Skip to main content

Linear Inverse Problems

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Abstract

This introductory treatment of linear inverse problems is aimed at students and neophytes. An historical survey of inverse problems and some examples of model inverse problems related to imaging are discussed to furnish context and texture to the mathematical theory that follows. The development takes place within the sphere of the theory of compact linear operators on Hilbert space and the singular value decomposition plays an essential role. The primary concern is regularization theory: the construction of convergent well-posed approximations to ill-posed problems. For the most part, the discussion is limited to the familiar regularization method devised by Tikhonov and Phillips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambarzumian V (1936) On the derivation of the frequency function of space velocities of the stars from the observed radial velocities. Mon Not R Astron Soc Lond 96:172–179

    Google Scholar 

  2. Anderssen RS (2004) Inverse problems: a pragmatist’s approach to the recovery of information from indirect measurements. Aust NZ Ind Appl Math J 46:588–622

    MathSciNet  Google Scholar 

  3. Aster R, Borchers B, Thurber C (2005) Parameter estimation and inverse problems. Elsevier, Boston

    MATH  Google Scholar 

  4. Bennett A (2002) Inverse modeling of the ocean and atmosphere. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  5. Ben-Israel A (2002) The Moore of the Moore penrose inverse. Electron J Linear Algebr 9:150–157

    MathSciNet  MATH  Google Scholar 

  6. Bertero M, Boccacci P (1998) Introduction to inverse problems in imaging. IOP, London

    Book  MATH  Google Scholar 

  7. Bonilla L (ed) (2008) Inverse problems and imaging, LNM1943. Springer, Berlin

    Google Scholar 

  8. Carasso A, Sanderson J, Hyman J (1978) Digital removal of random media image degradations by solving the diffusion equation backwards in time. SIAM J Numer Anal 15:344–367

    Article  MathSciNet  MATH  Google Scholar 

  9. Chalmond B (2003) Modeling and inverse problems in image analysis. Springer, New York

    MATH  Google Scholar 

  10. Chan TF, Shen J (2005) Image processing and analysis. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  11. Chen Z, Xu Y, Yang H (2008) Fast collocation methods for solving ill-posed integral equations of the first kind, Inverse Probl 24:065007(21)

    Google Scholar 

  12. Cormack A (1963) Representation of a function by its line integrals, with some radiological applications I. J Appl Phys 34:2722–2727

    Article  MATH  Google Scholar 

  13. Cormack A (1964) Representation of a function by its line integrals, with some radiological applications II. J Appl Phys 35:2908–2912

    Article  MATH  Google Scholar 

  14. Cormack A. Computed tomography: some history and recent developments, in [64], pp 35–42

    Google Scholar 

  15. Courant R, Hilbert D (1962) Methods of mathematical physics, vol 2. Partial Differential Equations, Interscience, New York

    MATH  Google Scholar 

  16. Craig I, Brown J (1986) Inverse problems in astronomy. Adam Hilger, Bristol

    MATH  Google Scholar 

  17. Deans SR (1983) The radon transform and some of its applications. Wiley, New York

    MATH  Google Scholar 

  18. Deutsch F (2001) Best approximation in inner product spaces. Springer, New York

    MATH  Google Scholar 

  19. Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  20. Epstein CL (2003) Introduction to the mathematics of medical imaging. Pearson Education, Upper Saddle River

    MATH  Google Scholar 

  21. Galilei G (1610) Sidereus Nuncius (trans: Albert van Helden). University of Chicago Press, Chicago, 1989

    Google Scholar 

  22. Gates E (2009) Einstein’s telescope. W.W. Norton, New York

    Google Scholar 

  23. Gladwell GML (1986) Inverse problems in vibration. Martinus Nijhoff, Dordrecht

    MATH  Google Scholar 

  24. Glasko V (1984) Inverse problems of mathematical physics (trans: Bincer A (Russian)), American Institute of Physics, New York

    Google Scholar 

  25. Goldberg RR (1961) Fourier transforms. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  26. Groetsch CW (1983) Comments on Morozov’s discrepancy principle. In: Hämmerlin G, Hoffmann K-H (eds) Improperly posed problems and their numerical treatment. Birkhäuser, Basel, pp 97–104

    Google Scholar 

  27. Groetsch CW (1983) On the asymptotic order of convergence of Tikhonov regularization. J Optim Theory Appl 41:293–298

    Article  MathSciNet  MATH  Google Scholar 

  28. Groetsch CW (1984) The theory of Tikhonov regularization for Fredholm equations of the first kind. Pitman, Boston

    MATH  Google Scholar 

  29. Groetsch CW (1990) Convergence analysis of a regularized degenerate kernel method for Fredholm integral equations of the first kind. Integr Equ Oper Theory 13:67–75

    Article  MathSciNet  MATH  Google Scholar 

  30. Groetsch CW (1993) Inverse problems in the mathematical sciences. Vieweg, Braunschweig

    MATH  Google Scholar 

  31. Groetsch CW (2003) The delayed emergence of regularization theory. Bollettino di Storia delle Scienze Matematiche 23:105–120

    MathSciNet  MATH  Google Scholar 

  32. Groetsch CW (2004) Nascent function concepts in Nova Scientia. Int J Math Educ Sci Tech 35:867–875

    Article  MathSciNet  Google Scholar 

  33. Groetsch CW (2009) Extending Halley’s problem. Math Sci 34:4–10

    MathSciNet  MATH  Google Scholar 

  34. Groetsch CW, Neubauer A (1989) Regularization of ill-posed problems: optimal parameter choice in finite dimensions. J Approx Theory 58: 184–200

    Article  MathSciNet  MATH  Google Scholar 

  35. Groetsch CW (2007) Stable approximate evaluation of unbounded operators, LNM 1894. Springer, New York

    Google Scholar 

  36. Grosser M (1962) The discovery of neptune. Harvard University Press, Cambridge

    Google Scholar 

  37. Hadamard J (1902) Sur les problèmes aux dériveès partielles et leur signification physique, Princeton University Bulletin. Princeton University Bull No. 13:49–52

    MathSciNet  Google Scholar 

  38. Hadamard J (1923) Lectures on Cauchy’s problems in linear partial differential equations. Yale University Press, New Haven (Reprinted by Dover, New York, 1952.)

    Google Scholar 

  39. Halley E (1686) A discourse concerning gravity, and its properties, wherein the descent of heavy bodies, and the motion of projects is briey, but fully handled: together with the solution of a problem of great use in gunnery. Philos Trans R Soc Lond 16:3–21

    Article  Google Scholar 

  40. Hanke M (2000) Iterative regularization techniques in image reconstruction. In: Colton D et al (eds) Surveys on solution methods for inverse problems. Springer, Vienna, pp 35–52

    Chapter  Google Scholar 

  41. Hanke M, Groetsch CW (1998) Nonstationary iterated Tikhonov regularization. J Optim Theory Appl 98:37–53

    Article  MathSciNet  MATH  Google Scholar 

  42. Hanke M, Neubauer A, Scherzer O (1995) A convergence analysis of Landweber iteration for nonlinear ill-posed problems. Numer Math 72: 21–37

    Article  MathSciNet  MATH  Google Scholar 

  43. Hansen PC, Nagy J, O’Leary D (2006) Deblurring images: matrices, spectra, and filtering. SIAM, Philadelphia

    MATH  Google Scholar 

  44. Hansen PC (1997) Rank deficient and discrete ill-posed problems. SIAM, Philadelphia

    MATH  Google Scholar 

  45. Hensel E (1991) Inverse theory and applications for engineers. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  46. Hofmann B (1986) Regularization for applied inverse and ill-posed problems. Teubner, Leipzig

    MATH  Google Scholar 

  47. Joachimstahl F (1861) Über ein attractionsproblem. J für die reine und angewandte Mathematik 58:135–137

    Article  Google Scholar 

  48. Kaczmarz S (1937), Angenäherte Auflösung von Systemen linearer Gleichungen, Bulletin International de l’Academie Polonaise des Sciences, Cl. d. Sc. Mathém. A, pp 355–357

    Google Scholar 

  49. Kaltenbacher B, Neubauer A, Scherzer O (2008) Iterative regularization methods for nonlinear Ill-posed problems. Walter de Gruyter, Berlin

    Book  MATH  Google Scholar 

  50. Kirsch A (1993) An introduction to the mathematical theory of inverse problems. Springer, New York

    Google Scholar 

  51. Landweber L (1951) An iteration formula for Fredholm integral equations of the first kind. Am J Math 73:615–624

    Article  MathSciNet  MATH  Google Scholar 

  52. Lewitt RM, Matej S (2003) Overview of methods for image reconstruction from projections in emission computed tomography. Proc IEEE 91: 1588–1611

    Article  Google Scholar 

  53. Morozov VA (1966) On the solution of functional equations by the method of regularization. Sov Math Doklady 7:414–417

    MATH  Google Scholar 

  54. Nashed MZ (ed) (1976) Generalized inverses and applications. Academic, New York

    MATH  Google Scholar 

  55. Natterer F, Wübberling F (2001) Mathematical methods in image reconstruction. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  56. Newbury P, Spiteri R (2002) Inverting gravitational lenses. SIAM Rev 44:111–130

    Article  MathSciNet  MATH  Google Scholar 

  57. Parks PC, Kaczmarz S (1993) 1895–1939. Int J Control 57:1263–1267

    Article  MathSciNet  MATH  Google Scholar 

  58. Parker RL (1994) Geophysical inverse theory. Princeton University Press, Princeton

    MATH  Google Scholar 

  59. Phillips DL (1962) A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comput Mach 9:84–97

    Article  MathSciNet  MATH  Google Scholar 

  60. Picard E (1910) Sur un théorème général relatif aux équations intégrales de premiére espéce et sur quelques probl_emes de physique mathématique. Rendiconti del Cicolo Matematico di Palermo 29:79–97

    Article  MATH  Google Scholar 

  61. Radon J (1917) Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Königlich Sächsischen Gesellshaft der Wissenschaften zur Leipzig 69:262–277

    Google Scholar 

  62. Scherzer O, Grasmair M, Grossauer H, Haltmeier M, Lenzen F (2009) Variational methods in imaging. Springer, New York

    MATH  Google Scholar 

  63. Sheehan W, Kollerstrom N, Waff C (2004) The case of the pilfered planet: did the British steal Neptune? Scient Am, pp 90–99

    Google Scholar 

  64. Shepp LA (ed) (1983) Computed tomography, proceedings of symposia in applied mathematics, vol 27. American Mathematical Society, Providence

    Google Scholar 

  65. Stewart GW (1993) On the early history of the singular value decomposition. SIAM Rev 35:551–566

    Article  MathSciNet  MATH  Google Scholar 

  66. Tikhonov AN (1943) On the stability of inverse problems. Dokl Akad Nau SSSR 39:176–179

    MathSciNet  MATH  Google Scholar 

  67. Tihonov (Tikhonov) AN (1963) Solution of incorrectly formulated problems and the regularization method, Sov Math Doklady 4:1035-1038

    Google Scholar 

  68. Tikhonov AN, Arsenin VY (1977) Solutions of Ill-posed Problems. Winston & Sons, Washington

    MATH  Google Scholar 

  69. Uhlmann G (ed) (2003) Inside out: inverse problems and applications. Cambridge University Press, New York

    MATH  Google Scholar 

  70. Vogel CR (2002) Computational methods for inverse problems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  71. Wing GM (1992) A primer on integral equations of the first kind: the problem of deconvolution and unfolding. SIAM, Philadelphia

    Google Scholar 

  72. Wrenn FR, Good ML, Handler P (1951) The use of positron-emitting radioisotopes for the localization of brain tumors. Science 113:525–527

    Article  Google Scholar 

  73. Wunsch C (1996) The ocean circulation inverse problem, Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Groetsch, C. (2011). Linear Inverse Problems. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92920-0_1

Download citation

Publish with us

Policies and ethics