Skip to main content

Ecological Interactions of Bacteria in the Human Gut

  • Reference work entry

Abstract

The colon or large intestine is one of the most important organs of the human body (Macfarlane and Cummings, 1991). Moreover, its inhabitants, the colon microbiota, are the key elements of the human digestive ecosystem. The vast complexity of the human large-intestinal microbiota has inspired researchers to consider it as an organ itself, located inside the colon and acquired postnatally (Bäckhed et al., 2005; Zocco et al., 2007). From a physiologist’s point of view, this image of the colon microbiota is relevant: like an organ, it is composed of different cell lineages that communicate with both one another and the host; it consumes, stores, and redistributes energy; it mediates physiologically important chemical transformations; and it is able to maintain and repair itself through self-replication (Bäckhed et al., 2005). As a microbial organ, the human colon community does not only broaden the digestive abilities of the host (Gill et al., 2006), but also influences body processes far beyond digestion (Roberfroid, 2005b; Turnbaugh et al., 2007).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DP :

Degree of polymerization

SCFA :

Short-chain fatty acids

References

  • Alles MS, Hautvast JGA, Nagengast FM, Hartemink R, van Laere KMJ, et al. (1996) Fate of fructooligosaccharides in the human intestine. Br J Nutr 76:211–221

    Article  CAS  Google Scholar 

  • Aminov RI, Walker AW, Duncan SH, Harmsen HJM, Welling GW, et al. (2006) Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl Environ Microbiol 72:6371–6376

    Article  CAS  Google Scholar 

  • Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  CAS  Google Scholar 

  • Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, et al. (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661

    Article  CAS  Google Scholar 

  • Belenguer A, Duncan SH, Calder G, Holtrop G, Louis P, et al. (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599

    Article  CAS  Google Scholar 

  • Belenguer A, Duncan SH, Holtrop G, Anderson SE, Lobley GE, et al. (2007) Impact of pH on lactate formation and utilization by human faecal microbial communities. Appl Environ Microbiol 73:6526–6533

    Article  CAS  Google Scholar 

  • Ben-Amor K, Heilig H, Smidt H, Vaughan EE, Abee T, et al. (2005) Genetic diversity of viable, injured, and dead faecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Appl Environ Microbiol 71:4679–4689

    Article  CAS  Google Scholar 

  • Bernalier A, Lelait M, Rochet V, Grivet JP, Gibson GR, et al. (1996a) Acetogenesis from H 2 and CO2 by methane- and non-methane-producing human colonic bacterial communities. FEMS Microbiol Ecol 19:193–202

    Article  CAS  Google Scholar 

  • Bernalier A, Willems A, Leclerc M, Rochet V, Collins MD (1996b) Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human faeces. Arch Microbiol 166:176–183

    Article  CAS  Google Scholar 

  • Bjursell MK, Martens EC, Gordon JI (2006) Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 281:36269–36279

    Article  CAS  Google Scholar 

  • Blaut M, Collins MD, Welling GW, Doré J, van Loo J, et al. (2002) Molecular biological methods for studying the gut microbiota: the EU human gut flora project. Br J Nutr 87:S203–S211

    Article  CAS  Google Scholar 

  • Bosscher D, Van Loo J, Franck A (2006) Inulin and oligofructose as prebiotics in the prevention of intestinal infections and diseases. Nutr Res Rev 19:216–226

    Article  CAS  Google Scholar 

  • Bourriaud C, Robins RJ, Martin L, Kozlowski F, Tenailleau E, et al. (2005) Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J Appl Microbiol 99:201–212

    Article  CAS  Google Scholar 

  • Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, et al. (2003) Metagenomic analyses of an uncultured viral community from human faeces. J Bacteriol 185:6220–6223

    Article  CAS  Google Scholar 

  • Brouns F, Kettlitz B, Arrigoni E (2002) Resistant starch and “the butyrate revolution”. Trends Food Sci Technol 13:251–261

    Article  CAS  Google Scholar 

  • Campbell JM, Fahey GC, Wolf BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr 127:130–136

    CAS  Google Scholar 

  • Chassard C, Bernalier-Donadille A (2006) H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut. FEMS Microbiol Lett 254:116–122

    Article  CAS  Google Scholar 

  • Cho KH, Salyers AA (2001) Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 183:7224–7230

    Article  CAS  Google Scholar 

  • Comstock LE, Coyne MJ (2003) Bacteroides thetaiotaomicron: a dynamic, niche-adapted human symbiont. Bioessays 25:926–929

    Article  CAS  Google Scholar 

  • Croft DN, Levitan R (1970) DNA loss, cell loss and epithelial turnover in the intact human colon. Proc R Soc Med 63:15

    Google Scholar 

  • Cummings JH, Gibson GR, Macfarlane GT (1989) Quantitative estimates of fermentation in the hind gut of man. Acta Vet Scand 86:76–82

    CAS  Google Scholar 

  • Cummings JH, Pomare EW, Branch WJ, Naylor CPE, Macfarlane GT (1987) Short-chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  CAS  Google Scholar 

  • Curtis TP, Sloan WT (2004) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Opin Microbiol 7:221–226

    Article  Google Scholar 

  • Day RL, Laland KN, Odling-Smee J (2003) Rethinking adaptation - The niche-construction perspective. Perspect Biol Med 46:80–95

    Article  CAS  Google Scholar 

  • Dehority BA (1991) Effects of microbial synergism on fiber digestion in the rumen. Proc Nutr Soc 50:149–159

    Article  CAS  Google Scholar 

  • Delzenne NM, Daubioul C, Neyrinck A, Lasa M, Taper HS (2002) Inulin and oligofructose modulate lipid metabolism in animals: Review of biochemical events and future prospects. Br J Nutr 87:S255–S259

    Article  CAS  Google Scholar 

  • Deplancke B, Gaskins HR (2001) Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 73:1131S–1141S

    CAS  Google Scholar 

  • Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476

    Article  CAS  Google Scholar 

  • Dethlefsen L, Eckburg PB, Bik EM, Relman DA (2006) Assembly of the human intestinal microbiota. Trends Ecol Evol 21:517–523

    Article  Google Scholar 

  • Diez-Gonzalez F, Bond DR, Jennings E, Russell JB (1999) Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Arch Microbiol 171:324–330

    Article  CAS  Google Scholar 

  • Djouzi Z, Andrieux C (1997) Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br J Nutr 78:313–324

    Article  CAS  Google Scholar 

  • Doré J, Pochart P, Bernalier A, Goderel I, Morvan B, et al. (1995) Enumeration of H2-utilizing methanogenic archaea, acetogenic and sulfate-reducing bacteria from human faeces. FEMS Microbiol Ecol 17:279–284

    Article  Google Scholar 

  • Ducluzeau R (1989) Role of experimental ecology in gastroenterology. In: Bergogne-Berezin E (ed) Microbial ecology and intestinal infections. Spinger, Paris, pp. 1–5

    Google Scholar 

  • Duncan SH, Aminov RI, Scott KP, Louis P, Stanton TB, et al. (2006) Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov., and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol 56:2437–2441

    Article  CAS  Google Scholar 

  • Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ (2002a) Acetate utilization and butyryl-Coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 68:5186–5190

    Article  CAS  Google Scholar 

  • Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ (2002b) Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 52:1615–1620

    Article  CAS  Google Scholar 

  • Duncan SH, Scott KP, Ramsay AG, Harmsen HJM, Welling GW, et al. (2003) Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl Environ Microbiol 69:1136–1142

    Article  CAS  Google Scholar 

  • Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, et al. (2004a) Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 91:915–923

    Article  CAS  Google Scholar 

  • Duncan SH, Louis P, Flint HJ (2004b) Lactate-utilizing bacteria, isolated from human faeces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817

    Article  CAS  Google Scholar 

  • Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, et al. (2007a) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073–1078

    Article  CAS  Google Scholar 

  • Duncan SH, Louis P, Flint HJ (2007b) Cultivable bacterial diversity from the human colon. Lett Appl Microbiol 44:343–350

    Article  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, et al. (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  Google Scholar 

  • Evans FC (1956) Ecosystem as the basic unit in ecology. Science 123:1127–1128

    Article  CAS  Google Scholar 

  • Falony G, Calmeyn T, Leroy F, De Vuyst L (2009a) Coculture fermentations of Bifidobacterium species and Bacteroides thetaiotaomicron reveal a mechanistic insight into the prebiotic effect of inulin-type fructans. Appl Environ Microbiol doi: 10.1128/AEM 02649-08.

    Google Scholar 

  • Falony G, Lazidou K, Verschaeren A, Weckx S, Maes D, et al. (2009b) In vitro kinetic analysis of fermentation of prebiotic inulin-type fructans by Bifidobacterium species reveals four different phenotypes. Appl Environ Microbiol 75:454–461.

    Article  CAS  Google Scholar 

  • Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841

    Article  CAS  Google Scholar 

  • FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultation. http://wwwwhoint/foodsafety/publications/fs_management/en/probioticspdf

  • Flint HJ (2004) Polysaccharide breakdown by anaerobic microorganisms inhabiting the mammalian gut. Adv Appl Microbiol 56:89–120

    Article  CAS  Google Scholar 

  • Flint HJ (2006) The significance of prokaryote diversity in the human gastrointestinal tract. In: Logan NA, Lappin-Scott HM, Oyston PCF (eds) Prokaryotic diversity: mechanisms and significance. Cambridge University Press, Cambridge, United Kingdom, pp. 65–90

    Chapter  Google Scholar 

  • Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111

    Article  CAS  Google Scholar 

  • Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131

    Article  CAS  Google Scholar 

  • Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, et al. (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104:13780–13785

    Article  CAS  Google Scholar 

  • Gibson GR, Wang X (1994) Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiol Lett 118:121–127

    Article  CAS  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota – Introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  Google Scholar 

  • Gibson GR, Cummings JH, Macfarlane GT (1988) Competition for hydrogen between sulfate-reducing bacteria and methanogenic bacteria from the human large intestine. J Appl Bacteriol 65:241–247

    CAS  Google Scholar 

  • Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975–982

    Article  CAS  Google Scholar 

  • Gibson GR, Probert HM, Van Loo JAE, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr Res Rev 17:259–275

    Article  CAS  Google Scholar 

  • Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, et al. (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  Google Scholar 

  • Goh YJ, Zhang C, Benson AK, Schlegel V, Lee J-H, et al. (2006) Identification of a putative operon involved in fructooligosaccharide utilization by Lactobacillus paracasei. Appl Environ Microbiol 72:7518–7530

    Article  CAS  Google Scholar 

  • Guarner F (2005) Inulin and oligofructose: Impact on intestinal diseases and disorders. Br J Nutr 93:S61–S65

    Article  CAS  Google Scholar 

  • Hague A, Butt AJ, Paraskeva C (1996) The role of butyrate in human colonic epithelial cells: an energy source or inducer of differentiation and apoptosis? Proc Nutr Soc 55:937–943

    Article  CAS  Google Scholar 

  • Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, et al. (2008) The role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    Article  CAS  Google Scholar 

  • Handelsman J (2008) Metagenomics is not enough. DNA Cell Biol 27:219–221

    Article  CAS  Google Scholar 

  • Hartemink R, VanLaere KMJ, Rombouts FM (1997) Growth of enterobacteria on fructooligosaccharides. J Appl Microbiol 83:367–374

    Article  CAS  Google Scholar 

  • Hold GL, Pryde SE, Russell VJ, Furrie E, Flint HJ (2002) Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39:33–39

    Article  CAS  Google Scholar 

  • Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ (2003) Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human faeces. Appl Environ Microbiol 69:4320–4324

    Article  CAS  Google Scholar 

  • Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  CAS  Google Scholar 

  • Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 96:9833–9838

    Article  CAS  Google Scholar 

  • Hoskins LC (1993) Mucin degradation in the human gastrointestinal tract and its significance to enteric microbial ecology. Eur J Gastroenterol Hepatol 5:205–213

    Article  Google Scholar 

  • Huebner J, Wehling RL, Hutkins RW (2007) Functional activity of commercial prebiotics. Int Dairy J 17:770–775

    Article  CAS  Google Scholar 

  • Kaplan H, Hutkins RW (2000) Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl Environ Microbiol 66:2682–2684

    Article  CAS  Google Scholar 

  • Kaplan H, Hutkins RW (2003) Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195. Appl Environ Microbiol 69:2217–2222

    Article  CAS  Google Scholar 

  • Kleessen B, Blaut M (2005) Modulation of gut mucosal biofilms. Br J Nutr 93:S35–S40

    Article  CAS  Google Scholar 

  • Klijn A, Mercenier A, Arigoni F (2005) Lessons from the genomes of bifidobacteria. FEMS Microbiol Rev 29:491–509

    Article  CAS  Google Scholar 

  • Langlands SJ, Hopkins MJ, Coleman N, Cummings JH (2004) Prebiotic carbohydrates modify the mucosa-associated microflora of the human large bowel. Gut 53:1610–1616

    Article  CAS  Google Scholar 

  • Lazdunski AM, Ventre I, Sturgis JN (2004) Regulatory circuits and communication in gram-negative bacteria. Nat Rev Microbiol 2:581–592

    Article  CAS  Google Scholar 

  • Le Blay G, Michel C, Blottiere HM, Cherbut C (1999) Prolonged intake of fructooligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats. J Nutr 129:2231–2235

    CAS  Google Scholar 

  • Lederberg J (2000) Infectious history. Science 288:287–293

    Article  CAS  Google Scholar 

  • Lepage P, Seksik P, Sutren M, de la Cochetiere MF, Jian R, et al. (2005) Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis 11:473–480

    Article  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  Google Scholar 

  • Li M, Wang BH, Zhang MH, Rantalainen M, Wang SY, et al. (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105:2117–2122

    Article  CAS  Google Scholar 

  • Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, et al. (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106

    Article  CAS  Google Scholar 

  • Louis P, Scott KP, Duncan SH, Flint HJ (2007) Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102:1197–1208

    Article  CAS  Google Scholar 

  • Macfarlane S, Dillon JF (2007) Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 102:1187–1196

    Article  CAS  Google Scholar 

  • Macfarlane GT, Cummings JH (1991) The colonic flora, fermentation and large bowel digestive function. In: Phillips SF, Pemberton JH, Shorter RG (eds) The large intestine: physiology, pathophysiology and disease. Raven Press Ltd., New York, pp. 51–92

    Google Scholar 

  • Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62:67–72

    Article  CAS  Google Scholar 

  • Macfarlane S, Macfarlane GT (2004) Bacterial diversity in the human gut. Adv Appl Microbiol 54:261–289

    Article  CAS  Google Scholar 

  • Macfarlane S, Macfarlane GT (2006) Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl Environ Microbiol 72:6204–6211

    Article  CAS  Google Scholar 

  • Macfarlane GT, Gibson GR, Cummings JH (1992) Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72:57–64

    CAS  Google Scholar 

  • Macfarlane S, Hopkins MJ, Macfarlane GT (2000) Bacterial growth and metabolism on surfaces in the large intestine. Microb Ecol Health Dis 12:S64–S72

    Article  Google Scholar 

  • Macfarlane S, Furrie E, Cummings JH, Macfarlane GT (2004) Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin Infect Dis 38:1690–1699

    Article  Google Scholar 

  • Macfarlane S, Macfarlane GT, Cummings JH (2006) Prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24:701–714

    Article  CAS  Google Scholar 

  • Macy JM, Ljungdahl LG, Gottschalk G (1978) Pathway of succinate and propionate formation in Bacteroides fragilis. J Bacteriol 134:84–91

    CAS  Google Scholar 

  • Makras L, Avonts L, De Vuyst L (2004) Probiotics, prebiotics, and gut health. In: Remacle C, Reusens B (eds) Functional foods: ageing and degenerative disease. Woodhead Publishing, Cambridge, pp. 416–482

    Google Scholar 

  • Makras L, De Vuyst L (2006) The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int Dairy J 16:1049–1057

    Article  CAS  Google Scholar 

  • Makras L, Falony G, Van der Meulen R, De Vuyst L (2006) Letter to the Editor. J Appl Microbiol 100:1388–1389

    Article  CAS  Google Scholar 

  • Makras L, Van Acker G, De Vuyst L (2005) Lactobacillus paracasei subsp. paracasei 8700:2 degrades inulin-type fructans exhibiting different degrees of polymerization. Appl Environ Microbiol 71:6531–6537

    Article  CAS  Google Scholar 

  • Mariadason JM, Rickard KL, Barkla DH, Augenlicht LH, Gibson PR (2000) Divergent phenotypic patterns and commitment to apoptosis of Caco-2 cells during spontaneous and butyrate-induced differentiation. J Cell Physiol 183:347–354

    Article  CAS  Google Scholar 

  • McWilliam Leitch EC, Walker AW, Duncan SH, Holtrop G, Flint HJ (2007) Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol 9:667–679

    Article  CAS  Google Scholar 

  • Miller TL, Wolin MJ (1996) Pathways of acetate, propionate, and butyrate formation by the human faecal microbial flora. Appl Environ Microbiol 62:1589–1592

    CAS  Google Scholar 

  • Molis C, Flourie B, Ouarne F, Gailing MF, Lartigue S, et al. (1996) Digestion, excretion, and energy value of fructooligosaccharides in healthy humans. Am J Clin Nutr 64:324–328

    CAS  Google Scholar 

  • Morrison DJ, Mackay WG, Edwards CA, Preston T, Dodson B, et al. (2006) Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate? Br J Nutr 96:570–577

    CAS  Google Scholar 

  • Nyman M (2002) Fermentation and bulking capacity of indigestible carbohydrates: The case of inulin and oligofructose. Br J Nutr 87:S163–S168

    Article  CAS  Google Scholar 

  • Parche S, Amon J, Jankovic I, Rezzonico E, Beleut M, et al. (2007) Sugar transport systems of Bifidobacterium longum NCC2705. J Mol Microbiol Biotechnol 12:9–19

    Article  CAS  Google Scholar 

  • Pitcher MCL, Beatty ER, Cummings JH (2000) The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut 46:64–72

    Article  CAS  Google Scholar 

  • Pool-Zobel BL (2005) Inulin-type fructans and reduction in colon cancer risk: Review of experimental and human data. Br J Nutr 93:S73–S90

    Article  CAS  Google Scholar 

  • Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    Article  CAS  Google Scholar 

  • Ramsay AG, Scott KP, Martin JC, Rincon MT, Flint HJ (2006) Cell-associated α-amylases of butyrate-producing Firmicute bacteria from the human colon. Microbiology 152:3281–3290

    Article  CAS  Google Scholar 

  • Rastall RA, Gibson GR, Gill HS, Guarner F, Klaenhammer TR, et al. (2005) Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: An overview of enabling science and potential applications. FEMS Microbiol Ecol 52:145–152

    Article  CAS  Google Scholar 

  • Rincon MT, Cepeljnik T, Martin JC, Lamed R, Barak Y, et al. (2005) Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. J Bacteriol 187:7569–7578

    Article  CAS  Google Scholar 

  • Roberfroid MB (2005a) The digestive functions: inulin and oligofructose as dietary fiber. In: Roberfroid MB, Wolinsky I (eds) Inulin-type fructans: functional food ingredients. CRC Press, Boca Raton, pp. 103–131

    Google Scholar 

  • Roberfroid MB (2005b) The gastrointestinal system: A major target for functional foods. Roberfroid MB, Wolinsky I (eds). Inulin-type fructans: functional food ingredients. CRC Press, Boca Raton, pp. 17–36

    Google Scholar 

  • Roberfroid MB (2005c) Inulin-type fructans and the modulation of the intestinal microflora: the prebiotic effect. In: Roberfroid MB, Wolinsky I (eds) Inulin-type fructans: functional food ingredients. CRC Press, Boca Raton, pp. 151–181

    Google Scholar 

  • Roberfroid MB, Van Loo JAE, Gibson GR (1998) The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr 128:11–19

    CAS  Google Scholar 

  • Robert C, Bernalier-Donadille A (2003) The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol Ecol 46:81–89

    Article  CAS  Google Scholar 

  • Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, et al. (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: A comparative study of pure and fecal cultures. Appl Environ Microbiol 71:6150–6158

    Article  CAS  Google Scholar 

  • Rychlik JL, May T (2000) The effect of a methanogen, Methanobrevibacter smithii, on the growth rate, organic acid production, and specific ATP activity of three predominant ruminal cellulolytic bacteria. Curr Microbiol 40:176–180

    Article  CAS  Google Scholar 

  • Salazar N, Gueimonde M, Hernandez-Barranco AM, Ruas-Madiedo P de los Reyes-Gavilan CG (2008) Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl Environ Microbiol 74:4737–4745

    Article  CAS  Google Scholar 

  • Salmond GPC, Bycroft BW, Stewart G, Williams P (1995) The bacterial enigma – Cracking the code of cell-cell communication. Mol Microbiol 16:615–624

    Article  CAS  Google Scholar 

  • Salyers AA (1984) Bacteroides of the human lower intestinal tract. Annu Rev Microbiol 38:293–313

    Article  CAS  Google Scholar 

  • Sarr DA, Hibbs DE, Huston MA (2005) A hierarchical perspective of plant diversity. Q Rev Biol 80:187–212

    Article  Google Scholar 

  • Scanlan PD, Shanahan F, Marchesi JR (2008) Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol 8:79

    Article  CAS  Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, et al. (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99:14422–14427

    Article  CAS  Google Scholar 

  • Scheppach W, Weiler F (2004) The butyrate story: Old wine in new bottles? Curr Opin Clin Nutr Metab Care 7:563–567

    Article  Google Scholar 

  • Schwiertz A, Hold GL, Duncan SH, Gruhl B, Collins MD, et al. (2002) Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilizing, butyrate-producing bacterium from human faeces. Syst Appl Microbiol 25:46–51

    Article  CAS  Google Scholar 

  • Scupham AJ, Presley LL, Wei B, Bent E, Griffith N, et al. (2006) Abundant and diverse fungal microbiota in the murine intestine. Appl Environ Microbiol 72:793–801

    Article  CAS  Google Scholar 

  • Sonnenburg JL, Angenent LT, Gordon JI (2004) Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat Immunol 5:569–573

    Article  CAS  Google Scholar 

  • Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, et al. (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307:1955–1959

    Article  CAS  Google Scholar 

  • Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66:271–294

    Article  CAS  Google Scholar 

  • Tannock GW (1999) Analysis of the intestinal microflora: a renaissance. Antonie van Leeuwenhoek 76:265–278

    Article  CAS  Google Scholar 

  • Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16:284–307

    Article  Google Scholar 

  • Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci USA 101:10854–10861

    Article  CAS  Google Scholar 

  • Townsend CR, Begon M, Harper JL (2003) Essentials of ecology, 2nd edn. Blackwell Publishing, Oxford

    Google Scholar 

  • Trudgill S (2007) Tansley, A.G. 1935: the use and abuse of vegetational concepts and terms. Ecology 16, 284–307. Prog Phys Geogr 31:517–522

    Article  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, et al. (2007) The human microbiome project. Nature 449:804–810

    Article  CAS  Google Scholar 

  • Turroni F, Ribbera A, Foroni E, van Sinderen D, Ventura M (2008) Human gut microbiota and bifidobacteria: from composition to functionality. Antonie van Leeuwenhoek 94:35–50

    Article  Google Scholar 

  • Van der Meulen R, Adriany T, Verbrugghe K, De Vuyst L (2006a) Kinetic analysis of bifidobacterial metabolism reveals a minor role for succinic acid in the regeneration of NAD+ through its growth-associated production. Appl Environ Microbiol 72:5204–5210

    Article  CAS  Google Scholar 

  • Van der Meulen R, Avonts L, De Vuyst L (2004) Short fractions of oligofructose are preferentially metabolized by Bifidobacterium animalis DN-173 010. Appl Environ Microbiol 70:1923–1930

    Article  CAS  Google Scholar 

  • Van der Meulen, R Makras L, Verbrugghe K, Adriany T, De Vuyst L (2006b) In vitro kinetic analysis of oligofructose consumption by Bacteroides and Bifidobacterium spp. indicates different degradation mechanisms. Appl Environ Microbiol 72:1006–1012

    Article  CAS  Google Scholar 

  • Vernia P, Caprilli R, Latella G, Barbetti F, Magliocca FM, et al. (1988) Faecal lactate and ulcerative colitis. Gastroenterology 95:1564–1568

    CAS  Google Scholar 

  • Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700

    Article  CAS  Google Scholar 

  • Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74:4985–4996

    Article  CAS  Google Scholar 

  • Wang X, Gibson GR (1993) Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol 75:373–380

    CAS  Google Scholar 

  • Weaver CM (2005) Inulin, oligofructose and bone health: Experimental approaches and mechanisms. Br J Nutr 93:S99–S103

    Article  CAS  Google Scholar 

  • Weiner HL (2000) Oral tolerance, an active immunologic process mediated by multiple mechanisms. J Clin Invest 106:935–937

    Article  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  Google Scholar 

  • Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci USA 100:10452–10459

    Article  CAS  Google Scholar 

  • Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, et al. (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076

    Article  CAS  Google Scholar 

  • Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, et al. (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5:1574–1586

    CAS  Google Scholar 

  • Zocco MA, Ainora ME, Gasbarrini G, Gasbarrini A (2007) Bacteroides thetaiotaomicron in the gut: molecular aspects of their interaction. Dig Liver Dis 39:707–712

    Article  CAS  Google Scholar 

  • Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans ADL, et al. (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from faeces. Appl Environ Microbiol 68:3401–3407

    Article  CAS  Google Scholar 

  • Zoetendal EG, Vaughan EE, de Vos WM (2006) A microbial worlsd within us. Mol Microbiol 59:1639–1650

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Falony, G., De Vuyst, L. (2009). Ecological Interactions of Bacteria in the Human Gut. In: Charalampopoulos, D., Rastall, R.A. (eds) Prebiotics and Probiotics Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79058-9_16

Download citation

Publish with us

Policies and ethics