Skip to main content

Audio and Electroacoustics

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter surveys devices and systems associated with audio and electroacoustics: the acquisition, transmission, storage, and reproduction of audio. The chapter provides an historical overview of the field since before the days of Edison and Bell to the present day, and analyzes performance of audio transducers, components and systems from basic psychoacoustic principles, to arrive at an assessment of the perceptual performance of such elements and an indication of possible directions for future progress.

The first, introductory section is an overall historical review of audio reproduction and spatial audio to establish the context of events. The next section surveys relevant psychoacoustic principles, including performance related to frequency response, amplitude, timing, and spatial acuity. Section 3 examines common audio specifications, with reference to the psychoacoustic limitations discussed in Sect. 2. The specifications include frequency and phase response, distortion, noise, dynamic range and speed accuracy. Section 4 examines some of the common audio components in light of the psychoacoustics and specifications established in the preceding sections. The components in question include microphones, loudspeakers, record players, amplifiers, magnetic recorders, radio, and optical media. Section 5 is concerned with digital audio, including the basics of sampling, digital signal processing, and audio coding. Section 6 is devoted to an examination of complete audio systems and their ability to reproduce an arbitrary acoustic environment. The specific systems include monaural, stereo, binaural, Ambisonics, and 5.1-channel surround sound. The final section provides an overall appraisal of the current state of audio and electroacoustics, and speculates on possible future directions for research and development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AC:

articulation class

ADC:

analog-to-digital converter

AM:

amplitude modulated

DAC:

digital-to-analog converter

DSP:

digital signal processing

DSP:

digital speckle photography

FCC:

Federal Communications Commission

FFT:

fast Fourier transform

FM:

frequency modulated

IAD:

interaural amplitude difference

IF:

intermediate frequency

IM:

intermodulation

ITD:

interaural time difference

JND:

just noticeable difference

MEMS:

microelectromechanical system

MTS:

multichannel television sound

PCM:

pulse code modulation

PSD:

power spectral density

RF:

radio frequency

RIAA:

Recording Industry Association of America

RMS:

root-mean-square

SAC:

spatial audio coding

SNR:

signal-to-noise ratio

SPL:

sound pressure level

SR:

spontaneous discharge rate

TDAC:

time-domain alias cancellation

THD:

total harmonic distortion

VBR:

variable bitrate

References

  1. N. Aujoulat: The Cave of Lascaux (Ministry of Culture and Communication, Paris August 2005), http://www.culture.gouv.fr/culture/arcnat/lascaux/en/

    Google Scholar 

  2. J. Sterne: The Audible Past (Duke Univ. Press, Durham 2003)

    Google Scholar 

  3. Thomas Edison (Wikipedia Aug. 2005) http://en.wikipedia.org/wiki/Thomas_Edison

    Google Scholar 

  4. J.H. Lienhard: The Telegraph, Engines of Our Ingenuity (Univ. Houston, Houston 2004), http://www.uh.edu/engines/epi15.htm

    Google Scholar 

  5. P. Ament: The Electric Battery (The Great Idea Finder, Mar. 2005) http://www.ideafinder.com/history/inventions/story066.htm

    Google Scholar 

  6. Phonograph (Wikipedia, Aug. 2005) http://en.wikipedia.org/wiki/Phonograph#History

    Google Scholar 

  7. D. Marty: The History of the Phonautograph (Jan. 2004) http://www.phonautograph.com/

    Google Scholar 

  8. Emile Berliner and the Birth of the Recording Industry, Library of Congress, Motion Picture, Broadcasting and Recorded Sound Division (April, 2002) http://memory.loc.gov/ammem/berlhtml/berlhome.html

    Google Scholar 

  9. J. Bruck, A. Grundy, I. Joel: An Audio Timeline (Audio Engineering Society, New York 1997), http://www.aes.org/aeshc/docs/audio.history.timeline.html

    Google Scholar 

  10. M.F. Davis: History of spatial coding  J. Audio Eng. Soc. 51(6), 554–569 (2003)

    Google Scholar 

  11. NIH: Hearing Loss and Older Adults, NIH Publication No. 01-4913, National Institute on Deafness and Other Communications Disorders (National Inst. Health, Bethesda 2002), http://www.nidcd.nih.gov/health/hearing/older.asp

    Google Scholar 

  12. T. Weber: Equal Loudness (WeberVST, Kokomo 2005), http://www.webervst.com/fm.htm

    Google Scholar 

  13. E. Terhardt: Pitch Perception (Technical Univ. Munich, Munich 2000), http://www.mmk.e-technik.tu-muenchen.de/persons/ter/top/pitch.h

    Google Scholar 

  14. B. Truax: Sound pressure level [SPL], Handbook for Acoustic Ecology, Simon Fraser University, Vancouver (Cambridge Street Publ., Burnaby 1999), http://www2.sfu.ca/sonic-studio/handbook/Sound_Pressure_Level.html

    Google Scholar 

  15. B. Truax: Phon, Handbook for Acoustic Ecology, Simon Fraser University, Vancouver (Cambridge Street Publ., Burnaby 1999), http://www2.sfu.ca/sonic-studio/handbook/Phon.html

    Google Scholar 

  16. B.G. Crockett, A. Seefeldt, M. Smithers: A new loudness measurement algorithm, AES 117th Convention Preprint 6236 (Audio Engineering Society, New York 2004)

    Google Scholar 

  17. L.H. Carney: Studies of Information Coding in the Auditory Nerve (Syracuse Univ., Syracuse 2005)

    Google Scholar 

  18. E.D. Haritaoglu: Temporal masking (University of Maryland, College Park 1997), http://www.umiacs.umd.edu/ desin/Speech1/node11.html

    Google Scholar 

  19. K.M. Steele: Binaural processing (Appalachian State Univ., Boone April 2003), http://www.acs.appstate.edu/kms/classes/psy3203/SoundLocalize/ intensity.jpg

    Google Scholar 

  20. J. Blauert: Spatial Hearing (MIT Press, Cambridge 1983)

    Google Scholar 

  21. R. Kline: Harold Black and the negative-feedback amplifier  IEEE Control Syst. Mag. 13(4), 82–85 (1993), DOI: 10.1109/37.229565

    Article  Google Scholar 

  22. N. Moffatt: Wow and Flutter (Vinyl Record Collectors, United Kingdom 2004), http://www.vinylrecordscollector.co.uk/wow.html

    Google Scholar 

  23. B. Paquette: History of the microphone (Belgium 2004), http://users.pandora.be/oldmicrophones/microphone_ history.htm

    Google Scholar 

  24. J. Strong: Understanding microphone types, Pro Tools for Dummies (Wiley, New York 2005), http://www.dummies.com/WileyCDA/DummiesArticle/id-2509.html

    Google Scholar 

  25. P.V. Murphy: Carbon Microphone (Concord University, Athens 2003), http://students.concord.edu/murphypv/images/35107.gif

    Google Scholar 

  26. D.A. Bohn: Ribbon Microphones (Rane Corp., Mukilteo 2005), http://www.rane.com/par-r.html

    Google Scholar 

  27. H. Robjohns: A brief history of microphones, Rycote Microphone Data Book (Rycote Microphone Windshields, Stroud 2001), http://www.microphone-data.com/pdfs/History.pdf (Rycote Microphone Windshields, Stroud 2003)

    Google Scholar 

  28. G. M. Sessler, J. E. West: Electroacoustic Transducer Electret Microphone, US Patent Number 3118022 (1964) http://www.invent.org/hall_of_fame/132.html (National Inventors Hall of Fame, 2002)

    Google Scholar 

  29. P.V. Murphy: Piezoelectric Microphone (Concord University, Athens 2003), http://students.concord.edu/murphypv/images/35108.gif

    Google Scholar 

  30. D. Stewart: Understanding microphone self noise (ProSoundWeb, Niles 2004), http://www.prosoundweb.com/studio/sw/micnoise.php

    Google Scholar 

  31. A.G.H. van der Donk, P.R. Scheeper, P. Bergveld: Amplitude-modulated electro-mechanical feedback system for silicon condenser microphones  J. Micromech. Microeng. 2, 211–214 (1992), http://www.iop.org/EJ/abstract/0960-1317/2/3/024

    Article  Google Scholar 

  32. A. Oja: Capacitive Sensors and their readout electronics, Helsinki Univ. Technology, Physics Laboratory (Helsinki Univ. Technology, Espoo 2005), http://www.fyslab.hut.fi/kurssit/Tfy3.480/Spring 2004/Jan28_Oja/Microsensing_2004_Oja2.pdf

    Google Scholar 

  33. J.N. Caron: Gas-coupled laser acoustic detection (Quarktet, Lanham 2005), http://www.quarktet.com/GCLAD.html

    Google Scholar 

  34. H.M. Ladak: Anatomy of the middle ear, Finite-Element Modelling Of Middle- Ear Prostheses in Cat, Master of Engineering Thesis (McGill University, Montreal 1993), Chap. 2 http://audilab.bmed.mcgill.ca/ funnell/AudiLab/ladakUNDERSCOREmaster/chapter2.htm

    Google Scholar 

  35. Microphone Types, The Way of the Classic CD (Musikproduktion Dabringhaus und Grimm, Detmold 2005), http://www.mdg.de/mikroe.htm

    Google Scholar 

  36. G. Carol: Tonearm/Cartridge Capability (Galen Carol Audio, San Antonio 2005), http://www.gcaudio.com/resources/howtos/tonearmcartridge.html

    Google Scholar 

  37. J.G. Holt: Down With Dynagroove, Stereophile, December 1964 (Primedia Magazines, New York 1964), http://www.stereophile.com/asweseeit/95/

    Google Scholar 

  38. D. Krotz: From Top Quarks to the Blues, Berkeley Lab physicists develop way to digitally restore and preserve audio recordings, Berkeley Lab. Res. News 4/16/2004 (Lawrence Berkeley National Lab., Berkeley 2004), http://www.lbl.gov/Science-Articles/Archive/Phys-quarks-to-blues.html

    Google Scholar 

  39. S.E. Schoenherr: Loudspeaker history, Recording Technology History (Univ. San Diego, San Diego July 2005), http://history.sandiego.edu/gen/recording/loudspeaker.html

    Google Scholar 

  40. C.W. Rice, E.W. Kellogg: Notes on the development of a new type of hornless loudspeaker  Trans. Am. Inst. El. Eng. 44, 461–475 (1925)

    Article  Google Scholar 

  41. AudioVideo 101: Speakers Enclosures (AudioVideo 101, Frisco 2005), http://www.audiovideo101.com/learn/knowit/speakers/speakers16.a

    Google Scholar 

  42. Eminence: Understanding loudspeaker data (Eminence Loudspeaker Corp., Eminence 2005), http://editweb.iglou.com/eminence/eminence/pages/params02/param

    Google Scholar 

  43. M. Sleiman: Speaker Engineering Analysis (Northern Illinois University, DeKalb 2005), www.students.niu.edu/ z109728/UEET101third%20draft.doc

    Google Scholar 

  44. Allison Acoustics: Company History (Allison Acoustics LLC, Danville 2005), http://www.allisonacoustics.com/history.html

    Google Scholar 

  45. D. Bohn: A fourth-order state-variable filter for Linkwitz-Riley active crossover designs  J. Audio Eng. Soc. Abstr. 31, 960 (1983), preprint 2011

    Google Scholar 

  46. W. Norris: Overview of hypersonic technology (American Technology Corp., San Diego 2005), http://www.atcsd.com/pdf/HSSdatasheet.pdf

    Google Scholar 

  47. T. Sporer: Conveying sonic spaces (Fraunhofer Elektronische Medientechnologie, Ilmenau 2005), http://www.emt.iis.fhg.de/projects/carrouso/

    Google Scholar 

  48. B. DePalma: Analog Audio Power Amplifier Design (January, 1997) http://depalma.pair.com/Analog/analog.html

    Google Scholar 

  49. E. Augenbraun: The Transistor, Public Broadcasting System (ScienCentral, The American Institute of Physics, New York 1999), http://www.pbs.org/transistor (July 2005)

    Google Scholar 

  50. S. Portz: Who Invented The Transistor (PhysLink, Long Beach 2005), http://www.physlink.com/Education/AskExperts/ae414.cfm

    Google Scholar 

  51. THAT Corp.: A brief history of VCA development (THAT Corp., Milford 2005), http://www.thatcorp.com/vcahist.html

    Google Scholar 

  52. M. Hart: History of Sound Motion Pictures (American WideScreen Museum, 2000), http://www.widescreenmuseum.com/sound/sound03.htm

    Google Scholar 

  53. L.P. Lessing: Edwin H. Armstrong, Dictionary of American Biography, Supplement V (Scribner, New York 1977) pp. 21–23, http://users.erols.com/oldradio/ (2005)

    Google Scholar 

  54. A. Antoniou: Digital Filters: Analysis, Design, and Applications, 2nd edn. (McGraw-Hill, New York 1993)

    Google Scholar 

  55. A. Antoniou: On the Origins of Digital Signal Processing (Univ. Victoria, Victoria 2004), http://www.ece.uvic.ca/ andreas/OriginsDSP.pdf

    Google Scholar 

  56. R.W.T. Preater, R. Swain: Fourier transform fringe analysis of electronic speckle pattern interferometry fringes from hinge-speed rotating components  Opt. Eng. 33, 1271–1279 (1994)

    Article  ADS  Google Scholar 

  57. E.O. Bringham: The Fast Fourier Transform (Prentice-Hall, Upper Saddle River 1974)

    Google Scholar 

  58. K.C. Pohlmann: The Compact Disc Handbook, Comp. Music Digital Audio Ser., Vol. 5, 2nd edn. (A-R Editions, Middleton 1992)

    Google Scholar 

  59. J. Despain: History of CD Technology (OneOff Media, Salt Lake City 1999), http://www.oneoffcd.com/info/historycd.cfm?CFID=435613&CFTOKEN

    Google Scholar 

  60. E.T. Whittaker: On the functions which are represented by the expansions of interpolation-theory  Proc. R. Soc. Edinburgh. 35, 181–194 (1915)

    Google Scholar 

  61. C.E. Shannon: A mathematical theory of communication  Bell Syst. Tech. J. 27, 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  62. C.E. Shannon: A mathematical theory of communication  Bell Syst. Tech. J. 27, 623–656 (1948)

    MathSciNet  Google Scholar 

  63. E. Meijering: Chronology of interpolation  Proc. IEEE 90(3), 319–342 (2002), http://imagescience.bigr.nl/meijering/research/chronology/

    Article  Google Scholar 

  64. M.T. Heideman, D.H. Johnson, C.S. Burrus: Gauss and the history of the fast Fourier transform  IEEE Acoust. Speech Signal Process. Mag. 1, 14–21 (1984),

    Google Scholar 

  65. M.T. Heideman, D.H. Johnson, C.S. Burrus: Gauss and the history of the fast Fourier transform  Arch. Hist. Exact Sci. 34, 265–277 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  66. C.S. Burrus: Notes on the FFT (Rice University, Houston 1997), http://www.fftw.org/burrus-notes.html

    Google Scholar 

  67. P. Duhamel, M. Vetterli: Fast Fourier transforms: A tutorial review and a state of the art  Signal Process. 19, 259–299 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  68. Fast Fourier Transform (Wikipedia, August 2005) http://en.wikipedia.org/wiki/Fast_Fourier_transform

    Google Scholar 

  69. M.F. Davis: The AC-3 multichannel coder, Audio Engineering Society. 95th Convention 1993 (Audio Engineering Society, New York 1993), Preprint Number 3774

    Google Scholar 

  70. M.F. Davis: The AC-3 multichannel coder (Digital Audio Development, Newark 1993), http://www.dadev.com/ac3faq.asp

    Google Scholar 

  71. T. Sporer: Creating, assessing and rendering in real time of high quality audio- visual environments in MPEG-4 context, Information Society Technologies (CORDIS, Luxemburg 2002), http://www.cordis.lu/ist/ka3/iaf/projects/carrouso.htm

    Google Scholar 

  72. G. Theile, H. Wittek: Wave field synthesis: A promising spatial audio rendering concept  Acoust. Sci. Tech. 25, 393–399 (2004), DOI: 10.1250/ast.25.393

    Article  Google Scholar 

  73. E.I. Schwartz: The sound war, Technol. Rev. May 2004 (MIT, Cambridge 2004), http://www.woodynorris.com/Articles/TechnologyReview.htm

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Davis Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC New York

About this entry

Cite this entry

Davis, M. (2007). Audio and Electroacoustics. In: Rossing, T. (eds) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30425-0_18

Download citation

Publish with us

Policies and ethics