Skip to main content

Huntington's Disease: Unraveling the Pathophysiological Cascade Behind a Singular Gene Defect

  • Reference work entry
  • First Online:
Book cover Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Huntington's disease (HD), an autosomal dominantly inherited disease, belongs to a group of neurodegenerative disorders, which share the same genetic defect, i.e., a CAG triplet expansion that is translated into polyglutamine chains within different proteins. Although HD is caused by a singular gene defect, this disease shows a high variability in age of onset and in its clinical manifestations, which include characteristic motor, cognitive, and psychiatric symptoms. This variability can only partly be explained by changes in CAG length. While some other rare neurodegenerative diseases share some of the clinical phenotype with HD, some perplexing phenocopies of HD called “HD‐like diseases” have been identified recently, which are related to different gene defects. The key step in the molecular pathology is a conformational change in the expanded polyglutamine above a certain length threshold, which leads to formation of β‐strands and polyglutamine aggregation. As a histopathological hallmark, intranuclear huntingtin‐positive aggregates have been identified, making HD another neurodegenerative disease, with the presence of insoluble protein aggregates, like Alzheimer's or Parkinson's disease. Furthermore, key steps in molecular pathology include early changes in transcriptional regulation. Numerous transgenic mouse, fly, and in vitro cellular models help us to elucidate disease mechanism and evaluate therapeutic strategies. This allows more specific therapeutic interventions in the near future, in this model disease, for hereditary neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APOE:

apolipoprotein E

BDNF:

brain‐derived neurotrophic factor

CBP:

CREB‐binding protein

DRPLA:

dentato‐rubro‐pallido‐luysian atrophy

HARP:

hypoprebetalipoproteinemia, acanthocytosis, retinitis pigmentosa, and pallidal degeneration

HD:

Huntington's disease

Hdh:

mouse HD gene homologue

IT15:

interesting transcript 15, name of the HD gene on chromosome 4

NAA:

N‐acetylaspartate

NMDA:

N‐methyl‐d‐aspartate

PEG:

percutaneous endoscopic gastrostomy

SAHA:

suberoylanilide hydroxamic acid

SCA:

spinocerebellar atrophy

UTR:

untranslated region

References

  • Albin RL, Young AB, Penney JB. 1989. The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375.

    Article  CAS  PubMed  Google Scholar 

  • Andreassen OA, Ferrante RJ, Huang HM, Dedeoglu A, Park L, et al. 2001. Dichloroacetate exerts therapeutic effects in transgenic mouse models of Huntington's disease. Ann Neurol 50: 112–117.

    Article  CAS  PubMed  Google Scholar 

  • Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, et al. 1993. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet 4: 398–403.

    Article  CAS  PubMed  Google Scholar 

  • Ashizawa T, Wong LJ, Richards CS, Caskey CT, Jankovic J. 1994. CAG repeat size and clinical presentation in Huntington's disease. Neurology 44: 1137–1143.

    Article  CAS  PubMed  Google Scholar 

  • Bamford KA, Caine ED, Kido DK, Cox C, Shoulson I. 1995. A prospective evaluation of cognitive decline in early Huntington's disease: Functional and radiographic correlates. Neurology 45: 1867–1873.

    Article  CAS  PubMed  Google Scholar 

  • Bauer P, Laccone F, Rolfs A, Wullner U, Bosch S, et al. 2004. Trinucleotide repeat expansion in SCA17/TBP in white patients with Huntington's disease-like phenotype. J Med Genet 41: 230–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beal MF. 1995. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38: 357–366.

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Ferrante RJ, Swartz KJ, Kowall NW. 1991. Chronic quinolinic acid lesions in rats closely resemble Huntington's disease. J Neurosci 11: 1649–1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beenen N, Buttner U, Lange HW. 1986. The diagnostic value of eye movement recordings in patients with Huntington's disease and their offspring. Electroencephalogr Clin Neurophysiol 63: 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB. 2002. Impaired glutamate transport and glutamate-glutamine cycling: Downstream effects of the Huntington mutation. Brain 125: 1908–1922.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov MB, Ferrante RJ, Kuemmerle S, Klivenyi P, Beal MF. 1998. Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington's disease. J Neurochem 71: 2644.

    Google Scholar 

  • Boutell JM, Thomas P, Neal JW, Weston VJ, Duce J, et al. 1999. Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin. Hum Mol Genet 8(9)1647–1655.

    Article  CAS  PubMed  Google Scholar 

  • Brandt J, Bylsma F, Gross R, Stine O, Ranen N, et al. 1996. Trinucleotide repeat length and clinical progression in Huntington's disease. Neurology 46: 531–535.

    Google Scholar 

  • Brandt J, Strauss ME, Larus J, Jensen B, Folstein SE, et al. 1984. Clinical correlates of dementia and disability in Huntington's disease. J Clin Neuropsychol 6: 401–412.

    Article  CAS  PubMed  Google Scholar 

  • Brinkman RR, Mezei MM, Theilmann J, Almqvist E, Hayde MR. 1997. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am J Hum Genet 60: 1202–1210.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Browne SE, Bowling AC, Mac Garvey U, Baik MJ, Berger SC, et al. 1997. Oxidative damage and metabolic dysfunction in Huntington's disease: Selective vulnerability of the basal ganglia. Ann Neurol 41: 653.

    Article  Google Scholar 

  • Browne SE, Ferrante RJ, Beal MF. 1999. Oxidative stress in Huntington's disease. Brain Pathol 9: 147–163.

    Article  CAS  PubMed  Google Scholar 

  • Bruyn GW. 1979. Huntington's chorea. Tijdschr Ziekenverpl 32: 101–105.

    CAS  PubMed  Google Scholar 

  • Butters N, Wolfe J, Granholm E, Martone M. 1986. An assessment of verbal recall, recognition and fluency abilities in patients with Huntington's disease. Cortex 22: 11–12.

    Article  CAS  PubMed  Google Scholar 

  • Bylsma FW, Rebok GW, Brandt J. 1991. Long-term retention of implicit learning in Huntington's disease. Neuropsychologia 29: 1213–1221.

    Article  CAS  PubMed  Google Scholar 

  • Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, et al. 1999. Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. J Neurosci 19: 3248–3257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cepeda C, Ariano MA, Calvert CR, Flores-Hernandez J, Chandler SH, et al. 2001. NMDA receptor function in mouse models of Huntington disease. J Neurosci Res 66: 525–539.

    Article  CAS  PubMed  Google Scholar 

  • Cha JH. 2000. Transcriptional dysregulation in Huntington's disease. Trends Neurosci 23: 387–392.

    Article  CAS  PubMed  Google Scholar 

  • Cha JH, Frey AS, Alsdorf SA, Kerner JA, Kosinski CM, et al. 1999. Altered neurotransmitter receptor expression in transgenic mouse models of Huntington's disease. Philos Trans R Soc Lond B Biol Sci 354: 981–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha JH, Kosinski CM, Kerner JA, Alsdorf SA, Mangiarini L, et al. 1998. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc Natl Acad Sci USA 95(11): 6480–6485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan EY, Luthi-Carter R, Strand A, Solano SM, Hanson SA, et al. 2002. Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington's disease. Hum Mol Genet 11: 1939–1951.

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Ona VO, Li M, Ferrante RJ, Fin, KB, et al. 2000. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of huntington disease. Nat Med 6: 797–801.

    Article  CAS  PubMed  Google Scholar 

  • Chong SS, Almqvist E, Telenius H, La Tray L, Nichol K, et al. 1997. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: Evidence from single sperm analyses. Hum Mol Genet 6: 301–309.

    Article  CAS  PubMed  Google Scholar 

  • Claes S, Van Zand K, Legius E, Dom R, Malfroid M, et al. 1995. Correlations between triplet repeat expansion and clinical features in Huntington's disease. Arch Neurol 52: 749–753.

    Article  CAS  PubMed  Google Scholar 

  • Critchley EM, Clark, DB, Wikler A. 1967. An adult form of acanthocytosis. Trans Am Neurol Assoc 92: 132–137.

    CAS  PubMed  Google Scholar 

  • Crossman AR. 1987. Primate models of dyskinesia: The experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience 21: 1–40.

    Article  CAS  PubMed  Google Scholar 

  • Cummings CJ, Zoghbi HY. 2000. Trinucleotide repeats: Mechanisms and pathophysiology. Annu Rev Genomics Hum Genet 1: 281–328.

    Article  CAS  PubMed  Google Scholar 

  • Curra A, Agostino R, Galizia P, Fittipaldi F, Manfredi M, et al. 2000. Sub-movement cueing and motor sequence execution in patients with Huntington's disease. Clin Neurophysiol 111: 1184–1190.

    Article  CAS  PubMed  Google Scholar 

  • Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, et al. 2001. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28: 350–354.

    Article  CAS  PubMed  Google Scholar 

  • Danek A, Tison F, Rubio J, Oechsner M, Kalckreuth W, et al. 2001. The chorea of McLeod syndrome. Mov Disord 16: 882–889.

    Article  CAS  PubMed  Google Scholar 

  • Davies S, Beardsall K, Turmaine M, Di Figlia M, Aronin N, et al. 1998. Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions? Lancet 351: 131–133.

    Article  CAS  PubMed  Google Scholar 

  • Davies S, Turmaine M, Cozens B, Di Figlia M, Sharp A, et al. 1997. Formation of neuronal intranuclear inclusions (NII) underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90: 537–548.

    Article  CAS  PubMed  Google Scholar 

  • Davis MB, Bateman D, Quinn NP, Marsden CD, Harding, AE. 1994. Mutation analysis in patients with possible but apparently sporadic Huntington's disease. Lancet 344: 714–717.

    Article  CAS  PubMed  Google Scholar 

  • de Boo G, Tibben A, Hermans J, Maat A, Roos RA. 1998. Subtle involuntary movements are not reliable indicators of incipient Huntington's disease. Mov Disord 13: 96–99.

    Article  CAS  PubMed  Google Scholar 

  • Dedeoglu A, Kubilus JK, Yang L, Ferrante KL, Hersch SM, et al. 2003. Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington's disease transgenic mice. J Neurochem 85: 1359–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiFiglia M, Sapp E, Chase K, Davies S, Bates G, et al. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990–1993.

    Article  CAS  PubMed  Google Scholar 

  • DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, et al. 1995. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14: 1075–1081.

    Article  CAS  PubMed  Google Scholar 

  • Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, et al. 2002. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 296: 2238–2243.

    Article  CAS  PubMed  Google Scholar 

  • Duyao M, Ambrose C, Myers R. 1993. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genet 4: 387–392.

    Article  CAS  PubMed  Google Scholar 

  • Farrer LA. 1985. Diabetes mellitus in Huntington disease. Clin Genet 27(1): 62–67.

    Article  CAS  PubMed  Google Scholar 

  • Ferrante RJ, Andreassen OA, Dedeoglu A, Ferrante KL, Jenkins BG, et al. 2002. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease. J Neurosci 22: 1592–1599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, et al. 2000. Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. J Neurosci 20: 4389–4397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrante RJ, Kubilusz JK, Lee J, yu H, eesen A, et al. 2004. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci 23: 9418–9427.

    Article  Google Scholar 

  • Folstein SE, Jensen B, Leigh RJ, Folstein MF. 1983. The measurement of abnormal movement: Methods developed for Huntington's disease. Neurobehav Toxicol Teratol 5: 605–609.

    CAS  PubMed  Google Scholar 

  • Forno LS, Norville RL. 1979. Ultrastructure of the neostriatum in Huntington's and Parkinson's disease. Adv Neurol 23: 123–139.

    Google Scholar 

  • Friedlander RM. 2003. Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348: 1365–1375.

    Article  CAS  PubMed  Google Scholar 

  • Garcia Ruiz PJ, Gomez-Tortosa E, del Barrio A, Benitez J, Morales B, et al. 1997. Senile chorea: A multicenter prospective study. Acta Neurol Scand 95: 180–183.

    Article  CAS  PubMed  Google Scholar 

  • Georgiou N, Phillips JG, Bradshaw JL, Cunnington R, Chiu E. 1997. Impairments of movement kinematics in patients with Huntington's disease: A comparison with and without a concurrent task. Mov Disord 12: 386–396.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg YP, Andrew SE, Theilmann J, Kremer B, Squitieri F, et al. 1993. Familial predisposition to recurrent mutations causing Huntington's disease: Genetic risk to sibs of sporadic cases. J Med Genet 30: 987–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haines JL, Conneally PM. 1986. Causes of death in Huntington disease as reported on death certificates. Genet Epidemiol 3: 417–423.

    Article  CAS  PubMed  Google Scholar 

  • Hardie RJ, Pullon HW, Harding AE, Owen JS, Pires M, et al. 1991. Neuroacanthocytosis. A clinical, haematological and pathological study of 19 cases. Brain 114 (Pt. 1A):13–49.

    PubMed  Google Scholar 

  • Hefter H, Homberg V, Lange HW, Freund HJ. 1987. Impairment of rapid movement in Huntington's disease. Brain 110: 585–612.

    Article  PubMed  Google Scholar 

  • Heinsen H, Strik M, Bauer M, Luther K, Ulmar G, et al. 1994. Cortical and striatal neurone number in Huntington's disease. Acta Neuropathol 88: 320–333.

    Article  CAS  PubMed  Google Scholar 

  • Hickey MA, Chesselet MF. 2003. Apoptosis in Huntington's disease. Prog Neuropsychopharmacol Biol Psychiatry 27: 255–265.

    Article  CAS  PubMed  Google Scholar 

  • Higgins JJ, Patterson MC, Papadopoulos NM, Brady RO, Pentchev PG, et al. 1992. Hypoprebetalipoproteinemia, acanthocytosis, retinitis pigmentosa, and pallidal degeneration (HARP syndrome). Neurology 42: 194–198.

    Article  CAS  PubMed  Google Scholar 

  • Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, et al. 2003. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 100: 2041–2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann J. 1888. Über Chorea chronica progressiva (Huntingtonsche Chorea, Chorea hereditaria). Virchows Archiv für pathologische Anatomie 111: 513–548.

    Article  Google Scholar 

  • Holbert S, Denghien I, Kiechle T, Rosenblatt A, Wellington C, et al. 2001. The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: Neuropathologic and genetic evidence for a role in Huntington's disease pathogenesis. Proc Natl Acad Sci USA 98: 1811–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huntington G. 1872. On chorea. Med Surg Rep 26: 317–321.

    Google Scholar 

  • Huntington's Disease Collaborative Research Group. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72: 971–983.

    Google Scholar 

  • Jelgersma. 1908. Die anatomischen Veränderungen bei Paralysis agitans und chronischer Chorea. Verhandlungen der Gesellschaft deutscher Naturforscher und Ärzte 2: 383–388.

    Google Scholar 

  • Jenkins B, Koroshetz W, Beal MF, Rosen B. 1993. Evidence for an energy metabolism defect in Huntington's disease using localized proton spectroscopy. Neurology 43: 2689–2695.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins BG, Klivenyi P, Kustermann E, Andreassen OA, Ferrante RJ, et al. 2000. Non-linear decrease over time in N-acetylaspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington's disease mice. J Neurochem 74: 2119.

    Google Scholar 

  • Kambouris M, Bohlega S, Al Tahan A, Meyer BF. 2000. Localization of the gene for a novel autosomal recessive neurodegenerative Huntington-like disorder to 4p15.3. Am J Hum Genet 66: 445–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehoe P, Krawczak M, Harper PS, Owen MJ, Jones AL. 1999. Age of onset in Huntington disease: Sex specific influence of apolipoprotein E genotype and normal CAG repeat length. J Med Genet 36: 108–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kieburtz K, Mac Donald M, Shih C, Feigin A, Steinberg K, et al. 1994. Trinucleotide repeat length and progression of illness in Huntington's disease. J Med Genet 31: 872–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Lee HS, La Foret G, McIntyre C, Martin EJ, et al. 1999. Mutant huntingtin expression in clonal striatal cells: Dissociation of inclusion formation and neuronal survival by caspase inhibition. J Neurosci 19: 964–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkwood SC, Siemers E, Hodes ME, Conneally PM, Christian JC, et al. 2000. Subtle changes among presymptomatic carriers of the Huntington's disease gene. J Neurol Neurosurg Psychiatry 69: 773–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koller WC, Trimble J. 1985. The gait abnormality of Huntington's disease. Neurology 35: 1450–1454.

    Article  CAS  PubMed  Google Scholar 

  • Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF. 1997. Energy metabolism defects in Huntington's disease and effects of coenzyme Q10. Ann Neurol 41: 160–165.

    Article  CAS  PubMed  Google Scholar 

  • Kovtun IV, McMurray CT. 2001. Trinucleotide expansion in haploid germ cells by gap repair. Nat Genet 27: 407–411.

    Article  CAS  PubMed  Google Scholar 

  • Kremer B, Almqvist E, Theilmann J, Spence N, Telenius H, et al. 1995. Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes. Am J Hum Genet 57: 343–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer HP, Roos RA. 1992. Weight loss in Huntington's disease. Arch Neurol 49: 349.

    Article  CAS  PubMed  Google Scholar 

  • Landwehrmeyer GB, McNeil SM, Dure LS, Ge P, Aizawa H, et al. 1995. Huntington's disease gene: Regional and cellular expression in brain of normal and affected individuals. Ann Neurol 37: 218–230.

    Article  CAS  PubMed  Google Scholar 

  • Lanska DJ, Lanska MJ, Lavine L, Schoenberg BS. 1988. Conditions associated with Huntington's disease at death. A case-control study. Arch Neurol 45: 878–880.

    CAS  PubMed  Google Scholar 

  • Lasker AG, Zee DS. 1997. Ocular motor abnormalities in Huntington's disease. Vision Res 37: 3639–3645.

    Article  CAS  PubMed  Google Scholar 

  • Lasker AG, Zee DS, Hain TC, Folstein SE, Singer HS. 1988. Saccades in Huntington's disease: Slowing and dysmetria. Neurology 38: 427–431.

    Article  CAS  PubMed  Google Scholar 

  • Leavitt BR, Guttman JA, Hodgson JG, Kimel GH, Singaraja R, et al. 2001. Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am J Hum Genet 68: 313–324.

    Article  CAS  PubMed  Google Scholar 

  • Leeflang EP, Zhang L, Tavare S, Hubert R, Srinidhi J, et al. 1995. Single sperm analysis of the trinucleotide repeats in the Huntington's disease gene: Quantification of the mutation frequency spectrum. Hum Mol Genet 4: 1519–1526.

    Article  CAS  PubMed  Google Scholar 

  • Levine MS, Klapstein GJ, Koppel A, Gruen E, Cepeda C, et al. 1999. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knock-in mouse models of Huntington's disease. J Neurosci Res 58: 515–532.

    Article  CAS  PubMed  Google Scholar 

  • Li JL, Hayden MR, Almqvist EW, Brinkman RR, Durr A, et al. 2003. A genome scan for modifiers of age at onset in Huntington disease: The HD MAPS study. Am J Hum Genet 73: 682–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SH, Cheng AL, Zhou H, Lam S, Rao M, et al. 2002. Interaction of Huntington disease protein with transcriptional activator. Sp1 Mol Cell Biol 22: 1277–1287.

    Article  CAS  PubMed  Google Scholar 

  • Li SH, Schilling G, Young W3, Li XJ, Margolis RL, et al. 1993. Huntington's disease gene (IT15) is widely expressed in human and rat tissues. Neuron 11: 985–993.

    Article  CAS  PubMed  Google Scholar 

  • Lievens JC, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, et al. 2001. Impaired glutamate uptake in the R6 Huntington's disease transgenic mice. Neurobiol Dis 8: 807–821.

    Article  CAS  PubMed  Google Scholar 

  • Lione LA, Carter RJ, Hunt MJ, Bates GP, Morton AJ, et al. 1999. Selective discrimination learning impairments in mice expressing the human Huntington's disease mutation. J Neurosci 19: 10428–10427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis ED, Anderson KE, Moskowitz C, Thorne DZ, Marder K. 2000. Dystonia-predominant adult-onset Huntington disease: Association between motor phenotype and age of onset in adults. Arch Neurol 57: 1326–1330.

    CAS  PubMed  Google Scholar 

  • Louis ED, Marder K, Moskowitz C, Greene P. 1999. Arm elevation in Huntington's disease: Dystonia or levitation? Mov Disord 14: 1035–1038.

    Article  CAS  PubMed  Google Scholar 

  • Lüesse H, Schiefer J, Sprünken A, Puls C, Block F, et al. 2001. Evaluation of R6/2 transgenic mice for therapeutic studies in Huntington's disease: Behavioral testing and impact of diabetes mellitus. Behav Brain Res 126: 185–195.

    Article  PubMed  Google Scholar 

  • Lund JC. 1860. Chorea St Vitus Dance in Saetersdalen, p. 137, quoted by Orbeck, editor. Report of Health and Medicine and Medical Conditions in Norway in 1860.

    Google Scholar 

  • Luthi-Carter R, Hanson SA, Strand AD, Bergstrom DA, Chun W, et al. 2002. Dysregulation of gene expression in the R6/2 model of polyglutamine disease: Parallel changes in muscle and brain. Hum Mol Genet 11: 1911–1926.

    Article  CAS  PubMed  Google Scholar 

  • Luthi-Carter R, Strand A, Peters NL, Solano SM, Hollingsworth ZR, et al. 2000. Decreased expression of striatal signaling genes in a mouse model of Huntington's disease. Hum Mol Genet 9: 1259–1271.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald M, Duyao M, Calzonetti T, Auerbach A, Ryan A, et al. 1996. Targeted inactivation of the mouse Huntington's disease gene homolog Hdh. Cold Spring Harb Symp Quant Biol 61: 627–638.

    Article  CAS  PubMed  Google Scholar 

  • MacMillan JC, Snell RG, Tyler A, Houlihan GD, Fenton I, et al. 1993. Molecular analysis and clinical correlations of the Huntington's disease mutation. Lancet 342: 954–958.

    Article  CAS  PubMed  Google Scholar 

  • Mandich P, Di Maria E, Bellone E, Ajmar F, Abbruzzese G. 1996. Molecular analysis of the IT15 gene in patients with apparently “sporadic” Huntington's disease. Eur Neurol 36: 348–352.

    Article  CAS  PubMed  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, et al. 1996. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493–506.

    Article  CAS  PubMed  Google Scholar 

  • Margolis RL, O'Hearn E, Rosenblatt A, Willour V, Holmes SE, et al. 2001. A disorder similar to Huntington's disease is associated with a novel CAG repeat expansion. Ann Neurol 50: 373–380.

    Article  CAS  PubMed  Google Scholar 

  • Mars H, Lewis LA, Robertson AL Jr, Butkus A, Williams GH Jr. 1969. Familial hypo-beta-lipoproteinemia: A genetic disorder of lipid metabolism with nervous system involvement. Am J Med 46: 886–900.

    Article  CAS  PubMed  Google Scholar 

  • Moore RC, Xiang F, Monaghan J, Han D, Zhang Z, et al. 2001. Huntington disease phenocopy is a familial prion disease. Am J Hum Genet 69: 1385–1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales LM, Estevez J, Suarez H, Villalobos R, Chacin dB, et al. 1989. Nutritional evaluation of Huntington disease patients. Am J Clin Nutr 50: 145–150.

    Article  CAS  PubMed  Google Scholar 

  • Myers RH, Mac Donald ME, Koroshetz WJ, Duyao MP, Ambrose CM, et al. 1993. De novo expansion of a (CAG)n repeat in sporadic Huntington's disease. Nat Genet 5: 168–173.

    Article  CAS  PubMed  Google Scholar 

  • Myers RH, Sax DS, Koroshetz WJ, Mastromauro C, Cupples LA, et al. 1991. Factors associated with slow progression in Huntington's disease. Arch Neurol 48: 800–804.

    Article  CAS  PubMed  Google Scholar 

  • Myers RH, Vonsattel JP, Stevens TJ, Cupples LA, Richardson P, et al. 1988. Clinical and neuropathologic assessment of severity in Huntington's disease. Neurology 38: 341–347.

    Article  CAS  PubMed  Google Scholar 

  • Nucifora FC Jr, Sasaki M, Peters MF, Huang H, Cooper JK, et al. 2001. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291: 2423–2428.

    Article  CAS  PubMed  Google Scholar 

  • Oepen G, Clarenbach P, Thoden U. 1981. Disturbance of eye movements in Huntington's chorea. Arch Psychiatr Nervenkr 229: 205–213.

    Article  CAS  PubMed  Google Scholar 

  • Ona VO, Li M, Vonsattel JP, Andrews LJ, Khan SQ, et al. 1999. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 399: 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Panas M, Avramopoulos D, Karadima G, Petersen MB, Vassilopoulos D. 1999. Apolipoprotein E and presenilin-1 genotypes in Huntington's disease. J Neurol 246: 574–577.

    Article  CAS  PubMed  Google Scholar 

  • Panov AV, Gutekunst CA, Leavitt B, Hayden MR, Burke JR, et al. 2002. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat Neurosci 5: 731–736.

    Article  CAS  PubMed  Google Scholar 

  • Penney JB Jr, Vonsattel JP, Mac Donald ME, Gusella JF, Myers RH. 1997. CAG repeat number governs the development rate of pathology in Huntington's disease. Ann Neurol 41: 689–692.

    Article  PubMed  Google Scholar 

  • Penney JB Jr, Young AB, Shoulson I, Starosta-Rubenstein S, Snodgrass SR, et al. 1990. Huntington's disease in Venezuela: 7 years of follow-up on symptomatic and asymptomatic individuals. Mov Disord 5: 93–99.

    Article  PubMed  Google Scholar 

  • Perutz M. 1996. Glutamine repeats and inherited neurodegenerative diseases: Molecular aspects. Curr Opin Struct Biol 6: 848–858.

    Article  CAS  PubMed  Google Scholar 

  • Phillips JG, Bradshaw JL, Chiu E, Teasdale N, Iansek R, et al. 1996. Bradykinesia and movement precision in Huntington's disease. Neuropsychologia 34: 1241–1245.

    Article  CAS  PubMed  Google Scholar 

  • Pickering DS, Thomsen C, Suzdak PD, Fletcher EJ, Robitaille R, et al. 1993. A comparison of two alternatively spliced forms of a metabotropic glutamate receptor coupled to phosphoinositide turnover. J Neurochem 61: 8–92.

    Article  Google Scholar 

  • Pratley RE, Salbe AD, Ravussin E, Caviness JN. 2000. Higher sedentary energy expenditure in patients with Huntington's disease. Ann Neurol 47: 64–70.

    Article  CAS  PubMed  Google Scholar 

  • Quinn N, Schrag A. 1998. Huntington's disease and other choreas. J Neurol 245: 709–716.

    Article  CAS  PubMed  Google Scholar 

  • Ranen N, Stine O, Abbot M, Sherr M, Codori A, et al. 1995. Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet 57: 593–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PH, Williams M, Charles V, Garrett L, Pike-Buchanan L, et al. 1998. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat Genet 20: 198–202.

    Article  CAS  PubMed  Google Scholar 

  • Reiner A, Albin RL, Anderson KD, D'Amato CJ, Penney JB, et al. 1988. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci USA 85: 5733–5737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigamonti D, Bauer JH, De Fraja C, Conti L, Sipione S, et al. 2000. Wild-type huntingtin protects from apoptosis upstream of caspase-3. J Neurosci 20: 3705–3713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roizin L, Stellar S, Liu J. 1979. Neuronal nuclear-cytoplasmic changes in Huntingtons chorea: Electron microscope investigations. Advance in Neurology, Huntington's Disease. Wexler N, Barbeau A, editors. New York: Raven Press; pp. 195–122.

    Google Scholar 

  • Roos RA, Pruyt JF, de Vries J, Bots GT. 1985. Neuronal distribution in the putamen in Huntington's disease. J Neurol Neurosurg Psychiatry 48: 422–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblatt A, Brinkman RR, Liang KY, Almqvist EW, Margolis RL, et al. 2001. Familial influence on age of onset among siblings with Huntington disease. Am J Med Genet 105: 399–403.

    Article  CAS  PubMed  Google Scholar 

  • Ross CA. 2002. Polyglutamine pathogenesis: Emergence of unifying mechanisms for Huntington's disase and related disorders. Neuron 35: 819–822.

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC, Leggo J, Chiano M, Dodge A, Norbury G, et al. 1997. Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc Natl Acad Sci USA 94: 3872–3876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanberg PR, Fibiger HC, Mark RF. 1981. Body weight and dietary factors in Huntington's disease patients compared with matched controls. Med J Aust 1: 407–409.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez I, Mahlke C, Yuan J. 2003. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421: 373–379.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez I, Xu CJ, Juo P, Kakazika A, Blenis J, et al. 1999. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22: 633.

    Article  Google Scholar 

  • Saudou F, Finkbeiner S, Devys D, Greenberg M. 1998. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95: 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, et al. 1999. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length dependent mitochondrial depolarization. Nat Med 5: 1194–1198.

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH. 1999. Mitochondrial involvement in Parkinson's, Huntington's disease, hereditäry spastic paraplegia and Friedreich's ataxia. Biochem Biophys Acta 1410: 99–102.

    CAS  PubMed  Google Scholar 

  • Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, et al. 1997. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90: 549–558.

    Article  CAS  PubMed  Google Scholar 

  • Schilling G, Sharp AH, Loev SJ, Wagster MV, Li SH, et al. 1995. Expression of the Huntington's disease (IT15) protein product in HD patients. Hum Mol Genet 4: 1365–1371.

    Article  CAS  PubMed  Google Scholar 

  • Schubotz R, Hausmann L, Kaffarnik H, Zehner J, Oepen H. 1976. Fatty acid patterns and glucose tolerance in Huntington's chorea. Res Exp Med (Berl) 167(3): 203–215.

    Article  CAS  Google Scholar 

  • Schwarz M, Fellows SJ, Schaffrath C, Noth J. 2001. Deficits in sensorimotor control during precise hand movements in Huntington's disease. Clin Neurophysiol 112: 95–106.

    Article  CAS  PubMed  Google Scholar 

  • Sharp AH, Loev SJ, Schilling G, Li SH, Li XJ, et al. 1995. Widespread expression of Huntington's disease gene (IT15) protein product. Neuron 14: 1065–1074.

    Article  CAS  PubMed  Google Scholar 

  • Shinotoh H, Calne DB, Snow B, Hayward M, Kremer B, et al. 1994. Normal CAG repeat length in the Huntington's disease gene in senile chorea. Neurology 44: 2183–2184.

    Article  CAS  PubMed  Google Scholar 

  • Sipione S, Cattaneo E. 2001. Modeling Huntington's disease in cells, flies, and mice. Mol Neurobiol 23: 21–51.

    Article  CAS  PubMed  Google Scholar 

  • Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, et al. 1993. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet 4: 393–397.

    Article  CAS  PubMed  Google Scholar 

  • Snowden J, Craufurd D, Griffiths H, Thompson J, Neary D. 2001. Longitudinal evaluation of cognitive disorder in Huntington's disease. J Int Neuropsychol Soc 7: 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, et al. 2001. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413: 739–743.

    Article  CAS  PubMed  Google Scholar 

  • Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, et al. 2000. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci USA 97: 676–678.

    Article  Google Scholar 

  • Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, et al. 2004. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10: 148–154.

    Article  CAS  PubMed  Google Scholar 

  • Thompson PD, Berardelli A, Rothwell JC, Day BL, Dick JP, et al. 1988. The coexistence of bradykinesia and chorea in Huntington's disease and its implications for theories of basal ganglia control of movement. Brain 111: 223–244.

    Article  PubMed  Google Scholar 

  • Tian JR, Zee DS, Lasker AG, Folstein SE. 1991. Saccades in Huntington's disease: Edictive tracking and interaction between release of fixation and initiation of saccades. Neurology 41: 875–881.

    Article  CAS  PubMed  Google Scholar 

  • Trottier Y, Biancalana V, Mandel JL. 1994. Instability of CAG repeats in Huntington's disease: Relation to parental transmission and age of onset. J Med Genet 31: 377–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Vugt JP, van Hilten BJ, Roos RA. 1996. Hypokinesia in Huntington's disease. Mov Disord 11: 384–388.

    Article  CAS  PubMed  Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, et al. 1985. Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 44: 559–577.

    Article  CAS  PubMed  Google Scholar 

  • Vuillaume I, Meynieu P, Schraen-Maschke S, Destee A, Sablonniere B. 2000. Absence of unidentified CAG repeat expansion in patients with Huntington's disease-like phenotype. J Neurol Neurosurg Psychiatry 68: 672–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters CO. 1842. Dunglison R, Practice in Medicine. editor. Philadelphia: Lee and Blanchard; p. 312.

    Google Scholar 

  • Wellington CL, Brinkman RR, Kusky J, Hayden MR. 1997. Toward understanding the molecular pathology of Huntington's disease. Brain Pathol 7: 979–1002.

    Article  CAS  PubMed  Google Scholar 

  • Westphal C. 1883. Über eine dem Bilde der cerebrospinalen grauen Degeneration ähnlichen Erkrankung des centralen Nervensystems ohne anatomischen Befund, nebst einigen Bemerkungen über paradoxe Contractionen. Arch Psychiatr Nervenkr 14: 187–194.

    Google Scholar 

  • Wheeler VC, Auerbach W, White JK, Srinidhi J, Auerbach A, et al. 1999. Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse. Hum Mol Genet 8: 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Dunlap JR, Andrews RB, Wetzel R. 2002. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum Mol Genet 11: 2905–2917.

    Article  CAS  PubMed  Google Scholar 

  • Young AB, Shoulson I, Penney JB, Starosta-Rubinstein S, Gomez F, et al. 1986. Huntington's disease in Venezuela neurologic features and functional decline. Neurology 36: 244–249.

    Article  CAS  PubMed  Google Scholar 

  • Zeron MM, Chen N, Moshaver A, Ting-Chun Lee A, Wellington CL, et al. 2001. Mutant huntingtin enhances excitotoxic cell death. Mol Cell Neurosci 17: 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, et al. 2002. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 33: 849–860.

    Article  CAS  PubMed  Google Scholar 

  • Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, et al. 2001. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 293: 493–498.

    Article  CAS  PubMed  Google Scholar 

  • Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, et al. 2003. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35: 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Zuhlke C, Riess O, Schroder K, Siedlaczck I, Epplen JT, et al. 1993. Expansion of the (CAG)n repeat causing Huntington's disease in 352 patients of German origin. Hum Mol Genet 2: 1467–1469.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Kosinski, C.M., Landwehrmeyer, B., Ludolph, A. (2007). Huntington's Disease: Unraveling the Pathophysiological Cascade Behind a Singular Gene Defect. In: Lajtha, A., Youdim, M.B.H., Riederer, P., Mandel, S.A., Battistin, L. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30377-2_11

Download citation

Publish with us

Policies and ethics