Skip to main content

Advanced Optical Components

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter describes a selection of advanced optical components including the underlying physical principles, production techniques and already existing or possible future applications.

Several of these optical elements, in particular variable lenses and photonic crystals, may replace conventional optical systems once their potential for applications has been fully explored. Other components such as high-quality optical fibres, though well established and used worldwide, still undergo a rapid further improvement and integration in communication systems.

Besides increased quality and versatility, a driving force and essential aspect in the development of optical components in general is low cost and mass production.

This is a preview of subscription content, log in via an institution.

Abbreviations

AFM:

atomic force microscope

AOM:

acoustooptic modulator

AR:

antireflection

ASE:

amplified spontaneous emission

BZ:

Brillouin zone

CCD:

charge-coupled device

COC:

cyclic olefin copolymer

COP:

cyclic olefin polymer

CVD:

chemical vapor deposition

DBF:

distributed feedback

DCF:

dispersion-compensating fiber

DFG:

difference-frequency generation

DGD:

differential group delay

DOE:

diffractive optical element

DOS:

density of states

DRS:

double Rayleigh scattering

DWDM:

dense wavelength division multiplexed

EDFA:

erbium-doped fiber amplifier

EFS:

equi-frequency surface

EMT:

effective-medium theory

EOM:

electrooptic modulator

EWOD:

electrowetting on dielectrics

FBG:

fiber Bragg grating

FDTD:

finite-difference time domain

FWM:

four-wave mixing

FZP:

Fresnel zone plate

GRIN:

gradient index

GVD:

group velocity dispersion

ICP:

inductively coupled plasma

IL:

interference lithography

IR:

infrared

ITO:

indium–tin oxide

LCoS:

liquid crystal on silicon

LD:

laser diode

LEAF:

large effective area

LH:

left-handed

LPE:

liquid-phase epitaxy

MCVD:

modified chemical vapor deposition

MFD:

multilayer fluorescent disk

MPC:

metallic photonic crystal

NA:

numerical aperture

NCPM:

noncritical phase matching

NIM:

nearly index-matched

OCT:

optical coherence tomography

OP:

oriented-patterned

OPG:

optical parametric generation

OPL:

optical path length

OPO:

optical parametric oscillator

OSNR:

optical signal-to-noise ratio

OVD:

outside vapor deposition

PB:

photonic band

PBG:

photonic band gap

PBS:

photonic band structure

PBS:

polarizing beam splitter

PC:

photonic crystal

PDMS:

polydimethylsiloxane

PMD:

polarization mode dispersion

PMMA:

polymethylmethacrylate

PPKTP:

periodically poled potassium titanyl phosphate

PPLN:

periodically poled lithium niobate

PS:

polystyrene

PSF:

point spread function

QC:

quasicrystals

QD:

quantum dot

QPM:

quasi-phase matching

QW:

quantum well

RCWA:

rigorous coupled wave analysis

RDS:

relative dispersion slope

RFA:

Raman fiber amplifier

RGB:

red, green and blue

RIE:

reactive-ion etching

SBS:

stimulated Brillouin scattering

SC:

supercontinuum

SFG:

sum-frequency generation

SHG:

second-harmonic generation

SMF:

single-mode fiber

SNR:

signal-to-noise ratio

SOA:

semiconductor optical amplifier

SPM:

self-phase modulation

SRS:

stimulated Raman scattering

TIR:

total internal reflection

UV:

ultraviolet

WDM:

wavelength division multiplexing

WG:

waveguide

WGP:

wire-grid polarizer

XPM:

cross-phase modulation

YAG:

yttrium aluminium garnet

References

  1. M. D. Missig, G. M. Morris: Diffractive optics applied to eyepiece design, Appl. Opt. 34, 2452–2461 (1995)

    Article  ADS  Google Scholar 

  2. W. Knapp, G. Blough, K. Khajurival, R. Michaels, B. Tatian, B. Volk: Optical design comparison of 60° eyepieces: one with a diffractive surface and one with aspherics, Appl. Opt. 34, 4756–4760 (1997)

    Article  ADS  Google Scholar 

  3. Z.-Q. Wang, H.-J. Zhang, R.-L. Fu, G.-G. Mu, Z.-W. Lu, C. M. Cartwright, W. A. Gillespie: Hybrid diffractive refractive ultra-wide-angle eyepieces, Optik 113, 159–162 (2002)

    ADS  Google Scholar 

  4. C. G. Blough, M. J. Hoppe, D. R. Hand, W. J. Peck: Achromatic eyepieces using acrylic diffractive lenses, Proc. SPIE 2600, 93–99 (1995)

    Article  ADS  Google Scholar 

  5. Z. Yun, Y. L. Lam, Y. Zhou, X. Yuan, L. Zhao, J. Liu: Eyepiece design with refractive–diffractive hybrid elements, Proc. SPIE 4093, 474–480 (2000)

    Article  ADS  Google Scholar 

  6. G. De Vos, G. Brandt: Use of holographic optical elements in HMDs, Proc. SPIE 1290, 70–80 (1990)

    Article  ADS  Google Scholar 

  7. J. A. Cox, T. A. Fritz, T. Werner: Application and demonstration of diffractive optics for head-mounted displays, Proc. SPIE 2218, 32–40 (1994)

    Article  ADS  Google Scholar 

  8. J. P. Rolland, M. W. Krueger, A. A. Goon: Dynamic focusing in head-mounted displays, Proc. SPIE 3639, 463–470 (1999)

    Article  ADS  Google Scholar 

  9. T. Nakai, H. Ogawa: Research on multi-layer diffractive optical elements and their application to camera lenses. In: Diffractive Optics and Micro-Optics, Techn. Dig. (Optical Society of America, Washington, DC 2002) pp. 5–7 (postconference edition)

    Google Scholar 

  10. R. Brunner, R. Steiner, K. Rudolf, H.-J. Dobschal: Diffractive-refractive hybrid microscope objective for 193 nm inspection systems, Proc. SPIE 5177, 9–15 (2003)

    Article  ADS  Google Scholar 

  11. R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, A. M. Zibold: Immersion mask inspection with hybrid-microscopic systems at 193 nm, Proc. SPIE 5567, 887–893 (2004)

    Article  ADS  Google Scholar 

  12. R. Brunner, M. Burkhardt, A. Pesch, O. Sandfuchs, M. Ferstl, S. C. Hohng, J. O. White: Diffraction based solid immersion lens, J. Opt. Soc. Am. A 21(7), 1186–1191 (2004)

    Article  ADS  Google Scholar 

  13. R. A. Hyde: 1. Very large aperture diffractive telescopes, Appl. Opt. 38(19), 4198–4212 (1999)

    Article  ADS  Google Scholar 

  14. I. M. Barton, J. A. Britten, S. N. Dixit, L. J. Summers, I. M. Thomas, M. C. Rushford, K. Lu, R. A. Hyde, M. D. Perry: Fabrication of large-aperture lightweight diffractive lenses for use in space, Appl. Opt. 40(4), 447–451 (2001)

    Article  ADS  Google Scholar 

  15. D. Attwood: Soft X-ray and Extreme Ultraviolet Radiation – Principles and Applications (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  16. J. Nowak, J. Masajada: Hybrid apochromatic lens, Opt. Appl. 30(2/3), 271–275 (2000)

    Google Scholar 

  17. D. A. Buralli: Optical performance of holographic kinoforms, Appl. Opt. 28, 976–983 (1989)

    Article  ADS  Google Scholar 

  18. C. Londono, P. P. Clark: Modeling diffraction efficiency effects when designing hybrid diffractive lens systems, Appl. Opt. 31, 2248–2251 (1992)

    Article  ADS  Google Scholar 

  19. S. M. Ebstein: Nearly index-matched optics for aspherical, diffractive, and achromatic-phase diffractive elements, Opt. Lett 21, 1454–1456 (1996)

    Article  ADS  Google Scholar 

  20. Y. Arieli, S. Noach, S. Ozeri, N. Eisenberg: Design of diffractive optical elements for multiple wavelengths, Appl. Opt. 37, 6174–6177 (1998)

    Article  ADS  Google Scholar 

  21. Y. Arieli, S. Ozeri, T. Eisenberg, S. Noach: Design of diffractive optical elements for wide spectral bandwidth, Opt. Lett. 23, 823–824 (1998)

    Article  ADS  Google Scholar 

  22. T. Nakai: Diffractive optical element and photographic optical system having the same, European Patent Application EP 1014150 A2 (1999)

    Google Scholar 

  23. H. P. Herzig, A. Schilling: Optical systems – design using microoptics. In: Encyclopedia of Optical Engineering, Vol. 2, ed. by R. G. Driggers (Marcel Dekker, New York 2003) pp. 1830–1842

    Google Scholar 

  24. T. Nakai, H. Ogawa: Research on multi-layer diffractive optical elementsand their applications to photographiclenses, 3rd Int. Conf. Optics–Photonics Design Fabrication, Tokyo 2002, ed. by T. Murakami (Optical Society of Japan, Tokio 2002) 61–62

    Google Scholar 

  25. T. H. Jamieson: Thermal effects in optical systems, Opt. Eng. 20, 156–160 (1981)

    Google Scholar 

  26. G. P. Behrmann, J. P. Bowen: Influence of temperature on diffractive lens performance, Appl. Opt. 32(14), 2483–2489 (1993)

    Article  ADS  Google Scholar 

  27. J. Jahns, Y. H. Lee, C. A. Burrus, J. Jewell: Optical interconnects using top-surface-emitting microlasers and planar optics, Appl. Opt. 31, 592–597 (1992)

    Article  ADS  Google Scholar 

  28. C. Londono, W. T. Plummer, P. P. Clark: Athermalization of a single-component lens with diffractive optics, Appl. Opt. 32, 2295–2302 (1993)

    Article  ADS  Google Scholar 

  29. G. P. Behrmann, J. N. Mait: Hybrid (refractive/diffractive) optics. In: Micro-optics: Elements, Systems and Application, ed. by H. P. Herzig (Taylor Francis, London 1997) pp. 259–292

    Google Scholar 

  30. G. Khanarian: Optical properties of cyclic olefin copolymers, Opt. Eng. 40(6), 1024–1029 (2001)

    Article  ADS  Google Scholar 

  31. Nippon Zeon: Zeonex™ brochure (Nippon Zeon Co., Ltd, Tokyo 1998)

    Google Scholar 

  32. L. H. Cescato, E. Gluch, N. Streibl: Holographic quarterwave plates, Appl. Opt. 29(22), 3286–3290 (1990)

    Article  ADS  Google Scholar 

  33. I. Richter, P.-Ch. Sun, F. Xu, Y. Fainman: Design considerations of form birefringent microstructures, Appl. Opt. 34(14), 2421–2429 (1995)

    Article  ADS  Google Scholar 

  34. I. Richter, P.-Ch. Sun, F. Xu, Y. Fainman: Form birefringent microstructures: modeling and design, Proc. SPIE 2404, 69–80 (1995)

    Article  ADS  Google Scholar 

  35. P. B. Clapham, M. C. Hutley: Reduction of lens reflexion by the “moth eye” principle, Nature 244(5414), 281–282 (1973)

    Article  ADS  Google Scholar 

  36. S. J. Wilson, M. C. Hutley: The optical properties of ‘moth eye’ antireflection surfaces, Opt. Acta 29(7), 993–1009 (1982)

    Article  ADS  Google Scholar 

  37. T. K. Gaylord, W. E. Baird, M. G. Moharam: Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface relief gratings, Appl. Opt. 25(24), 4562–4567 (1986)

    Article  ADS  Google Scholar 

  38. D. H. Raguin, G. M. Morris: Antireflection structured surfaces for the infrared spectral region, Appl. Opt. 32(7), 1154–1167 (1993)

    Article  ADS  Google Scholar 

  39. R. Bräuer, O. Bryngdahl: Design of antireflection gratings with approximate and rigorous methods, Appl. Opt. 33(34), 7875–7882 (1994)

    Article  ADS  Google Scholar 

  40. R.-Ch. Tyan, P.-Ch. Sun, Y. Fainman: Polarizing beam splitters constructed of form-birefringent multiplayer gratings, Proc. SPIE 2689, 82–89 (1996)

    Article  ADS  Google Scholar 

  41. R.-Ch. Tyan, A. A. Salvekar, H.-P. Chou, Ch.-Ch. Cheng, A. Scherer, P.-Ch. Sun, F. Xu, Y. Fainman: Design, fabrication, and characterization of form-birefringent multiplayer polarizing beam splitter, J. Opt. Soc. Am. A 14(7), 1627–1636 (1997)

    Article  ADS  Google Scholar 

  42. L. Pajewski, R. Borghi, G. Schettini, F. Frezza, M. Santarsiero: Design of a binary grating with subwavelength features that acts as a polarizing beam splitter, Appl. Opt. 40(32), 5898–5905 (2001)

    Article  ADS  Google Scholar 

  43. L. L. Soares, L. Cescato: Metallized photoresist grating as a polarizing beam splitter, Appl. Opt. 40(32), 5906–5910 (2001)

    Article  ADS  Google Scholar 

  44. P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois: A transmission polarizing beam splitter grating, J. Opt. A 1, 215–219 (1999)

    ADS  Google Scholar 

  45. H. Haidner, P. Kipfer, W. Stork, N. Streibl: Zero-order gratings used as an artificial distributed index medium, Optik 89(3), 107–112 (1992)

    Google Scholar 

  46. M. W. Farn: Binary gratings with increased efficiency, Appl. Opt. 31(22), 4453–4458 (1992)

    Article  ADS  Google Scholar 

  47. M. Collischon, H. Haidner, P. Kipfer, A. Lang, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf: Binary blazed reflection gratings, Appl. Opt. 33(16), 3572–3577 (1994)

    Article  ADS  Google Scholar 

  48. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois: Blazed binary subwavelength gratings with efficiencies larger than those of conventional echelette gratings, Opt. Lett. 23(14), 1081–1083 (1998)

    Article  ADS  Google Scholar 

  49. J. N. Mait, D. W. Prather, M. S. Mirotznik: Binary subwavelength diffractive lens design, Opt. Lett. 23(17), 1343–1345 (1998)

    Article  ADS  Google Scholar 

  50. M. Born, E. Wolf: Principles of Optics, 6 edn. (Pergamon, London 1980)

    Google Scholar 

  51. S. M. Rytov: Electromagnetic properties of a finely stratified medium, Soviet Phys. JETP 2(3), 466–475 (1956)

    Google Scholar 

  52. E. B. Grann, M. G. Moharam, D. A. Pommet: Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings, J. Opt. Soc. Am. A 11(10), 2695–2703 (1994)

    Article  ADS  Google Scholar 

  53. A. R. Parker: 515 million years of structural colors, J. Opt. A 2, R15–R28 (2000)

    ADS  Google Scholar 

  54. E. N. Glytsis, T. K. Gaylord: High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces, Appl. Opt. 31(22), 4459–4470 (1992)

    Article  ADS  Google Scholar 

  55. D. H. Raguin, G. M. Morris: Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles, Appl. Opt. 32(14), 2582–2598 (1993)

    Article  ADS  Google Scholar 

  56. M. E. Motamedi, W. H. Southwell, W. J. Gunning: Antireflection surfaces in silicon using binary optics technology, Appl. Opt. 31(22), 4371–4376 (1993)

    Article  ADS  Google Scholar 

  57. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, Ch. Zanke, B. Bläsi, V. Wittwer: Antireflective submicrometer surface-relief gratings for solar applications, Solar Energy Mater. Solar Cell. 54, 333–342 (1998)

    Article  Google Scholar 

  58. R. T. Perkins, D. P. Hansen, E. W. Gardner, J. M. Thorne, A. A. Robbins: Broadband wire grid polarizer for the visible spectrum, US Patent 6122103 (2000)

    Google Scholar 

  59. M. Xu, H. P. Urbach, D. K. G. de Boer, H. J. Cornelissen: Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon, Opt. Express 13(7), 2303–2320 (2005)

    Article  ADS  Google Scholar 

  60. T. Sergan, M. Lavrenzovich, J. Kelly, E. Gardner, D. Hansen: Measurement and modeling of optical performance of wire grids and liquid-crystal displays utilizing grid polarizers, J. Opt. Soc. Am. A 19(9), 1872–1885 (2002)

    Article  ADS  Google Scholar 

  61. P. Yeh: A new optical model for wire grid polarizers, Opt. Commun. 26(3), 289–292 (1978)

    Article  ADS  Google Scholar 

  62. W. Storck, N. Streibl, H. Haidner, P. Kipfer: Artificial distributed-index media fabricated by zero-order gratings, Opt. Lett. 16(24), 1921–1923 (1991)

    Article  ADS  Google Scholar 

  63. H. Haidner, P. Kipfer, T. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, M. März: Diffraction grating with rectangular grooves exceeding 80 % diffraction efficiency, Infrared Phys. 34(5), 467–475 (1993)

    Article  ADS  Google Scholar 

  64. M. E. Warren, R. E. Smith, G. A. Vawter, J. R. Wendt: High efficiency subwavelength diffractive optical element in GaAs for 975 nm, Opt. Lett. 20(12), 1441–1443 (1995)

    Article  ADS  Google Scholar 

  65. S. Astilean, P. Lalanne, P. Chavel, E. Cambril, H. Launois: High efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm, Opt. Lett. 23(7), 552–554 (1998)

    Article  ADS  Google Scholar 

  66. P. Lalanne: Waveguiding in blazed-binary diffractive elements, J. Opt. Soc. Am. A 16(10), 2517–2520 (1999)

    Article  ADS  Google Scholar 

  67. P. Tang, D. J. Towner, T. Hamano, A. L. Meier: Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator, Opt. Express 12(24), 5962–5967 (2004)

    Article  ADS  Google Scholar 

  68. M. Hufschmid: Winkelmodulation (Fachhochschule, Basel 2002) (in German)

    Google Scholar 

  69. New Focus: Practical Uses and Applications of Electrooptic Modulators (Bockham Inc., San Jose 2001)

    Google Scholar 

  70. M. Bass: Handbook of Optics, Vol. 2 (McGraw-Hill, New York 1995)

    Google Scholar 

  71. B. E. A. Saleh, M. C. Teich: Fundamentals of Photonics (Wiley, New York 1991)

    Book  Google Scholar 

  72. R. F. Enscoe, R. J. Kocka: Systems and Applications Demands for Wider-Band Beam Modulation Challenge System Designers (Conoptics Inc., Danbury 1981)

    Google Scholar 

  73. Laurin: The Photonics Handbook (Laurin, Pittsfield 2003) www.photonics.com/handbookHome.aspx

  74. A. L. Mikaelian: Self-focusing media with variable index of refraction, Prog. Opt. 17, 281–345 (1980)

    Google Scholar 

  75. K. Iga: Theory for gradient index imaging, Appl. Opt. 19, 1039–1043 (1970)

    Article  ADS  Google Scholar 

  76. H. Hovestädt: Cylindrical glass plates acting like diverging lenses. In: Jena Glass and Its Scientific and Industrial Applications, ed. by I. P. Everett, A. Everett (Macmillan, London 1902) Chap. 29, pp. 66–70

    Google Scholar 

  77. J. C. Maxwell: Solution of problems, Cambridge Dublin Math. J. 8, 188 (1854)

    Google Scholar 

  78. K. Iga, S. Misawa: Distributed-index planar microlens and stacked planar optics: a review of progress, Appl. Opt. 25, 3388–3396 (1986)

    Article  ADS  Google Scholar 

  79. R. K. Luneburg: Mathematical Theory of Optics (Univ. California Press, Berkeley 1966) Chap. 27-30, pp. 164–195

    Google Scholar 

  80. S. Doric: Patent WO 96/14595 (1996)

    Google Scholar 

  81. M. V. R. K. Murty: Laminated lens, J. Opt. Soc. Am. 61, 886–894 (1971)

    Article  ADS  Google Scholar 

  82. K. Iga, Y. Kokubun, M. Gikawa: Fundamentals of Microoptics (Academic, New York 1984)

    Google Scholar 

  83. E. W. Marchand: Gradient Index Optics (Academic, New York 1978)

    Google Scholar 

  84. C. Gomez-Reino, M. V. Perez, C. Bao: Gradient-Index Optics (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  85. K. H. Brenner, W. Singer: Light propagation through microlenses: a new simulation method, Appl. Opt. 32, 4984 (1993)

    Article  ADS  Google Scholar 

  86. S. I. Najafi: Introduction to Glass Integradted Optics (Artech House, New York 1992)

    Google Scholar 

  87. M. Born, E. Wolf: Principles of Optics (Pergamon, Oxford 1980)

    Google Scholar 

  88. A. Sharma, D. V. Kumar, A. K. Ghatak: Tracing rays through graded-index media: a new method, Appl. Opt. 21, 984–987 (1982)

    Article  ADS  Google Scholar 

  89. A. Sharma: Computing optical path length in gradient-index media: a fast and accurate method, Appl. Opt. 24, 4367–4370 (1985)

    Article  ADS  Google Scholar 

  90. M. L. Huggins: The refractive index of silicate glasses as a function of composition, J. Opt. Soc. Am. 30, 420 (1940)

    Article  ADS  Google Scholar 

  91. S. D. Fantone: Refractive index and spectral models for gradient-index materials, Appl. Opt. 22, 432–440 (1983)

    Article  ADS  Google Scholar 

  92. D. P. Ryan-Howard, D. T. Moore: Model for the chromatic properties of gradient-index glass, Appl. Opt. 24, 4356–4366 (1985)

    Article  ADS  Google Scholar 

  93. K. Shingyouchi, S. Konishi: Gradient-index doped silica rod lenses produced by a solgel method, Appl. Opt. 29, 4061–4063 (1990)

    Article  ADS  Google Scholar 

  94. M. A. Pickering, R. L. Taylor, D. T. Moore: Gradient infrared optical material prepared by a chemical vapor deposition process, Appl. Opt. 25, 3364–3372 (1986)

    Article  ADS  Google Scholar 

  95. I. Kitano, K. Koizumi, H. Matsumura, T. Uchida, M. Furukawa: A light-focusing fiber guide prepared by ion-exchange techniques, J. Jpn. Soc. Appl. Phys. (Suppl.) 39, 63–70 (1970)

    Google Scholar 

  96. S. Ohmi, H. Sakai, Y. Asahara, S. Nakayama, Y. Yoneda, T. Izumitani: Gradient-index rod lens made by a double ion-exchange process, Appl. Opt. 27, 496 (1988)

    Article  ADS  Google Scholar 

  97. R. H. Doremus: Ion exchange in glasses. In: Ion Exchange, ed. by J. Marinski (Marcel Decker, New York 1966)

    Google Scholar 

  98. Y. Ohtsuka, T. Sugano: Studies on the light-focusing plastic rod. 14: GRIN rod of CR-39-trifluoroethyl methacrylate copolymer by a vapor-phase transfer process, Appl. Opt. 22, 413 (1983)

    Article  ADS  Google Scholar 

  99. T. M. Che, J. B. Caldwell, R. M. Mininni: Sol-gel derived gradient index optical materials, Proc. SPIE 1328, 145–159 (1990)

    Article  ADS  Google Scholar 

  100. Y. Koike, H. Hidaka, Y. Ohtsuka: Plastic axial gradient-index lens, Appl. Opt. 24, 4321 (1985)

    Article  ADS  Google Scholar 

  101. P. K. Manhart, T. W. Stuhlinger, K. R. Castle, M. C. Ruda: Gradient refractive index lens elements, US Patent 5617252 (1997)

    Google Scholar 

  102. R. M. Ward, D. N. Pulsifer: Glass preform with deep radial gradient layer and method of manufacturing same, US Patent 5522003 (1996)

    Google Scholar 

  103. B. Messerschmidt, T. Possner, R. Goering: Colorless gradient-index cylindrical lenses with high numerical apertures produced by silver-ion exchange, Appl. Opt. 34, 7825 (1995)

    Article  ADS  Google Scholar 

  104. T. Findakly: Glass waveguides by ion exchange: a review, Opt. Eng. 24, 244–252 (1985)

    Google Scholar 

  105. A. Tervonen, S. Honkanen: Model for waveguide fabrication in glass by two-step ion exchange with ionic masking, Opt. Lett. 13, 71 (1988)

    Article  ADS  Google Scholar 

  106. J. M. Inman, J. L. Bentley, S. N. Houde-Walter: Modeling ion-exchanged glass photonics: the modified quasi-chemical diffusion coefficient, J. Non-Cryst. Solids 191, 209–215 (1995)

    Article  ADS  Google Scholar 

  107. B. Messerschmidt, C. H. Hsieh, B. L. McIntyre, S. N. Houde-Walter: Ionic mobility in an ion exchanged silver–sodium boroaluminosilicate glass for micro-optics applications, J. Non-Cryst. Solids 217, 264–271 (1997)

    Article  ADS  Google Scholar 

  108. N. Haun, D. S. Kindred, D. T. Moore: Index profile control using Li+ for Na+ exchange in aluminosilicate glasses, Appl. Opt. 29, 4056 (1990)

    Article  ADS  Google Scholar 

  109. L. G. Atkinson, D. T. Moore, N. J. Sullo: Imaging capabilities of a long gradient-index rod, Appl. Opt. 21, 1004 (1982)

    Article  ADS  Google Scholar 

  110. D. C. Leiner, R. Prescott: Correction of chromatic aberrations in GRIN endoscopes, Appl. Opt. 22, 383 (1983)

    Article  ADS  Google Scholar 

  111. K. Fujii, S. Ogi, N. Akazawa: Gradient-index rod lens with a high acceptance angle for color use by Na+ for Li+ exchange, Appl. Opt. 33, 8087 (1994)

    Article  ADS  Google Scholar 

  112. Y. Mitsuhashi: SELFOC lenses: Applications in DWDM and optical data links, Proc. SPIE 3666, 246–251 (1999)

    Article  ADS  Google Scholar 

  113. S. Yuan, N. A. Riza: General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses, Appl. Opt. 38, 3214–3222 (1999)

    Article  ADS  Google Scholar 

  114. R. W. Gilsdorf, J. C. Palais: Single-mode fiber coupling efficiency with graded-index rod lenses, Appl. Opt. 33, 3440 (1994)

    Article  ADS  Google Scholar 

  115. I. Kitano, H. Ueno, M. Toyama: Gradient-index lens for low-loss coupling of a laser diode to single-mode fiber, Appl. Opt. 25, 3336 (1986)

    Article  ADS  Google Scholar 

  116. V. Blümel, B. Messerschmidt: Designs and applications of graded-index fast-axis-collimating lenses to high-power diode lasers, Proc. 10-th Microoptics Conference (MOC04), Jena 2004, ed. by Conventus Congress Management & Marketing GmbH (Elsevier, Amsterdam 2004) F-53

    Google Scholar 

  117. J. M. Stagaman, D. T. Moore: Laser diode to fiber coupling using anamorphic gradient-index lenses, Appl. Opt. 23, 1730 (1984)

    Article  ADS  Google Scholar 

  118. B. Messerschmidt, T. Possner, P. Schreiber: Gradient index optical systems for endoscope applications and beam shaping of laser diodes. In: Diffractive Optics and Micro-Optics, OSA Tech. Dig. (Optical Society of America, Washington, DC 2000) pp. 303–305

    Google Scholar 

  119. P. Rol, R. Jenny, D. Beck, F. Fankhauser, P. F. Niederer: Optical properties of miniaturized endoscopes for ophthalmic use, Opt. Eng. 34, 2070–2076 (1995)

    Article  ADS  Google Scholar 

  120. J. Knittel, L. G. Schnieder, G. Buess, B. Messerschmidt, T. Possner: Endoscope-compatible confocal microscope using a gradient-index lens system, Opt. Commun. 188, 267–273 (2001)

    Article  ADS  Google Scholar 

  121. J. C. Jung, M. J. Schnitzer: Multiphoton endoscopy, Opt. Lett. 28, 902–904 (2003)

    Article  ADS  Google Scholar 

  122. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, M. J. Schnitzer: In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope, Opt. Lett. 30, 2272–2274 (2005)

    Article  ADS  Google Scholar 

  123. X. Li, C. Chudoba, T. Ko, C. Pitris, J. G. Fujimoto: Imaging needle for optical coherence tomography, Opt. Lett. 25, 1520–1522 (2000)

    Article  ADS  Google Scholar 

  124. J. M. Lopez-Higuera (Ed.): Optical Sensors (Cantabria Univ. Press, Santander 1998)

    Google Scholar 

  125. P. Drabarek: Modulation interferometer and fiberoptically divided measuring probe with light guided, US Patent WO 99/57506 (1999)

    Google Scholar 

  126. S. Doric: Generalized nonfull-aperture Luneburg lens: a new solution, Opt. Eng. 32, 2118–2121 (1993)

    Article  ADS  Google Scholar 

  127. Doric Lenses: www.doriclenses.com (Doric Lenses, Sainte-Foy 2006)

  128. Lightpath Technologies: www.lightpath.com (Lightpath Technologies, Orlando 2006)

  129. Nippon Sheet Glass: www.nsgamerica.com (NSG, Somerset 2006)

  130. G. Goodman, B. Hunter: Photon. Spectra 9, 132–138 (1999)

    Google Scholar 

  131. I. Kitano, K. Koizumi, H. Matsumura, K. Ikeda, T. Uchida: Image transmitter formed of a plurality of graded index fibers in bundled configuration, US Patent 3658407 (1972)

    Google Scholar 

  132. J. D. Rees: Non-Gaussian imaging properties of GRIN fiber lens arrays, Appl. Opt. 21, 1009 (1982)

    Article  ADS  Google Scholar 

  133. J. D. Rees, W. Lama: Some radiometric properties of gradient-index fiber lenses, Appl. Opt. 19, 1065 (1980)

    Article  ADS  Google Scholar 

  134. P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, I. Rodriguez: Fluidic lenses with variable focal length, Appl. Phys. Lett. 88, 041120–1–041120–3 (2006)

    Article  ADS  Google Scholar 

  135. S. Gray: A letter from Mr. Stephen Gray, giving a further account of his water microscope, Phil. Trans. R. Soc. London 19(223), 353–356 (1695)

    Google Scholar 

  136. G. Lippman: Relation entre les phenomenes electriques et capillaires, Ann. Chi. Phys. 5, 494 (1875)

    Google Scholar 

  137. T. N. Young: An essay on the cohesion of fluids, Phil. Trans. R. Soc. London 95, 65 (1805)

    Article  Google Scholar 

  138. B. Berge: Electrocapillarite et mouillage de films isolants par lʼeau, C. R. Acad. Sci. Ser. II 317, 157–163 (1993)

    Google Scholar 

  139. F. Mugele, J.-C. Baret: Electrowetting from basics to applications, J. Phys. 17, R705–R774 (2005)

    Google Scholar 

  140. J. Crassous, C. Gabay, G. Liogier, B. Berge: Liquid lens based on electrowetting: a new adaptive component for imaging applications in consumer electronics, Proc. SPIE 5639, 143–148 (2004)

    Article  ADS  Google Scholar 

  141. F. Gindele, T. Kolling, F. Gaul: Optical systems based on electrowetting, Proc. SPIE 5455, 89–100 (2004)

    Article  ADS  Google Scholar 

  142. B. Berge, J. Peseux: Variable focal lens controlled by an external voltage: an application of electrowetting, Eur. Phys. J. E 3(2), 159–163 (2000)

    Article  Google Scholar 

  143. B. H. W. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, T. W. Tukker: Electrowetting-based variable-focus lens for miniature systems, Opt. Rev. 12(3), 255–259 (2005)

    Article  Google Scholar 

  144. C. Gabay, B. Berge, G. Dovillaire, S. Bucourt: Dynamic study of a Varioptic variable focal lens, Proc. SPIE 4767, 159–165 (2002)

    Article  Google Scholar 

  145. F. Krogmann, W. Mönch, H. Zappe: A MEMS-based variable micro-lens system, J. Opt. A – Pure Appl. Opt. 8(7), S330–S336 (2006)

    Article  ADS  Google Scholar 

  146. R. Graham: A variable focus lens and its use, J. Opt. Soc. Am. 30, 560–563 (1940)

    Article  ADS  Google Scholar 

  147. Bausch & Lomb: Variable Focus Lens, US Patent 2300251 (1942)

    Google Scholar 

  148. D.-Y. Zhang, N. Justis, Y.-H. Lo: Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view, Opt. Commun. 249(1-3), 175–182 (2005)

    Article  ADS  Google Scholar 

  149. A. Werber, H. Zappe: Tunable microfluidic microlenses, Appl. Opt. 44(16), 3238–3245 (2005)

    Article  ADS  Google Scholar 

  150. J. Chen, W. Wang, J. Fang, K. Varahramyan: Variable-focusing microlens with microfluidic chip, J. Micromech. Microeng. 14(5), 675–680 (2004)

    Article  ADS  Google Scholar 

  151. D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y.-H. Lo: Fluidic adaptive lens with high focal length tunability, Appl. Phys. Lett. 82(19), 3171–3172 (2003)

    Article  ADS  Google Scholar 

  152. R. Kuwano, T. Tokunaga, Y. Otani, N. Umeda: Liquid pressure varifocus lens, Opt. Rev. 12(5), 405–408 (2005)

    Article  Google Scholar 

  153. A. H. Rawicz, I. Mikhailenko: Modeling a variable-focus liquid-filled optical lens, Appl. Opt. 35(10), 1587–1589 (1996)

    Article  ADS  Google Scholar 

  154. M. Agarwal, R. A. Gunasekaran, P. Coane, K. Varahramyan: Polymer-based variable focal length microlens system, J. Micromech. Microeng. 14(12), 1665–1673 (2004)

    Article  ADS  Google Scholar 

  155. D.-Y. Zhang, N. Justis, Y.-H. Lo: Fluidic adaptive lens of transformable lens type, Appl. Phys. Lett. 84(21), 4194–4196 (2004)

    Article  ADS  Google Scholar 

  156. N. Chronis, G. L. Liu, K.-H. Jeong, L. P. Lee: Tunable liquid-filled microlens array integrated with microfluidic network, Opt. Express 11(19), 2370–2378 (2003)

    Article  ADS  Google Scholar 

  157. C.-M. Ho, Y.-C. Tai: Annu. Rev. Fluid Mech. 30, 579–612 (1998)

    Article  ADS  Google Scholar 

  158. F. Schneider, D. Hohlfeld, U. Wallrabe: Miniaturized Electromagnetic Ferrofluid Actuator, ACTUATOR 2006, Proc. 10th Int. Conf. New Actuators, Bremen 2006 (HVG, Bremen 2006) B1.5, pp. 124–127

    Google Scholar 

  159. L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang: Adaptive liquid microlenses activated by stimuli-responsive hydrogels, Nature 442, 551–554 (2006)

    Article  ADS  Google Scholar 

  160. H. Oku, K. Hashimoto, M. Ishikawa: Variable-focus lens with 1-kHz bandwidth, Opt. Express 12(10), 2138–2149 (2004)

    Article  ADS  Google Scholar 

  161. S. Odenbach (Ed.): Ferrofluids: Magnetically Controllable Fluids and Their Applications, Lecture Notes Phys., Vol. 594 (Springer, Berlin, New York 2003)

    Google Scholar 

  162. F. C. Wippermann, P. Schreiber, A. Bräuer, B. Berge: Mechanically assisted liquid lens zoom system for mobile phone cameras, Proc. SPIE 6289, 62890T (2006)

    Article  ADS  Google Scholar 

  163. J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan: Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918–1939 (1962)

    Article  ADS  Google Scholar 

  164. E. J. Lim, M. M. Fejer, R. L. Byer: Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide, Electron. Lett. 25, 174–175 (1989)

    Article  Google Scholar 

  165. J. Webjörn, F. Laurell, G. Arvidsson: Blue light generated by frequency doubling of laser diode light ina lithium niobate channel waveguide, IEEE Photon. Technol. Lett. 1, 316–318 (1989)

    Article  ADS  Google Scholar 

  166. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer: Quasi phase matched 2nd harmonic generation tuning and tolerances, IEEE J. Quantum Electron. 28, 2631–2654 (1992)

    Article  ADS  Google Scholar 

  167. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce: Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B 12, 2102–2116 (1995)

    Article  ADS  Google Scholar 

  168. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg: Quasi-phase-matched 1.064-μ m-pumped optical parametric oscillator in bulk periodically poled LiNbO3, Opt. Lett. 20, 52–54 (1995)

    Article  ADS  Google Scholar 

  169. C. Fischer, M. W. Siegrist: Solid-state mid-infrared laser sources, Top. Appl. Phys. 89, 97–140 (2003)

    Google Scholar 

  170. D. A. Roberts: Simplified characterization of uniaxial and biaxial nonlinear optical crystals - A plea for standardization of nomenclature and conventions, IEEE J. Quantum Electron. 28, 2057–2074 (1992)

    Article  ADS  Google Scholar 

  171. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, D. Weyburne: Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs, Opt. Lett. 31, 71–73 (2006)

    Article  ADS  Google Scholar 

  172. D. A. Bryan, R. Gerson, H. E. Tomaschke: Increased optical damage resistance in lithium niobate, Appl. Phys. Lett. 44, 847–849 (1984)

    Article  ADS  Google Scholar 

  173. T. R. Volk, V. I. Pryalkin, N. M. Rubinina: Optical-damage-resistant LiNbO3:Zn crystal, Opt. Lett. 15, 996–998 (1990)

    Article  ADS  Google Scholar 

  174. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, G. Foulon: Green-induced infrared absorption in MgO doped LiNbO3, Appl. Phys. Lett. 78, 1970–1972 (2001)

    Article  ADS  Google Scholar 

  175. T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris: Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation, Opt. Lett. 27, 628–630 (2002)

    Article  ADS  Google Scholar 

  176. G. Rosenman, P. Urenski, A. Agronin, A. Arie, Y. Rosenwaks: Nanodomain engineering in RbTiOPO4 ferroelectric crystals, Appl. Phys. Lett. 82, 3934–3936 (2003)

    Article  ADS  Google Scholar 

  177. Y. Cho, S. Hashimoto, N. Odagawa, K. Tanaka, Y. Hiranaga: Realization of 10 Tbit/in.2 memory density and subnanosecond domain switching time in ferroelectric data storage, Appl. Phys. Lett. 87, 232907 (2005)

    Article  ADS  Google Scholar 

  178. C. Restoin, S. Massy, C. Darraud-Taupiac, A. Barthelemy: Fabrication of 1D and 2D structures at submicrometer scale on lithium niobate by electron beam bombardment, Opt. Mater. 22, 193–199 (2003)

    Article  ADS  Google Scholar 

  179. J. Son, Y. Yuen, S. S. Orlov, L. Hesselink: Sub-micron ferroelectric domain engineering in liquid phase epitaxy LiNbO3 by direct-write e-beam techniques, J. Cryst. Growth 281, 492–500 (2005)

    Article  ADS  Google Scholar 

  180. C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, K. Buse: Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals, Appl. Phys. Lett. 86, 212901 (2005)

    Article  ADS  Google Scholar 

  181. M. C. Wengler, B. Fassbender, E. Soergel, K. Buse: Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources, J. Appl. Phys. 96, 2816–2820 (2004)

    Article  ADS  Google Scholar 

  182. E. P. Kokanyan, V. G. Babajanyan, G. G. Demirkhanyan, J. B. Gruber, S. Erdei: Periodically poled structures in doped lithium niobate crystals, J. Appl. Phys. 92, 1544–1547 (2002)

    Article  ADS  Google Scholar 

  183. I. I. Naumova, N. F. Evlanova, V. A. Dyakov, T. G. Chernevich, O. A. Shustin: Grown PPLN with small period: Selective chemical etching and AFM study, J. Mater. Sci. Mater. Electron. 17, 267–271 (2006)

    Google Scholar 

  184. E. Soergel: Visualization of ferroelectric domains in bulk single crystals, Appl. Phys. B 81, 729–751 (2005)

    Article  ADS  Google Scholar 

  185. C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, J. R. Owen: Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations, J. Mater. Chem. 12, 295–298 (2002)

    Article  Google Scholar 

  186. M. Alexe, A. Gruverman (Eds.): Nanoscale Characterisation of Ferroelectric Materials, 1 edn. (Springer, Berlin, New York 2004)

    Google Scholar 

  187. K. Mizuuchi, T. Sugita, K. Yamamoto, T. Kawaguchi, T. Yoshino, M. Imaeda: Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3, Opt. Lett. 28, 1344–1346 (2003)

    Article  ADS  Google Scholar 

  188. R. Le Targat, J.-J. Zondy, P. Lemonde: 75 %-efficiency blue generation from an intracavity PPKTP frequency doubler, arXiv.org:physics, 0408031 (2004) Unpublished

    Google Scholar 

  189. M. Bode, I. Freitag, A. Tuennermann, H. Welling: Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region, Opt. Lett. 22, 1220–1222 (1997)

    Article  ADS  Google Scholar 

  190. C. M. Soukoulis (Ed.): Photonic Band Gaps and Localization (Plenum, New York 1993)

    Google Scholar 

  191. C. M. Bowden, J. P. Dowling, H. O. Everitt (Eds.): Development and applications of materials exhibiting photonic band gaps, J. Opt. Soc. Am. B 10(2), 279–413 (1993)

    Google Scholar 

  192. G. Kurizuki, J. W. Haus (Eds.): Principles and applications of photonic band structures, J. Mod. Opt. 41(2), 171–404 (1994)

    Google Scholar 

  193. J. D. Joannopoulos, R. D. Meade, J. N. Winn: Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton 1995)

    MATH  Google Scholar 

  194. C. M. Soukoulis (Ed.): Photonic Band Gap Materials (Kluwer, Dordrecht 1996)

    Google Scholar 

  195. A. Scherer, T. Doll, E. Yablonovitch, E. O. Everitt, J. A. Higgins (Eds.): Special section on electromagnetic cystal structures, design, synthesis and applications, J. Lightwave Technol. (11) 17, 1928–2207 (1999)

    Google Scholar 

  196. S. G. Johnson, J. D. Joannopoulos (Eds.): Photonic Crystals: The Road from Theory to Practice (Kluwer, Dordrecht 2002)

    Google Scholar 

  197. K. Sakoda: Optical Properties of Photonic Crystals (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  198. R. M. De La Rue (Ed.): PECS 2000, Opt. Quantum Electron. 34(1/3), 1–316 (2002)

    Google Scholar 

  199. S. Noda, T. Baba: Roadmap on Photonic Crystals (Kluwer, Dordrecht 2003)

    Google Scholar 

  200. K. Inoue, K. Ohtaka (Eds.): Photonic Crystals: Physics, Fabrication and Applications (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  201. H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurosawa, N. Shinya: Photonic material for designing arbitrarily shaped waveguides in two dimensions, Phys. Rev. B 67, 235109 (2003)

    Article  ADS  Google Scholar 

  202. K. Ohtaka: Energy band of photons and low-energy photon diffraction, Phys. Rev. B 19, 5057 (1979)

    Article  ADS  Google Scholar 

  203. E. Yablonovitch: Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  204. N. Carlsson, T. Takemori, K. Asakawa, Y. Katayama: Scattering-method calculation of propagation modes in two-dimensional photonic crystals of finite thickness, J. Opt. Soc. Am. B 18, 1260–1267 (2001)

    Article  ADS  Google Scholar 

  205. K. Ohtaka: Theory I. Basic aspects of photonic bands. In: Photonic Crystals, ed. by K. Inoue, K. Ohtaka (Springer, Berlin, Heidelberg 2004) Chap. 3

    Google Scholar 

  206. Y. Segawa, K. Ohtaka: Other types of photonic crystals. In: Photonic Crystals, ed. by K. Inoue, K. Ohtaka (Springer, Berlin, Heidelberg 2004) Chap. 8

    Google Scholar 

  207. T. E. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff: Extraordinary optical transmission through subwavelength hole arrays, Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  208. M. Notomi: Theory of light propagation in strongly modulated photonic crystal; Refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev. B 62, 10696 (2000)

    Article  ADS  Google Scholar 

  209. J. B. Pendry: Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  210. M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa: Lasing action due to the two-dimen- sional quasiperiodicity of photonic quasicrystals with a Penrose lattice, Phys. Rev. Lett. 92, 123906 (2004)

    Article  ADS  Google Scholar 

  211. Y. Akahane, T. Asano, B. S. Song, S. Noda: Fine-tuned high-Q photonic-crystal nanocavity, Opt. Express 13, 1202 (2005)

    Article  ADS  Google Scholar 

  212. T. Yoshie, A. Scherer, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shehekin, D. G. Deppe: Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432, 200 (2004)

    Article  ADS  Google Scholar 

  213. B. S. Song, S. Noda, T. Asano, Y. Akahane: Ultra-high-Q photonic double-heterostructure nanocavity, Nature Mater. 4, 207 (2005)

    Article  ADS  Google Scholar 

  214. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin: All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21, 1547 (1996)

    Article  ADS  Google Scholar 

  215. J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell: Photonic band gap guidance optical fiber, Science 282, 1476 (1998)

    Article  Google Scholar 

  216. K. Ohtaka: Theory II. Advanced topics of photonic crystals. In: Photonic Crystals, ed. by K. Inoue, K. Ohtaka (Springer, Berlin, Heidelberg 2004) Chap. 4

    Google Scholar 

  217. P. Yeh: Optical Waves in Layered Media (Wiley, New York 1988) Chap. 6,7

    Google Scholar 

  218. K. Ohtaka, T. Ueta, Y. Tanabe: Analog of optics of photonic crystals to that of anisotropic crystals, J. Phys. Soc. Jpn 65, 3068 (1996)

    Article  ADS  Google Scholar 

  219. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis: Electromagnetic waves: Negative refraction by photonic crystals, Nature 423, 604 (2003)

    Article  ADS  Google Scholar 

  220. A. Barrier, M. Mulot, M. Swillo, M. Qui, L. Thylen, A. Talneau, S. Anand: Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal, Phys. Rev. Lett. 93, 073902 (2004)

    Article  ADS  Google Scholar 

  221. T. Baba: Photonic crystal devices. In: Photonic Crystals, ed. by K. Inoue, K. Ohtaka (Springer, Berlin, Heidelberg 2004) Chap. 11

    Google Scholar 

  222. A. Sugitatsu, T. Asano, S. Noda: Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs, Appl. Phys. Lett. 84, 5395 (2004)

    Article  ADS  Google Scholar 

  223. K. Inoue, H. Sasaki, K. Ishida, Y. Sugimoto, N. Ikeda, Y. Tanaka, S. Ohkouchi, Y. Nakamura, K. Asakawa: InAs quantum dot laser utilizing GaAs photonic-crystal line-defect waveguide, Opt. Express 12, 5502 (2004)

    Article  ADS  Google Scholar 

  224. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, K. Inoue: Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab wave guides up to 1 cm in length, Opt. Express 12, 1090 (2004)

    Article  ADS  Google Scholar 

  225. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, L. Ramunno: Disoder- induced scattering loss of line-defect waveguides in photonic crystal slabs, Phys. Rev. B 72, 161318 (2005)

    Article  ADS  Google Scholar 

  226. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, K. Asakawa: Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks, Opt. Express 12, 6606 (2004)

    Article  ADS  Google Scholar 

  227. H. Horiuchi, T. Ochiai, J. Inoue, Y. Segawa, Y. Shibata, K. Ishi, Y. Kondo, M. Kanbe, H. Miyazaki, F. Hinode, S. Yamaguchi, K. Ohtaka: Exotic radiation from a photonic crystal excited by an ultra-relativistic electron beam, Phys. Rev. E 74, 056601 (2006)

    Article  ADS  Google Scholar 

  228. T. Ochiai, K. Ohtaka: Theory of unconventional Smith-Purcell radiation in finite-size photonic crystal, Opt. Express 14, 7378–7397 (2006)

    Article  ADS  Google Scholar 

  229. D. J. H. Maclean: Optical Line Systems (Wiley, Chichester 1996)

    Google Scholar 

  230. C. K. Kao, G. A. Hockam: Dielectric fiber surface waveguides for optical frequencies, IEE Proc. 133, 1151 (1966)

    Google Scholar 

  231. T. Miya, Y. Terunama, T. Hosaka, T. Miyashita: An ultimate low loss single mode fiber at 1.55 μ m, Electron. Lett. 15, 106 (1979)

    Article  ADS  Google Scholar 

  232. T. Moriyama, O. Fukuda, K. Sanada, K. Inada, T. Edahvio, K. Chida: Ultimately low OH content V.A.D. optical fibers, Electron. Lett. 16, 689 (1980)

    Article  Google Scholar 

  233. A. Ghatak, K. Thyagarajan: Optical Electronics (Cambridge Univ. Press, Cambridge 1989)

    Google Scholar 

  234. D. Gloge: Weakly guiding fibers, Appl. Opt. 10, 2252 (1971)

    Article  ADS  Google Scholar 

  235. A. Ghatak, K. Thyagarajan: Introduction to Fiber Optics (Cambridge Univ. Press, Cambridge 1998)

    Google Scholar 

  236. D. Marcuse: Gaussian approximation of the fundamental modes of a graded index fibers, J. Opt. Soc. Am. 68, 103 (1978)

    Article  ADS  Google Scholar 

  237. D. Marcuse: Interdependence of waveguide and material dispersion, Appl. Opt. 18, 2930–2932 (1979)

    Article  ADS  Google Scholar 

  238. M. J. Li: Recent progress in fiber dispersion compensators, Proc ECOC, Amsterdam 2001, Tech. Dig. ThM1.1

    Google Scholar 

  239. R. Ramaswami, K. N. Sivarajan: Optical Networks: a Practical Perspective (Morgan Kaufmann, San Francisco 1998)

    Google Scholar 

  240. Y. Nagasawa, K. Aikawa, N. Shamoto, A. Wada, Y. Sugimasa, I. Suzuki, Y. Kikuchi: High performance dispersion compensating fiber module, Fujikura Rev. 30, 1 (2001)

    Google Scholar 

  241. K. Thyagarajan, R. K. Varshney, P. Palai, A. Ghatak, I. C. Goyal: A novel design of a dispersion compensating fiber, Photon. Tech. Lett. 8, 1510 (1996)

    Article  ADS  Google Scholar 

  242. J. L. Auguste, R. Jindal, J. M. Blondy, Marcou J. Clapeau, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, K. Thyagarajan: 1800 ps/(nm.km) chromatic dispersion at 1.55 μ m in dual concentric core fibre, Electron. Lett. 36, 1689 (2000)

    Article  Google Scholar 

  243. S. Ramachandran (Ed.): Fiber Based Dispersion Compensation (Springer, Berlin, Heidelberg 2007) in press

    Google Scholar 

  244. R. Kashyap: Fiber Bragg Gratings (Academic, San Diego 1999)

    Google Scholar 

  245. A. Othonos, K. Kalli: Fiber Bragg Grating: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston 1999)

    Google Scholar 

  246. P. C. Becker, N. A. Olsson, J. R. Simpson: Erbium Doped Fiber Amplifiers (Academic, San Diego 1999)

    Google Scholar 

  247. W. L. Barnes, R. I. Laming, E. J. Tarbox, P. Morkel: Absorption and emission cross section of Er3+ doped silica fibers, IEEE J. Quant. Electron 27, 1004–1010 (1991)

    Article  ADS  Google Scholar 

  248. E. Desurvire: Erbium Doped Fiber Amplifiers (Academic, New York 1994)

    Google Scholar 

  249. M. A. Arbore, Y. Zhou, H. Thiele, J. Bromage, L. Nelson: S-band Erbium doped fiber amplifiers for WDM transmission between 1488 and 1508 nm, Proc. Optical Fiber Communications Conference, Atlanta 2003, Tech. Dig. WK2

    Google Scholar 

  250. K. Thyagarajan, C. Kakkar: S-band single stage EDFA with 25 dB gain using distributed ASE suppression, IEEE Photon. Tech. Lett. 16, 2448–2450 (2004)

    Article  ADS  Google Scholar 

  251. J. Bromage: Raman amplification for fiber communication systems, J. Lightwave Technol. 22, 79 (2004)

    Article  ADS  Google Scholar 

  252. K. Thyagarajan, C. Kakkar: Fiber design for broadband, gain flattened Raman fiber amplifier, IEEE Photon. Technol. Lett. 15, 1701–1703 (2003)

    Article  ADS  Google Scholar 

  253. K. Thyagarajan, C. Kakkar: Segmented-clad fiber design for tunable leakage loss, J. Lightwave Technol. 23(Special issue, Optical Fiber Design), 3444–3453 (2005)

    ADS  Google Scholar 

  254. M. N. Islam: Overview of Raman amplification in telecommunications. In: Raman Amplifiers for Telecommunications, Vol. 1, ed. by N. Islam M. (Springer, New York 2004)

    Google Scholar 

  255. G. P. Agarwal: Fiber optic Raman amplifiers. In: Guided Wave Optical Components and Devices, ed. by P. Pal B. (Elsevier, Amsterdam 2006)

    Google Scholar 

  256. A. R. Chraplyvy: Limitations on lightwave communications imposed by optical-fiber nonlinearities, J. Lightwave Technol. 8, 1548 (1990)

    Article  ADS  Google Scholar 

  257. R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, R. M. Derosier: Four photon mixing and high speed WDM systems, J. Lightwave Technol. 13, 841 (1995)

    Article  ADS  Google Scholar 

  258. G. P. Agarwal: Nonlinear Fiber Optics (Academic, Boston 1989)

    Google Scholar 

  259. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, D. J. Richardson: 2R-regenerative all-optical switch based on a highly nonlinear holey fiber, Opt. Lett. 26, 1233 (2001)

    Article  ADS  Google Scholar 

  260. J. K. Ranka, R. S. Windeler, A. J. Stentz: Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett. 25, 25–27 (2000)

    Article  ADS  Google Scholar 

  261. M. Saruwatari: All-optical signal processing for terabit/second optical transmission, IEEE J. Sel. Top. Quantum Electron. 6, 1363 (2000)

    Article  Google Scholar 

  262. J. Hansryd, A. Andrekson, A. Westlund, J. Li, P. Hedekvist: Fiber based optical parametric amplifiers and their applications, IEEE Sel. Top. Quantum Electron. 8, 506 (2002)

    Article  Google Scholar 

  263. J. K. Ranka, R. S. Windeler: Nonlinear interactions in air-silica microstructure optical fibers, Opt. Photon. News, August 2000, p. 20

    Google Scholar 

  264. K. Kurokawa, K. Tajima, J. Zhou, K. Nakajima, T. Matsui, I. Sankawa: Penalty free dispersion managed soliton transmission over 100 km low loss PCF, Proc. Optical fiber Communications Conference, Tech. Dig. PDP 21, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Brunner Dr. , Enrico Geißler , Bernhard Messerschmidt Dr. , Dietrich Martin Dr. , Elisabeth Soergel Dr. , Kuon Inoue Prof. , Kazuo Ohtaka Prof. , Ajoy Ghatak or K. Thyagarajan Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC New York

About this entry

Cite this entry

Brunner, R. et al. (2007). Advanced Optical Components. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30420-5_8

Download citation

Publish with us

Policies and ethics