small-Angle Neutron Scattering and Applications in Soft Condensed Matter

  • Reference work entry
Soft Matter Characterization

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    PAPOL, LLB, France; SANSPOL, HMI, Germany; SANS-I at SINQ, Switzerland, NG3 30m at NIST, United States

References

  1. Guinier, A. (1939) Ann. Phys. Paris., 12, 161–237.

    MATH  Google Scholar 

  2. Guinier, A., Fournet, G. (1955) Small Angle Scattering of X-Rays. Wiley, New York.

    Google Scholar 

  3. Stuhrmann, H.B. (1974) Neutron Small-angle scattering of biological macromolecules in solution. J. Appl. Cryst., 7, 173–178.

    Article  Google Scholar 

  4. Stuhrmann, H.B. and Duee, E.D. (1975) The determination of the scattering density distribution of polydisperse solutions by contrast variation: a neutron scattering study of ferritin. J. Appl. Cryst., 8, 538–542.

    Article  Google Scholar 

  5. Ibel, K. and Stuhrmann, H.B. (1975) J. Mol. Biol., 93, 255–265.

    Article  Google Scholar 

  6. http://www.ill.eu/lss/more/world-directory-of-sans-instruments/ and http://www. isis.rl.ac.uk/LargeScale/LOQ/other/World_Directory_of_SANS_Instruments.htm.

  7. Glinka, C.J., Barker, J.G., Hammouda, B., Krueger, S., Moyer, J.J., and Orts, W.J. (1998) The 30 m small angle neutron scattering experiments at the national institute of standards and technology. J. Appl. Cryst., 31, 430–445.

    Article  Google Scholar 

  8. Heenan, R.K., Penfold, J., King, S.M (1997) SANS at pulsed neutron sources: present and future prospects. J. Appl. Cryst., 30, 1140–1147 (http://www.isis.rl.ac.uk/largescale/loq/loq.htm).

  9. Knoll, G.F. and Wihley J.(1989) Position-sensitive detection of thermal neutrons. In Convert, P. and Forsyth, J.B. (ed.), Radiation Detection and Measurement. Academic Press, New York.

    Google Scholar 

  10. Knoll, G.F. (1989) Radiation Detection and Measurement, Chap. 7, 2nd ed. Wiley, New York; P. Lindner, Dead time of the BF3 detector at D11, ILL Technical report, ILL98/LI 12 T (1998).

    Google Scholar 

  11. Van Esc, P., Gahl, T., Guérard, B. (2004) Design criteria for electronics for resistive charge division in thermal neutron detection. Nucl. Instr. Meth. Phys., Res. A, 526, 493–500.

    Article  ADS  Google Scholar 

  12. Van Esch, P. and Millier, F. (2003) Optimal lookup table construction with respect to efficiency flatness. Rev. Sci. Instrum., 74, 5058–5061.

    Article  ADS  Google Scholar 

  13. Scherm, R. and Fak, B. (1993) Neutron and synchrotron radiation for condensed matter studies. In Baruchel, J. Hodeau, J.L., Lehmann, M.S., Regnard, J.R., and Schlenker C. (eds.), Theory, instruments and methods. Les Editions de physique, Vol 1, Chap. 5. Springer, Berlin.

    Google Scholar 

  14. May, R., Hendriks, J., and Crielaard, W. (2005) Real-time neutron scattering investigations of biological signal transduction dynamics. Proceedings of the International Symposium on Research Reactor and Neutron Science, Daejeon, Korea, pp 777–781.

    Google Scholar 

  15. Bent, J., Hutchings, L.R., Richards, R.W., Cough, T., Spares, R., Coates, P.D., Grillo, I., Harlen, O.G., Read, D.J., Graham, R.S., Likhtman, A.E.,Groves, D.J., and Nicholson, T.M (2003) Neutron -mapping polymer flow: scattering flow visualization and molecular theory. T.C.B. McLeish Sci., 301, 1691–1695 (abstract).

    Google Scholar 

  16. Heinemann, A., Wiedenmann, A. (2005) Insight into the formation of partially ordered structures in Co-based ferrofluids. J. Magn. Magn. Mater., 289, 149–151.

    Article  ADS  Google Scholar 

  17. Jacrot, B. and Zaccai, G. (1981) Determination of molecular weight by neutron scattering. Biopolymers, 20, 2413–2426.

    Article  Google Scholar 

  18. Lindner, P. (2000) Water calibration at D11 verified with polymer samples. J. Appl. Crystallogr., 33, 807–811.

    Article  MathSciNet  Google Scholar 

  19. Gosh, R.E, Egelhaaf, S.U., and Rennie, A.R. (1998) A computing guide for Small-Angle Scattering Experiments; ILL report ILL98GH14T. GRASP for Graphical Reduction and analysis SANS program for Matlabâ„¢ by C. Dewhurst (http://www.ill.eu/sites/grasp/grasp_main.html).

  20. Sears, V.F. (1992) Neutron scattering lengths and crossed sections. Neutron News, 3, 26–37.

    Article  Google Scholar 

  21. Schelten, J. and Schmatz, W. (1980) Multiple scattering treatment for small-angle scattering problems. J. Appl. Crystallogr., 13, 385–390; Goyal, P.S., King, J.S., and Summerfield, G.C. (1983) Multiple scattering in small-angle neutron scattering measurements on polymers. Polymer, 24, 131–134; Berk, N.F. and Hardman-Rhyne, K.A. (1988) Analysis of SAS data dominated by multiple scattering. J. Appl. Crystallogr., 21, 645–651.

    Google Scholar 

  22. Lal, J., Widmaier, J.M., Bastide, J., and Boué, F. (1994) Determination of an interpenetrating network structure by small angle neutron scattering. Macromolecules, 27, 6443–6451.

    Article  ADS  Google Scholar 

  23. Morfin, I., Ehrburger-Dolle, F., Grillo, I., Livet, F., and Bley, F. (2006) ASAXS, SAXS and SANS investigations of vulcanized elastomers filled with carbon black. Part 6, 445–452.

    Google Scholar 

  24. Brûlet, A., Lairez, D., Lapp, A., Cotton, J.P. (2007) Improvement of data treatment in small-angle neutron scattering J Appl Cryst. 40, 165–177.

    Google Scholar 

  25. Silas, J.A. and Kaler, E.W. (2003). Effect of multiple scattering from bicontinuous microemulsions. J. Colloid Interface Sci., 257, 291–298.

    Article  Google Scholar 

  26. Glatter, O. and Kratky, O. (1982) Small Angle X-Ray Scattering. Academic Press, London.

    Google Scholar 

  27. Boué, F., Cotton, J.P., Lapp, A., and Jannink, G. (1994) A direct measurement of the polyion conformation in aqueous solutions at different temperatures. Small angle neutron scattering of PSSNa using zero average and full contrast. J. Chem. Phys., 101, 2562–2568; Brûlet, A., Boué, F., Cotton, J.P. (1996) About the experimental determination of the persistence length of wormlike chains of polystyrene. J. Phys. II France, 6, 885–891; Spitéri, M.N., Boué, F., Lapp, A., and Cotton, J.P. (1996) Persistence length for a PSSNA Polyion in semidilute solution as a function of the ionic strength. Phys. Rev. Lett., 77, 5218–5220.

    Google Scholar 

  28. Morfin, I., Lindner, P., and Boué, F. (2004) Shear–induced concentration fluctuations and form factor changes in polymer solution in the good-solvent regime. Eur. Phys. J. E., 15, 41–45.

    Google Scholar 

  29. Oberdisse, J. (2007) Current Opinion in Colloid an Interface Science. Adsorption grafting on colloidal interfaces studied by scattering techniques. 12, 3–8.

    Google Scholar 

  30. Boué, F., Cousin, F., Gummel, J., Oberdisse, J., Carrot, G., El Harrack, A. (2007) Small angle scatteing from soft matter – application to complex mixed systems. C.R. Phys 8, 821–844.

    Google Scholar 

  31. Balnois, E., Durand-Vidal, S., and Levitz, P. (2003) Probing the morphology of Laponite clay colloids by atomic force microscopy. Langmuir, 19, 6633–6637.

    Article  Google Scholar 

  32. Mourchid, A., Delville, A., Lambard, J., Lécolier, E., and Levitz, P. (1995) Phase diagram of colloidal dispersions of anisotropic charged particles: equilibrium properties, structure and rheology of laponite suspensions. Langmuir, 11, 1942–1950.

    Article  Google Scholar 

  33. Grillo, I. (personal communication).

    Google Scholar 

  34. Bates, F.S., Wignall, G.D., and Koehler, W.C. (1985) Critical behavior of binary liquid mixtures of deuterated and protonated polymer. Phys. Rev. Lett., 55, 2425.

    Article  ADS  Google Scholar 

  35. Arleth, L. and Pedersen, J.S. (2000) Scattering vector dependence of the small-angle scattering from mixtures of hydrogenated and deuterated organic solvents. J. Appl. Crystallogr., 33, 650–652.

    Article  Google Scholar 

  36. Jacrot, J. (1976) The study of biological structures by neutron scattering from solution. Rep. Prog. Phys., 39, 911–953.

    Article  ADS  Google Scholar 

  37. Pedersen J. (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv. Colloid Interface Sci., 70, 171–210.

    Article  Google Scholar 

  38. Rayleigh, L. (1911) The Incidence of Light upon a Transparent Sphere of Dimensions Comparable with the Wave-Length. Proc. Royal. Soc. Lodon. Ser. A., 84, 25–38.

    Article  ADS  Google Scholar 

  39. Dingenouts, N., Selenmeyer, S., Deike, I., Roseneldt, S., Ballauf, M., Lindner, P., and Narayanan, T. (2001) Analysis of thermosensitive core-shell colloids by small-angle neutron scattering including contrast variation. Phys. Chem. Chem. Phys., 3, 1169–1174.

    Article  Google Scholar 

  40. Sommer, C., Pedersen, J.S., and Garamus, V.M. (2005) Sructure and interaction of block copolymer micelles of Brij 700 studied by combining small-angle X-ray and neutron scattering. Langmuir, 21, 2137–2149.

    Article  Google Scholar 

  41. Bumajdad, A., Eastoe, J., Nave, S., Steytler, D.C., Heenan, R.K., and Grillo, I. (2003) Compositions of mixed surfactant layers in microemulsions determined by SANS. Langmuir, 19, 2560–2567.

    Article  Google Scholar 

  42. Fournet, G. (1951) Bull. Soc. Fr. Minér. Crist., 74, 39–113.

    Google Scholar 

  43. Eastoe, J., Rogueda, P., Shariatmadai, D., and Heenan, R. (1996) Micelles of asymmetric chain catanionic surfactants. Colloids surf. A Physicochem. Eng. Asp., 117, 215–225.

    Article  Google Scholar 

  44. Zemb, T., Dubois, M., Demé, B., and Gulik-Krzywicki, T. (1999) Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science, 283, 816–819.

    Article  ADS  Google Scholar 

  45. Coulombeau, H., Testard, F., Zemb, T., and Larpent, C. (2004) Effect of recognized and unrecognized salt on the self-assembly of new thermosensitive metal-chelating surfactants. Langmuir, 20, 4840–4850.

    Article  Google Scholar 

  46. Simmons, B., Agarwal, V., McPherson, G., John, V., and Bose, A. (2002) Small angle neutron scattering study of mixed AOT + lecithin reverse micelles. Langmuir, 18, 8345–8349.

    Article  Google Scholar 

  47. Jung, M., Robinson, B.H., Steytler, D.C., German, A.L, and Heenan, R.K. (2002) Polymerization of styrene in DODAB vesicles: a small-angle neutron scattering study. Langmuir, 18, 2873–2879.

    Article  Google Scholar 

  48. Caillé, A. (1972) X-ray scattering by smectic-A crystals. C. R. Hebd. Acad. Sci. Paris B., 274, 891–893.

    Google Scholar 

  49. Nallet, F., Laversanne, R., and Roux, D. (1993) Modelling X-ray or neutron scattering spectra of lyotropic lamellar phases. Interplay between form and structure factors. J Phys. II, 3, 487–502.

    Article  Google Scholar 

  50. Grillo, I. (2003) Small angle neutron scattering of a world-wide known emulsion: Le Pastis Colloids surf. A Physicochem. Eng. Asp., 225, 153–160.

    Article  Google Scholar 

  51. Marchal, D., Bourdillon, C., and Demé Small-Angle, B. (2003) Neutron scattering by highly oriented hybrid bilayer membranes confined in anisotropic porous alumine. Langmuir, 26, 8313–8320.

    Google Scholar 

  52. Demé, B. and Zemb, T. (2000) Measurement of sugar depletion from uncharged lamellar phases by SANS contrast variation. J. Appl. Cryst., 33, 569–573.

    Article  Google Scholar 

  53. Kanaya, T., Ohkura, M., Takeshita, H., Kaji, K., Furusaka, M., Yamaoka, H., and Wignall, G.D. (1995) Gelation process of poly(vinyl alcohol) as studied by small-angle neutron and light scattering. Macromolecules, 28, 3168. The Netherlands, Amsterdam.

    Article  ADS  Google Scholar 

  54. Steytler, D.C., Dowding, P.J., Robinson, B.H., Hague, J.D., Rennie, J.H.S., Leng, C.A., Eastoe, J., and Heenan R.K. (1998) Characterization of water-in-oil microemulsions formed in silicone oils. Langmuir, 14 3517–3523.

    Article  Google Scholar 

  55. Auvray, L. and Auroy, P. (1991) Neutron, X-Ray and light scattering: introduction to an investigative tool for colloidal and polymeric systems. In Lindner, P. and Zemb, T. (eds.), North Holland delta series. III. Scattering by interfaces: variation on Porod’s law. The Netherlands, North Holland delta series, Amsterdam.

    Google Scholar 

  56. Glatter, O. (1977) Data evaluation in small-angle scattering, calculation of radial electron density distribution by means of indirect fourier transformation. Acta Phys. Austriaca, 47, 83–102; Glatter, O. (1977) New method for evaluation of small angle scattering data. J. Appl. Crystallogr., 10, 415–421; Glatter, O. (1980) Determination of particle size distribution functions from small-angle scattering by means of the indirect transformation method. J. Appl. Crystallogr., 13, 7–11.

    Google Scholar 

  57. Lindner, P., and Zemb, T. (eds.) (2002) Neutron, X-rays and light: scattering methods applied to soft condensed matter, chaps. 4 and 5. Elsevier. The Netherlands, Amsterdam.

    Google Scholar 

  58. Weyerich, B., Brunner-Popela, J., and Glatter, O. (1999) Small-angle scattering of interacting particles. II. Generalized indirect Fourier transformation under consideration of the effective structure factor for polydisperse systems. J. Appl. Crystallogr., 32, 197–209.

    Article  Google Scholar 

  59. Svergun, D.I. and Koch, M.H.J., (2003) Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys., 66, 1735–1782.

    Article  ADS  Google Scholar 

  60. Lindner, P. and Zemb, T. (eds.) (2002) Neutron, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter, chapters 14. Elsevier.

    Google Scholar 

  61. Percus, J.K and Yevick, G.J. (1958) Analysis of classical mechanics by means of collective coordinates. Phys Rev., 1, 1–13.

    Article  MathSciNet  ADS  Google Scholar 

  62. Hayter, J.B. and Penfold, J. (1981) An analytic structure factor for macroion solutions. Mol. Phys., 42, 109–118.

    Article  ADS  Google Scholar 

  63. Hansen, J.P. and Hayter, J.B. (1982) A rescaled MSA structure factor for dilute charged colloidal dispersions. Mol. Phys., 46, 651–656.

    Article  ADS  Google Scholar 

  64. Schmatz, W., Springer, T., Schelten, J., and Ibel, K. (1974) Neutron small-angle scattering - Experimental techniques and applications. J. Appl. Cryst., 7, 96–116; Wignall, G.D., Christen, D.K., and Ramakrishnan V. (1988) Instrumental resolution affects in small-angle neutron scattering J. Appl. Cryst., 21, 438–451; Milder, D.F.R. (1990) Design optimization of a small-angle neutron scattering spectrometer. Nucl. Instrum. Methods Phys. Res. A, 290, 259–262.

    Google Scholar 

  65. Pedersen, J.S., Posselt, D., and Mortensen, K. (1990) Analytical treatment of the resolution function for small-angle scattering. J. Appl. Crystallogr. 23, 321–333.

    Article  Google Scholar 

  66. Mildner, D.F.R., Carpenter, J.M., and Worcester, D.L. (1986) Measurement and calculation of resolution of time-of-flight small-angle neutron scattering J. Appl. Crystallogr., 19, 311–319.

    Article  Google Scholar 

  67. Né, F., Grillo, I., Taché, O., and Zemb, T.H. (2000) De l’intensité brute à l’intensité absolue, calibration d’une camera Guinier-Mering. J. Phys. IV., 10, 403–413.

    Google Scholar 

  68. Huang, T.C., Toraya, H., Blanton, T.N., and Wu, Y (1993) J. Appl. Crystallogr., 26, 180–184.

    Article  Google Scholar 

  69. Grillo, I. (2001) ILL technical Report ILL01GR08T, Effect of instrumental resolution and polydispersity on ideal form factor in Small Angle Neutron Scattering.

    Google Scholar 

  70. Mildner, B.F.R. and Carpenter, J.M. (1984) Optimization of the experimental resolution for small-angle scattering. J. Appl.Crystallogr., 17, 249–256.

    Article  Google Scholar 

  71. Lairez, D. (1999) Résolution d’un spectromètre de diffusion de neutrons aux petits angles. J. Phys. IV France, 9, 67–81.

    Google Scholar 

  72. http://www.ill.ev/dzz/documentation/.

  73. Egelhaaf, S.U., Olsson, U., and Schurteberger, P. (2000) Time resolved SANS for surfactant phase transitions. Physica B, 276–278, 326–329.

    Article  Google Scholar 

  74. Grillo, I., Kats, E.I., and Muratov, A.R. (2003) Formation and growth of anionic vesicles followed by small-angle neutron scattering. Langmuir, 19, 4573–4581.

    Article  Google Scholar 

  75. Gradzielski, M., Grillo, I., and Narayanan, T. (2004) Dynamics of structural transitions in amphiphilic systems monitored by scattering techniques. Prog. Colloid. Polym. Sci., 129, 32–39.

    Google Scholar 

  76. Né, F., Testard, F., Zemb, T., et al. (2003) How does ZrO2/surfactant mesophase nucleate? Formation mechanism. Langmuir, 19, 8503–8510.

    Article  Google Scholar 

  77. Williams, R.E. and Michael Rowe J. (2002) Developments in neutron beam devices and in advanced cold source for the NIST research reactor. Physica B, 311, 117–122.

    Article  ADS  Google Scholar 

  78. Choi, S.M., Barker, J.G., Glinka, C.J., Cheng, Y.T., and Gammel, P.L. (2000) Focusing cold neutrons with multiple biconcave lenses for small-angle neutron scattering. J. Appl. Crystallogr., 33, 793–796.

    Article  Google Scholar 

  79. Littrell, K.C. (2004) A comparison of different methods for improving flux and resolution on SANS instrument. Nucl. Instrum. Methods Phys. Res. A, 529, 22–27.

    Article  ADS  Google Scholar 

  80. Dewhurst, C.D., Anderson, I., and Beguiristain, R. (2001) ILL Annual Report. In Cicognani, G. and Vettier, C. (ed.), Imaging with a Neutron Lens.

    Google Scholar 

  81. Bonse, U. and Hart, M. Small-Angle X-Ray Scattering. In Brumberger, H. (ed.), Gordon and Breach, New York, pp 121.

    Google Scholar 

  82. Stuhrmann, H.B., Van der Brandt, B., Hautle, P., Konter, J.A., Ninikoski, T.O., Schmitt, M., Willumeit, R. Zhao, J., and Mango, S. (1997) Polarized neutron scattering from polarized nuclei near paramagnetic centres. J. Appl. Crystallogr., 30, 839–843.

    Article  Google Scholar 

  83. Désert, S., Thevenot, J., Oberdisse, A., Brûlet, J. (2007) The new very-small-angle neutron scattering spectrometer at Laboratoire Leon Brillouin. J. Appl. Cryst. 40, S471–S473.

    Article  Google Scholar 

  84. Brûlet, A., Thevenot, V., Lairez, D., Lecommandoux, S., Agut, W., Armes, S.P., Du, L.Z., Désert, S. (2008) Toward a new lower limit for the minimum scattering vector on the very small angle neutron scattering spectrometer at Laboratoire Leon Brillouin. J. Appl. Cryst. 41, 161–166.

    Article  Google Scholar 

Download references

Acknowledgements

I would warmly thank Dr. S. King and Dr R. Heenan (ISIS), for the documents supplied on LOQ. I am grateful to P. Van Esch (ILL, Grenoble) for the technical explanations on detectors. I am grateful to Ron Ghosh (Institut Laue Langevin) for discussion on instrument resolution. I would like to thank Bruno Demé for helpful discussions in perspective and application for USANS instruments. Thanks to C. Dewhurst for the manuscript reading and comments on data analysis. I thank R. May for the training on D22 at the ILL and all fruitful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Grillo, I. (2008). Small-Angle Neutron Scattering and Applications in Soft Condensed Matter. In: Borsali, R., Pecora, R. (eds) Soft Matter Characterization. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4465-6_13

Download citation

Publish with us

Policies and ethics