Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

A better understanding of many issues of human health, disease, injury, and the treatment thereof necessitates a detailed quantification of how biological cells, tissues, and organs respond to applied loads. Thus, experimental mechanics can, and must, play a fundamental role in cell biology, physiology, pathophysiology, and clinical intervention. The goal of this chapter is to discuss some of the foundations of experimental biomechanics, with particular attention to quantifying the finite-strain behavior of biological soft tissues in terms of nonlinear constitutive relations. Towards this end, we review illustrative elastic, viscoelastic, and poroelastic descriptors of soft-tissue behavior and the experiments on which they are based. In addition, we review a new class of much needed constitutive relations that will help quantify the growth and remodeling processes within tissues that are fundamental to long-term adaptations and responses to disease, injury, and clinical intervention. We will see that much has been learned, yet much remains to be discovered about the wonderfully complex biomechanical behavior of soft tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CSK:

cytoskeleton

ECM:

extracellular matrix

FAC:

focal adhesion complex

GF:

growth factor

LASIK:

laser-based corneal reshaping

References

  1. J.F. Bell: Experimental foundations of solid mechanics,. In: Mechanics of Solids, Vol. I, ed. by C. Truesdell (Springer, New York 1973)

    Google Scholar 

  2. C. Truesdell, W. Noll: The nonlinear field theories of mechanics. In: Handbuch der Physik, ed. by S. Flügge (Springer, Berlin, Heidelberg 1965)

    Google Scholar 

  3. R.P. Vito: The mechanical properties of soft tissues: I. A mechanical system for biaxial testing, J. Biomech. 13, 947–950 (1980)

    Article  Google Scholar 

  4. J.C. Nash: Compact Numerical Methods for Computers (Wiley, New York 1979)

    Google Scholar 

  5. J.T. Oden: Finite Elements of Nonlinear Continua (McGraw-Hill, New York 1972)

    MATH  Google Scholar 

  6. K.T. Kavanaugh, R.W. Clough: Finite element application in the characterization of elastic solids, Int. J. Solid Struct. 7, 11–23 (1971)

    Article  Google Scholar 

  7. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology of the Cell (Garland, New York 2002)

    Google Scholar 

  8. D.Y.M. Leung, S. Glagov, M.B. Matthews: Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro, Science 191, 475–477 (1976)

    Article  Google Scholar 

  9. S. Glagov, C.-H. Tsʼao: Restitution of aortic wall after sustained necrotizing transmural ligation injury, Am. J. Pathol. 79, 7–23 (1975)

    Google Scholar 

  10. L.E. Rosen, T.H. Hollis, M.G. Sharma: Alterations in bovine endothelial histidine decarboxylase activity following exposure to shearing stresses, Exp. Mol. Pathol. 20, 329–343 (1974)

    Article  Google Scholar 

  11. R.S. Rivlin, D.W. Saunders: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber, Philos. Trans. R. Soc. London A 243, 251–288 (1951)

    Article  Google Scholar 

  12. Y.C. Fung: Biomechanics (Springer, New York 1990)

    MATH  Google Scholar 

  13. M.F. Beatty: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues with examples, Appl. Mech. Rev. 40, 1699–1734 (1987)

    Article  Google Scholar 

  14. L.R.G. Treloar: The Physics of Rubber Elasticity, 3rd edn. (Oxford Univ Press, Oxford 1975)

    Google Scholar 

  15. A.E. Green, J.E. Adkins: Large Elastic Deformations (Oxford Univ. Press, Oxford 1970)

    MATH  Google Scholar 

  16. R.W. Ogden: Non-Linear Elastic Deformations (Wiley, New York 1984)

    Google Scholar 

  17. H.W. Haslach, J.D. Humphrey: Dynamics of biological soft tissue or rubber: Internally pressurized spherical membranes surrounded by a fluid, Int. J. Nonlinear Mech. 39, 399–420 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. G.A. Holzapfel, T.C. Gasser, R.W. Ogden: A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast. 61, 1–48 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. J.D. Humphrey: Cardiovascular Solid Mechanics (Springer, New York 2002)

    Google Scholar 

  20. J.R. Walton, J.P. Wilber: Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Nonlinear Mech. 38, 441–455 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. A.J.M. Spencer: Deformations of Fibre-Reinforced Materials (Clarendon, Oxford 1972)

    MATH  Google Scholar 

  22. J.D. Humphrey, R.K. Strumpf, F.C.P. Yin: Determination of a constitutive relation for passive myocardium: I. A new functional form, ASME J. Biomech. Eng. 112, 333–339 (1990)

    Article  Google Scholar 

  23. M.S. Sacks, C.J. Chuong: Biaxial mechanical properties of passive right ventricular free wall myocardium, J. Biomech. Eng. 115, 202–205 (1993)

    Article  Google Scholar 

  24. J.C. Criscione, J.D. Humphrey, A.S. Douglas, W.C. Hunter: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity, J. Mech. Phys. Solids 48, 2445–2465 (2000)

    Article  MATH  Google Scholar 

  25. J.C. Criscione, A.S. Douglas, W.C. Hunter: Physically based strain invariant set for materials exhibiting transversely isotropic behavior, J. Mech. Phys. Solids 49, 871–897 (2001)

    Article  MATH  Google Scholar 

  26. Y. Lanir: Constitutive equations for fibrous connective tissues, J. Biomech. 16, 1–12 (1983)

    Article  Google Scholar 

  27. J.E. Bischoff, E.M. Arruda, K. Grosh: A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissues, Biomech. Model. Mechanobiol. 3, 56–65 (2004)

    Article  Google Scholar 

  28. W. Maurel, Y. Wu, N. Magnenat, D. Thalmann: Biomechanical Models for Soft Tissue Simulation (Springer, Berlin 1998)

    Google Scholar 

  29. G.A. Johnson, G.A. Livesay, S.L.Y. Woo, K.R. Rajagopal: A single integral finite strain viscoelastic model of ligaments and tendons, ASME J. Biomech. Eng. 118, 221–226 (1996)

    Article  Google Scholar 

  30. S. Baek, P.B. Wells, K.R. Rajagopal, J.D. Humphrey: Heat-induced changes in the finite strain viscoelastic behavior of a collagenous tissue, J. Biomech. Eng. 127, 580–586 (2005)

    Article  Google Scholar 

  31. M.F. Beatty, Z. Zhou: Universal motions for a class of viscoelastic materials of differential type, Continuum Mech. Thermodyn. 3, 169–191 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. G. David, J.D. Humphrey: Further evidence for the dynamic stability of intracranial saccular aneurysms, J. Biomech. 36, 1143–1150 (2003)

    Article  Google Scholar 

  33. P.P. Provenzano, R.S. Lakes, D.T. Corr, R. Vanderby Jr: Application of nonlinear viscoelastic models to describe ligament behavior, Biomech. Model. Mechanobiol. 1, 45–57 (2002)

    Article  Google Scholar 

  34. H.W. Haslach: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissues, Biomech. Model. Mechanobiol. 3, 172–189 (2005)

    Article  Google Scholar 

  35. V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong: Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments, ASME J. Biomech. Eng. 102, 73–84 (1980)

    Article  Google Scholar 

  36. W.M. Lai, V.C. Mow, W. Zhu: Constitutive modeling of articular cartilage and biomacromolecular solutions, J. Biomech. Eng. 115, 474–480 (1993)

    Article  Google Scholar 

  37. V.C. Mow, G.A. Ateshian, R.L. Spilker: Biomechanics of diarthroidal joints: A review of twenty years of progress, J. Biomech. Eng. 115, 460–473 (1993)

    Article  Google Scholar 

  38. J.M. Huyghe, G.B. Houben, M.R. Drost, C.C. van Donkelaar: An ionised/non-ionised dual porosity model of intervertebral disc tissue experimental quantification of parameters, Biomech. Model. Mechanobiol. 2, 3–20 (2003)

    Article  Google Scholar 

  39. R.L. Spilker, J.K. Suh, M.E. Vermilyea, T.A. Maxian: Alternate Hybrid, Mixed, and Penalty Finite Element Formulations for the Biphasic Model of Soft Hydrated Tissues,. In: Biomechanics of Diarthrodial Joints, ed. by V.C. Mow, A. Ratcliffe, S.L.Y. Woo (Springer, New York 1990) pp. 401–436

    Google Scholar 

  40. B.R. Simon, M.V. Kaufman, M.A. McAfee, A.L. Baldwin: Finite element models for arterial wall mechanics, J. Biomech. Eng. 115, 489–496 (1993)

    Article  Google Scholar 

  41. R.A. Reynolds, J.D. Humphrey: Steady diffusion within a finitely extended mixture slab, Math. Mech. Solids 3, 147–167 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. G.I. Zahalak, B. de Laborderie, J.M. Guccione: The effects of cross-fiber deformation on axial fiber stress in myocardium, J. Biomech. Eng. 121, 376–385 (1999)

    Article  Google Scholar 

  43. A. Rachev, K. Hayashi: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries, Ann. Biomed. Eng. 27, 459–468 (1999)

    Article  Google Scholar 

  44. P.J. Hunter, A.D. McCulloch, H.E.D.J. ter Keurs: Modelling the mechanical properties of cardiac muscle, Prog. Biophys. Mol. Biol. 69, 289–331 (1998)

    Article  Google Scholar 

  45. P.J. Hunter, P. Kohl, D. Noble: Integrative models of the heart: Achievements and limitations, Philos. Trans. R. Soc. London A359, 1049–1054 (2001)

    Article  Google Scholar 

  46. J.D. Humphrey: Continuum thermomechanics and the clinical treatment of disease and injury, Appl. Mech. Rev. 56, 231–260 (2003)

    Article  Google Scholar 

  47. K.R. Diller, T.P. Ryan: Heat transfer in living systems: Current opportunities, J. Heat. Transf. 120, 810–829 (1998)

    Article  Google Scholar 

  48. S.C. Cowin: Bone stress adaptation models, J. Biomech. Eng. 115, 528–533 (1993)

    Article  Google Scholar 

  49. D.R. Carter, G.S. Beaupré: Skeletal Function and Form (Cambridge Univ. Press, Cambridge 2001)

    Google Scholar 

  50. C.D. Murray: The physiological principle of minimum work: I. The vascular system and the cost of blood volume, Proc. Natl. Acad. Sci. 12, 207–214 (1926)

    Article  Google Scholar 

  51. A.M. Turing: The chemical basis of morphogenesis, Proc. R. Soc. London B 237, 37–72 (1952)

    Google Scholar 

  52. R.T. Tranquillo, J.D. Murray: Continuum model of fibroblast-driven wound contraction: Inflammation-mediation, J. Theor. Biol. 158, 135–172 (1992)

    Article  Google Scholar 

  53. V.H. Barocas, R.T. Tranquillo: An anisotropic biphasic theory of tissue equivalent mechanics: The interplay among cell traction, fibrillar network, fibril alignment, and cell contact guidance, J. Biomech. Eng. 119, 137–145 (1997)

    Article  Google Scholar 

  54. L. Olsen, P.K. Maini, J.A. Sherratt, J. Dallon: Mathematical modelling of anisotropy in fibrous connective tissue, Math. Biosci. 158, 145–170 (1999)

    Article  MATH  Google Scholar 

  55. N. Bellomo, L. Preziosi: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comput. Model. 32, 413–452 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  56. A.F. Jones, H.M. Byrne, J.S. Gibson, J.W. Dodd: A mathematical model of the stress induced during avascular tumour growth, J. Math. Biol. 40, 473–499 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  57. L.A. Taber: Biomechanics of growth, remodeling, and morphogenesis, Appl. Mech. Rev. 48, 487–545 (1995)

    Article  Google Scholar 

  58. R. Skalak: Growth as a finite displacement field, Proc. IUTAM Symposium on Finite Elasticity, ed. by D.E. Carlson, R.T. Shield (Martinus Nijhoff, The Hague 1981) pp. 347–355

    Google Scholar 

  59. A. Tozeren, R. Skalak: Interaction of stress and growth in a fibrous tissue, J. Theor. Biol. 130, 337–350 (1988)

    Article  Google Scholar 

  60. E.K. Rodriguez, A. Hoger, A.D. McCulloch: Stress-dependent finite growth in soft elastic tissues, J. Biomech. 27, 455–467 (1994)

    Article  Google Scholar 

  61. V.A. Lubarda, A. Hoger: On the mechanics of solids with a growing mass, Int. J. Solid Struct. 39, 4627–4664 (2002)

    Article  MATH  Google Scholar 

  62. L.A. Taber: A model for aortic growth based on fluid shear and fiber stresses, ASME J. Biomech. Eng. 120, 348–354 (1998)

    Article  Google Scholar 

  63. A. Rachev, N. Stergiopulos, J.-J. Meister: A model for geometric and mechanical adaptation of arteries to sustained hypertension, ASME J. Biomech. Eng. 120, 9–17 (1998)

    Article  Google Scholar 

  64. S.M. Klisch, T.J. van Dyke, A. Hoger: A theory of volumetric growth for compressible elastic biological materials, Math. Mech. Solid 6, 551–575 (2001)

    Article  MATH  Google Scholar 

  65. J.D. Humphrey, K.R. Rajagopal: A constrained mixture model for growth and remodeling of soft tissues, Math. Model. Meth. Appl. Sci. 12, 407–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  66. S. Baek, K.R. Rajagopal, J.D. Humphrey: A theoretical model of enlarging intracranial fusiform aneurysms, J. Biomech. Eng. 128, 142–149 (2006)

    Article  Google Scholar 

  67. R.A. Boerboom, N.J.B. Driessen, C.V.C. Bouten, J.M. Huyghe, F.P.T. Baaijens: Finite element model of mechanically induced collagen fiber synthesis and degradation in the aortic valve, Ann. Biomed. Eng. 31, 1040–1053 (2003)

    Article  Google Scholar 

  68. A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, F. Bussolino: Percolation morphogenesis and Burgers dynamics in blood vessels formation, Phys. Rev. Lett. 90, 118101 (2003)

    Google Scholar 

  69. D. Ambrosi, F. Mollica: The role of stress in the growth of a multicell spheroid, J. Math. Biol. 48, 477–488 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  70. A. Menzel: Modeling of anisotropic growth in biological tissues: A new approach and computational aspects, Biomech. Model. Mechanobiol. 3, 147–171 (2005)

    Article  Google Scholar 

  71. E. Kuhl, R. Haas, G. Himpel, A. Menzel: Computational modeling of arterial wall growth, Biomech. Model. Mechanobiol. 6, 321–332 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay D. Humphrey Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Humphrey, J.D. (2008). Biological Soft Tissues. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_7

Download citation

Publish with us

Policies and ethics