Skip to main content
  • 6011 Accesses

Abstract

We define tomography as the process of producing an image of a distribution (of some physical property) from estimates of its line integrals along a finite number of lines of known locations. We touch upon the computational and mathematical procedures underlying the data collection, image reconstruction, and image display in the practice of tomography. The emphasis is on reconstruction methods, especially the so-called series expansion reconstruction algorithms.

We illustrate the use of tomography (including three-dimensional displays based on reconstructions) both in electron microscopy and in x-ray computerized tomography (CT), but concentrate on the latter. This is followed by a classification and discussion of reconstruction algorithms. In particular, we discuss how to evaluate and compare the practical efficacy of such algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  1. Artzy E, Frieder G, Herman GT (1981) The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm. Comput Graph Image Process 15: 1–24

    Article  Google Scholar 

  2. Banhart J (2008) Advanced tomographic methods in materials research and engineering. Oxford University Press, Oxford

    Book  Google Scholar 

  3. Bracewell RN (1956) Strip integration in radio astronomy. Aust J Phys 9:198–217

    Article  MathSciNet  MATH  Google Scholar 

  4. Browne JA, De Pierro AR (1996) A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imaging 15:687–6996

    Article  Google Scholar 

  5. Censor Y, Zenios SA (1998) Parallel optimization: theory, algorithms and applications. Oxford University Press, New York

    Google Scholar 

  6. Censor Y, Altschuler MD, Powlis WD (1988) On the use of Cimmino’s simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning. Inverse Probl 4:607–623

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen LS, Herman GT, Reynolds RA, Udupa JK (1985) Surface shading in the cuberille environment (erratum appeared in 6(2):67–69, 1986). IEEE Comput Graph Appl 5(12):33–43

    Article  MATH  Google Scholar 

  8. Cormack AM (1963) Representation of a function by its line integrals, with some radiological applications. J Appl Phys 34:2722–2727

    Article  MATH  Google Scholar 

  9. Crawford CR, King KF (1990) Computed-tomography scanning with simultaneous patient motion. Med Phys 17:967–982

    Article  Google Scholar 

  10. Crowther RA, DeRosier DJ, Klug A (1970) The reconstruction of a threedimensional structure from projections and its application to electron microscopy. Proc R Soc Lon Ser-A A317: 319–340

    Article  Google Scholar 

  11. Davidi R, Herman GT, Klukowska J (2009) SNARK09: a programming system for the reconstruction of 2D images from 1D projections. http://www.snark09.com, 2009

  12. DeRosier DJ, Klug A (1968) Reconstruction of three-dimensional structures from electron micrographs. Nature 217:130–134

    Article  Google Scholar 

  13. Edholm P, Herman GT, Roberts DA (1988) Image reconstruction from linograms: implementation and evaluation. IEEE Trans Med Imaging 7: 239–246

    Article  Google Scholar 

  14. Edholm PR, Herman GT (1987) Linograms in image reconstruction from projections. IEEE Trans Med Imaging 6:301–307

    Article  Google Scholar 

  15. Eggermont PPB, Herman GT, Lent A (1981) Iterative algorithms for large partitioned linear systems, with applications to image reconstruction. Linear Algebra Appl 40:37–67

    Article  MathSciNet  MATH  Google Scholar 

  16. Epstein CS (2007) Introduction to the mathematics of medical imaging, 2nd edn. SIAM, Philadelphia

    Google Scholar 

  17. Frank J (2006a) Electron tomography: methods for three-dimensional visualization of structures in the cell, 2nd edn. Springer, New York

    Google Scholar 

  18. Frank J (2006b) Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state. Oxford University Press, New York

    Book  Google Scholar 

  19. Gordon R, Bender R, Herman GT (1970) Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Theor Biol 29:471–481

    Article  Google Scholar 

  20. Hanson KM (1990) Method of evaluating image-recovery algorithms based on task performance. J Opt Soc Am A 7:1294–1304

    Article  Google Scholar 

  21. Herman GT (1981) Advanced principles of reconstruction algorithms. In: Newton TH, Potts DG (eds) Radiology of skull and brain, vol 5: Technical aspects of computed tomography. C.V. Mosby, St. Louis, pp 3888–3903

    Google Scholar 

  22. Herman GT (2009) Fundamentals of computerized tomography: image reconstruction from projections, 2nd edn. Springer, London

    Google Scholar 

  23. Herman GT, Kuba A (2007) Advances in discrete tomography and its applications. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  24. Herman GT, Lent A (1976) Iterative reconstruction algorithms. Comput Biol Med 6:273–294

    Article  Google Scholar 

  25. Herman GT, Liu HK (1979) Three-dimensional display of human organs from computed tomograms. Comput Graph Image Process 9:1–21

    Article  Google Scholar 

  26. Herman GT, Meyer LB (1993) Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans Med Imaging 12:600–609

    Article  Google Scholar 

  27. Herman GT, Naparstek A (1977) Fast image reconstruction based on a Radon inversion formula appropriate for rapidly collected data. SIAM J Appl Math 33:511–533

    Article  MathSciNet  MATH  Google Scholar 

  28. Herman GT, Tuy HK, Langenberg KJ, Sabatier PC (1988) Basic methods of tomography and inverse problems. Institute of Physics Publishing, Bristol

    Google Scholar 

  29. Hounsfield GN (1973) Computerized transverse axial scanning tomography: Part I, description of the system. Br J Radiol 46:1016–1022

    Article  Google Scholar 

  30. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609

    Article  Google Scholar 

  31. Kalender WA (2006) Computed tomography: fundamentals, system technology, image quality, applications, 2nd edn. Wiley-VCH, Munich

    Google Scholar 

  32. Kalender WA, Seissler W, Klotz E, Vock P (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176:181–183

    Google Scholar 

  33. Katsevich A (2002) Theoretically exact filtered backprojection-type inversion algorithm for spiral CT. SIAM J Appl Math 62:2012–2026

    Article  MathSciNet  MATH  Google Scholar 

  34. Kinahan PE, Matej S, Karp JP, Herman GT, Lewitt RM (1995) A comparison of transform and iterative reconstruction techniques for a volume-imaging PET scanner with a large axial acceptance angle. IEEE Trans Nucl Sci 42:2181–2287

    Article  Google Scholar 

  35. Lauterbur PC (1979) Medical imaging by nuclear magnetic resonance zeugmatography. IEEE Trans Nucl Sci 26:2808–2811

    Article  Google Scholar 

  36. Levitan E, Herman GT (1987) A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography. IEEE Trans Med Imaging 6: 185–192

    Article  Google Scholar 

  37. Lewitt RM (1990) Multidimensional digital image representation using generalized Kaiser-Bessel window functions. J Opt Soc Am A 7:1834–1846

    Article  Google Scholar 

  38. Lewitt RM (92) Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys Med Biol 37:705–716

    Google Scholar 

  39. Lorensen W, Cline H (1987) Marching cubes: a high-resolution 3D surface reconstruction algorithm. Comput Graph 21(4):163–169

    Article  Google Scholar 

  40. Maki DD, Birnbaum BA, Chakraborty DP, Jacobs JE, Carvalho BM, Herman GT (1999) Renal cyst pseudo-enhancement: Beam hardening effects on CT numbers. Radiology 213:468–472

    Google Scholar 

  41. Marabini R, Rietzel E, Schroeder R, Herman GT, Carazo JM (1997) Threedimensional reconstruction from reduced sets of very noisy images acquired following a single-axis tilt schema: application of a new three-dimensional reconstruction algorithm and objective comparison with weighted backprojection. J Struct Biol 120:363–371

    Article  Google Scholar 

  42. Marabini R, Herman GT, Carazo J-M (1998) 3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs). Ultramicroscopy 72:53–65

    Article  Google Scholar 

  43. Matej S, Lewitt RM (1996) Practical consideration for 3D image-reconstruction using spherically-symmetrical volume elements. IEEE Trans Med Imaging 15:68–78

    Article  Google Scholar 

  44. Matej S, Herman GT, Narayan TK, Furuie SS, Lewitt RM, Kinahan PE (1994) Evaluation of task-oriented performance of several fully 3D PET reconstruction algorithms. Phys Med Biol 39:355–367

    Article  Google Scholar 

  45. Matej S, Furuie SS, Herman GT (1996) Relevance of statistically significant differences between reconstruction algorithms. IEEE Trans Image Process 5:554–556

    Article  Google Scholar 

  46. Narayan TK, Herman GT (1999) Prediction of human observer performance by numerical observers: an experimental study. J Opt Soc Am A 16:679–693

    Article  Google Scholar 

  47. Natterer F, Wübbeling F (2001) Mathematical methods in image reconstruction. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  48. Poulsen HF (2004) Three-dimensional x-ray diffraction microscopy: mapping polycrystals and their dynamics. Springer, Berlin

    Book  Google Scholar 

  49. Radon J (1917) Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber Verh Sächs Akad Wiss, Leipzig, Math Phys Kl 69:262–277

    Google Scholar 

  50. Ramachandran GN, Lakshminarayanan AV (1971) Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc Natl Acad Sci USA 68:2236–2240

    Article  MathSciNet  Google Scholar 

  51. Scheres SHW, Gao H, Valle M, Herman GT, Eggermont PPB, Frank J, Carazo J-M (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods 4:27–29

    Article  Google Scholar 

  52. Scheres SHW, Nuñez-Ramirez R, Sorzano COS, Carazo JM, Marabini R (2008) Image processing for electron microscopy single-particle analysis using XMIPP. Nat Protocols 3:977–990

    Article  Google Scholar 

  53. Shepp LA, Logan BF (1974) The Fourier reconstruction of a head section. IEEE Trans Nucl Sci 21:21–43

    Article  Google Scholar 

  54. Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1:113–122

    Article  Google Scholar 

  55. Sorzano COS, Marabini R, Boisset N, Rietzel E, Schröder R, Herman GT, Carazo JM (2001) The effect of overabundant projection directions on 3D reconstruction algorithms. J Struct Biol 133:108–118

    Article  Google Scholar 

  56. Udupa JK, Herman GT (1999) 3D imaging in medicine, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Herman, G.T. (2011). Tomography. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92920-0_16

Download citation

Publish with us

Policies and ethics