Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Analyses involving real structures and components are, by their very nature, only partially specified. The central role of modern experimental analysis is to help complete, through measurement and testing, the construction of an analytical model for the given problem. This chapter recapitulates recent developments in hybrid methods for achieving this and demonstrates through examples the progress being made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DCB:

double-cantilever beam

FEM:

finite element modeling

PCB:

printed circuit board

SDF:

structure data files

SPATE:

stress pattern analysis by thermal emissions

SRM:

sensitivity response method

VCCT:

virtual crack closure technique

References

  1. A.S. Kobayashi: Hybrid experimental-numerical stress analysis. In: Handbook on Experimental Mechanics, ed. by A.S. Kobayashi (VCH, Weinheim 1993) pp. 751–783

    Google Scholar 

  2. A.S. Kobayashi: Hybrid experimental-numerical stress analysis, Exp. Mech. 23, 338–347 (1983)

    Article  Google Scholar 

  3. T.H. Baek, R.E. Rowlands: Hybrid stress analysis of perforated composites using strain gages, Exp. Mech. 41(2), 195–203 (2001)

    Article  Google Scholar 

  4. B.J. Rauch, R.E. Rowlands: Stress separation of thermoelastically measured isopachics, Exp. Mech. 41(4), 358–367 (2001)

    Article  Google Scholar 

  5. J. Rhee, R.E. Rowlands: Moiré-numerical hybrid analysis of cracks in orthotropic media, Exp. Mech. 42(3), 311–317 (2002)

    Article  Google Scholar 

  6. J.F. Doyle: Modern Experimental Stress Analysis: Completing the Solution of Partially Specified Problems (Wiley, Chichester 2004)

    Book  Google Scholar 

  7. A. Neumaier: Solving ill-conditioned and singular linear systems: a tutorial on regularization, SIAM J. Appl. Math. 40(3), 636–666 (1998)

    MATH  MathSciNet  Google Scholar 

  8. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling: Numerical Recipes, 2nd edn. (Cambridge Univ. Press, Cambridge 1992)

    Google Scholar 

  9. A.N. Tikhonov, V.Y. Arsenin: Solutions of Ill-Posed Problems (Wiley, New York 1977)

    MATH  Google Scholar 

  10. S. Twomey: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, Amsterdam 1977)

    Google Scholar 

  11. J.F. Doyle: Static and Dynamic Analysis of Structures (Kluwer, Dordredt 1991)

    Google Scholar 

  12. J.F. Doyle: Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability (Springer, New York 2001)

    MATH  Google Scholar 

  13. D.L. Phillips: A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach. 9(1), 84–97 (1962)

    MATH  MathSciNet  Google Scholar 

  14. S. Twomey: On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadratures, J. Assoc. Comput. Mach. 10, 97–101 (1963)

    MATH  Google Scholar 

  15. O.M. Alifanov: Methods of solving ill-posed inverse problems, J. Eng. Phys. 45(5), 1237–1245 (1983)

    Article  MathSciNet  Google Scholar 

  16. Y. Martinez, A. Dinth: A generalization of Tikhonovʼs regularizations of zero and first order, Comput. Math. Appl. 12B(5/6), 1203–1208 (1986)

    Article  Google Scholar 

  17. A.J. Quintana: A Global Search Method for Damage Detection in General Structures. M.Sc. Thesis (Purdue University, West Lafayette 2004)

    Google Scholar 

  18. M. Kleiber: Parameter Sensitivity in Nonlinear Mechanics (Wiley, Chichester 1997)

    Google Scholar 

  19. S.-W. Choi: Impact Damage of Layered Material Systems. Ph.D. Thesis (Purdue University, West Lafayette 2002)

    Google Scholar 

  20. S.-M. Cho: A Sub-Domain Inverse Method for Dynamic Crack Propagation Problems. M.Sc. Thesis (Purdue University, West Lafayette 2000)

    Google Scholar 

  21. S.-M. Cho: Algorithms for Identification of the Nonlinear Behavior of Structures. Ph.D. Thesis (Purdue University, West Lafayette 2004)

    Google Scholar 

  22. J.F. Doyle: A wavelet deconvolution method for impact force identification, Exp. Mech. 37, 404–408 (1997)

    Article  Google Scholar 

  23. D.J. Ewins: Modal Testing: Theory and Practice (Wiley, New York 1984)

    Google Scholar 

  24. R.A. Adams, J.F. Doyle: Multiple force identification for complex structures, Exp. Mech. 42(1), 25–36 (2002)

    Article  Google Scholar 

  25. R.A. Adams: Force Identification in Complex Structures. M.Sc. Thesis (Purdue University, West Lafayette 1999)

    Google Scholar 

  26. J.W. Dally, W.F. Riley: Experimental Stress Analysis, 3rd edn. (McGraw-Hill, New York 1991)

    Google Scholar 

  27. T. Liu, M. Guille, J.P. Sullivan: Accuracy of pressure sensitive paint, AIAA J. 39(1), 103–112 (2001)

    Article  Google Scholar 

  28. H. Sakaue, J.P. Sullivan: Time response of anodized aluminum pressure sensitive paint, AIAA J. 39(10), 1944–1949 (2001)

    Article  Google Scholar 

  29. J.W. Dally, R.J. Sanford: Multiple ruby laser system for high speed photography, Opt. Eng. 21, 704–708 (1982)

    Google Scholar 

  30. U.-T. Kang: Inverse Method for Static Problems Using Optical Data. Ph.D. Thesis (Purdue University, West Lafayette 2002)

    Google Scholar 

  31. J.F. Doyle, S. Kamle, J. Takezaki: Error analysis of photoelasticity in fracture mechanics, Exp. Mech. 17, 429–435 (1981)

    Article  Google Scholar 

  32. E.F. Rybicki, M.F. Kanninen: A finite element calculation of stress intensity factors by a modified crack-closure integral, Eng. Fract. Mech. 9, 931–938 (1977)

    Article  Google Scholar 

  33. A.L. Chang, A.M. Rajendran: Novel in-situ ballistic measurements for validation of ceramic constitutive models, 14th US Army Symp. Solid Mech., ed. by K.R. Iyer, S.-C. Chou (Batelle, Columbus 1996) pp. 99–110

    Google Scholar 

  34. H.D. Espinosa, Y. Xu, H.-C. Lu: A novel technique for penetrator velocity measurements and damage identification in ballistic penetration experiments. In: 14th US Army Symposium on Solid Mechanics, ed. by K.R. Iyer, S.-C. Chou (Batelle, Columbus 1996) pp. 111–120

    Google Scholar 

  35. H.A. Bruck, D. Casem, R.L. Williamson, J.S. Epstein: Characterization of short duration stress pulses generated by impacting laminated carbon-fiber/epoxy composites with magnetic flyer plates, Exp. Mech. 42(3), 279–287 (2002)

    Article  Google Scholar 

  36. J. Degrieck, P. Verleysen: Determination of impact parameters by optical measurement of the impactor displacement, Exp. Mech. 42(3), 298–302 (2002)

    Article  Google Scholar 

  37. S.A. Rizzi: A Spectral Analysis Approach to Wave Propagation in Layered Solids. Ph.D. Thesis (Purdue University, West Lafayette 1989)

    Google Scholar 

  38. J.W. Dally: Dynamic photoelastic studies of dynamic fracture, Exp. Mech. 19, 349–361 (1979)

    Article  Google Scholar 

  39. H.K. Aben: Integrated Photoelasticity (McGraw-Hill, New York 1980)

    Google Scholar 

  40. J.F. Doyle, H.T. Danyluk: Integrated photoelasticity for axisymmetric problems, Exp. Mech. 18(6), 215–220 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Doyle Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Doyle, J.F. (2008). Hybrid Methods. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_10

Download citation

Publish with us

Policies and ethics