Skip to main content

Neurotransmitters and Electrophysiology in Traumatic Brain Injury

  • Reference work entry

Abstract:

Normal brain function requires the careful orchestration of neurotransmission and neuroelectric activity. In the traumatically injured brain, disruption of these processes may underlie, in part, subsequent brain dysfunction. This chapter focuses on two areas of traumatic brain injury (TBI) research: neurotransmitters and electrophysiology. Reviewed here are the TBI-induced responses to specific neurotransmitter systems and interventions to modulate these responses. Also, the effects of TBI on spontaneous and evoked electrical activity are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-CA:

2-chloroadenosine

5-HIAA:

5-hydroxyindoleacetic acid

5-HT:

5-hydroxytryptamine

8-OH-DPAT:

8-hydroxy-2-(di-n-propylamino)tetralin

A1AR:

A1 adenosine receptor

A2A :

adenosine-2a receptor subtype

ACh:

acetylcholine

AMPA:

[alpha]-amino-3-hydroxy-5-methylisoazole-4-proprionic acid

CAP:

compound action potential

ChAT:

choline acetyltransferase

CCI:

controlled cortical impact

CPP:

3-(2-carboxypiperazin-4-yl)propyl-l-phosphonic acid

DA:

dopamine

DAI:

diffuse axonal injury

DAT:

dopamine transporter

EP:

evoked potential

EPSP:

excitatory postsynaptic potential

GABA:

gamma-aminobutyric acid

LTP:

long-term potentiation

MWM:

Morris water maze

M1 :

muscarinic receptor subtype 1

M2 :

muscarinic receptor subtype 2

mGLuR:

metabotropic glutamate receptors

NMDA:

N-methyl-d-aspartate

NR:

NMDA receptor

CSD:

cortical spreading depression

TBI:

traumatic brain injury

TH:

tyrosine hydroxylase

VAChT:

vesicular ACh transporter

References

  • Al-Moutaery K, Al- Deeb S, Ahmad-Khan H, Tariq M. 2003. Caffeine impairs short-term neurological outcome after concussive head injury in rats. Neurosurgery 53(3): 704–711; discussion 711–712.

    Article  PubMed  Google Scholar 

  • Alessandri B, Tsuchida E, Bullock RM. 1999. The neuroprotective effect of a new serotonin receptor agonist, BAY X3702, upon focal ischemic brain damage caused by acute subdural hematoma in the rat. Brain Res 845: 232–235.

    Article  CAS  PubMed  Google Scholar 

  • Allen JW, Ivanova SA, Fan L, Espey MG, Basile AS, et al. 1999. Group II metabotropic glutamate receptor activation attenuates traumatic neuronal injury and improves neurological recovery after traumatic brain injury. J Pharmacol Exp Ther 290: 112–120.

    CAS  PubMed  Google Scholar 

  • Allen RM. 1983. Role of amantadine in the management of neuroleptic-induced extrapyramidal syndromes: Overview and pharmacology. Clin Neuropharmacol 6: S64–S73.

    Article  PubMed  Google Scholar 

  • Andrade R. (1992). Electrophysiology of 5-HT1A receptors in the rat hippocampus and cortex. Drug Dev Res 26: 275–286.

    Article  CAS  Google Scholar 

  • Attia J, Cook DJ. 1998. Prognosis in anoxic and traumatic coma. Crit Care Clin 14: 497–511.

    Article  CAS  PubMed  Google Scholar 

  • Back T, Ginsberg MD, Dietrich WD, Watson BD. 1996. Induction of spreading depression in the ischemic hemisphere following experimental middle cerebral artery occlusion: Effect on infarct morphology. J Cereb Blood Flow Metab 16: 202–213.

    Article  CAS  PubMed  Google Scholar 

  • Bak IJ, Hassler R, Kim JS, Kataoka K. 1972. Amantadine actions on acetylcholine and GABA in striatum and substantia nigra of rat in relation to behavioral changes. J Neural Transm 33: 45–61.

    Article  CAS  PubMed  Google Scholar 

  • Baker AJ, Phan N, Moulton RJ, Fehlings MG, Yucel Y, et al. 2002. Attenuation of the electrophysiological function of the corpus callosum after fluid percussion injury in the rat. J Neurotrauma 19: 587–599.

    Article  CAS  PubMed  Google Scholar 

  • Barelli A, Valente MR, Clemente A, Bozza P, Proietti R, et al. 1991. Serial multimodality-evoked potentials in severely head-injured patients: Diagnostic and prognostic implications. Crit Care Med 19: 1374–1381.

    Article  CAS  PubMed  Google Scholar 

  • Bareyre FM, Saatman KE, Raghupathi R, McIntosh TK. 2000. Postinjury treatment with magnesium chloride attenuates cortical damage after traumatic brain injury in rats. J Neurotrauma 17: 1029–1039.

    Article  CAS  PubMed  Google Scholar 

  • Beers SR, Skold A, Dixon CE, Adelson PD. 2005. Neurobehavioral effects of amantadine after pediatric traumatic brain injury: A preliminary report. J Head Trauma Rehabil 20: 450–463.

    Article  PubMed  Google Scholar 

  • Bell MJ, Kochanek PM, Carcillo JA, Mi Z, Schiding JK, et al. 1998. Interstitial adenosine, inosine, and hypoxanthine are increased after experimental traumatic brain injury in the rat. J Neurotrauma 15: 163–170.

    Article  CAS  PubMed  Google Scholar 

  • Bell MJ, Robertson CS, Kochanek PM, Goodman JC, Gopinath SP, et al. 2001. Interstitial brain adenosine and xanthine increase during jugular venous oxygen desaturations in humans after traumatic brain injury. Crit Care Med 29: 399–404.

    Article  CAS  PubMed  Google Scholar 

  • Biegon A, Fry PA, Paden CM, Alexandrovich A, Tsenter J, et al. 2004. Dynamic changes in N-methyl-d-aspartate receptors after closed head injury in mice: Implications for treatment of neurological and cognitive deficits. Proc Natl Acad Sci USA 101: 5117–5122.

    Article  CAS  PubMed  Google Scholar 

  • Bittigau P, Ikonomidou C. 1997. Glutamate in neurologic diseases. J Child Neurol 12: 471–485.

    Article  CAS  PubMed  Google Scholar 

  • Bliss TVP, Lomo T. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356.

    CAS  PubMed  Google Scholar 

  • Bornstein MB. 1946. Presence and action of acetylcholine in experimental brain trauma. J Neurophysiol 9: 349–366.

    CAS  PubMed  Google Scholar 

  • Busch E, Gyngell ML, Eis M, Hoehn Berlage M, Hossmann KA. 1996. Potassium-induced cortical spreading depressions during focal cerebral ischemia in rats: Contribution to lesion growth assessed by diffusion-weighted NMR and biochemical imaging. J Cereb Blood Flow Metab 16: 1090–1099.

    Article  CAS  PubMed  Google Scholar 

  • Busto R, Dietrich WD, Globus MY-T, Alonso O, Ginsberg MD. 1997. Extracellular release of serotonin following fluid-percussion brain injury in rats. J Neurotrauma 14, 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Cant BR, Shaw NA. 1986. Central somatosensory conduction time: Method and clinical applications. Cracco RQ, Bodis-Wollner I, editors. Evoked Potentials. Alan R Liss; New York: pp. 58–67.

    Google Scholar 

  • Carter BG, Butt W. 2005. Are somatosensory evoked potentials the best predictor of outcome after severe brain injury? A systematic review. Intensive Care Med 31: 765–775.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Shohami E, Bass R, Weinstock M. 1998. Cerebro-protective effects of ENA713, a novel acetylcholinesterase inhibitor, in closed head injury in the rat. Brain Res 784: 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Ciallella JR, Yan HQ, Ma X, Wolfson BM, Marion DW, et al. 1998. Chronic effects of traumatic brain injury on hippocampal vesicular acetylcholine transporter and M2 muscarinic receptor protein in rats. Exp Neurol 142: 11–19.

    Article  Google Scholar 

  • Cusumano S, Paolin A, Di Paola F, Boccaletto F, Simini G, et al. 1992. Assessing brain function in post-traumatic coma by means of bit-mapped SEPs, BAEPs, CT, SPET and clinical sources. Prognostic implications. Electroencephalogr Clin Neurophysiol 84: 499–514.

    Article  CAS  PubMed  Google Scholar 

  • Dash PK, Moore AN, Moody MR, Treadwell R, Felix JL, et al. 2004. Post-trauma administration of caffeine plus ethanol reduces contusion volume and improves working memory in rats. J Neurotrauma 21: 1573–1583.

    Article  PubMed  Google Scholar 

  • Dawson RE, Webster JE, Gurdjian ES. 1951. Serial electroencephalography in acute head injuries. J Neurosurg 8: 613–630.

    Article  CAS  PubMed  Google Scholar 

  • Delahunty TM. 1992. Traumatic brain injury enhances muscarnic receptor-linked inositol phosphate production in the rat. Brain Res 594: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Denny-Brown D, Russell WR. 1941. Experimental cerebral concussion. Brain 64: 93–164.

    Article  Google Scholar 

  • De Vry J, Dietrich H, Glaser T, Heine H-G, Horváth E, et al. 1997. BAY x 3702. Drugs Future 22: 341–349.

    CAS  Google Scholar 

  • Dewar D, Graham DI. 1996. Depletion of choline acetyltransferase activity but preservation M1 and M2 muscarinic receptor binding sites in temporal cortex following head injury: A preliminary human postmortem study. J Neurotrauma 13: 181–187.

    CAS  PubMed  Google Scholar 

  • Di X, Lyeth BG, Hamm RJ, Bullock MR. 1996. Voltage-dependent Na+/K+ ion channel blockade fails to ameliorate behavioral deficits after traumatic brain injury in the rat. J Neurotrauma 13: 497–504.

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Cabiale Z, Hurd Y, Guidolin D, Finnman UB, Zoli M, et al. 2001. Adenosine A2A agonist CGS 21680 decreases the affinity of dopamine D2 receptors for dopamine in human striatum. Neuroreport 12: 1831–1834.

    Article  CAS  PubMed  Google Scholar 

  • Dixon AK, Widdowson L, Richardson PJ. 1997. Desensitisation of the adenosine A1 receptor by the A2A receptor in the rat striatum. J Neurochem 69: 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Lighthall JW, Anderson TE. 1988. A physiologic, histopathologic, and cineradiographic characterization of a new fluid percussion model of experimental brain injury in the rat. J Neurotrauma 5: 91–104.

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Ma X, Marion DW. 1997. Effects of CDP-choline treatment on neurobehavioral deficits after TBI and on hippocampal and neocortical acetylcholine release. J Neurotrauma 14: 161–169.

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Bao J, Long DA, Hayes RL. 1996. Reduced evoked release of acetylcholine in the rodent hippocampus following traumatic brain injury. Pharmacol Biochem Behav 53: 579–686.

    Article  Google Scholar 

  • Dixon CE, Hamm RJ, Taft WC, Hayes RL. 1994. Increased anticholinergic sensitivity following closed skull impact and controlled cortical impact traumatic brain injury in the rat. J Neurotrauma 11: 275–287.

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Kochanek PM, Yan HQ, Schiding JK, Griffith R, et al. 1999a. One-year study of spatial memory performance, brain morphology and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma 16: 109–122.

    Article  CAS  Google Scholar 

  • Dixon CE, Kraus MF, Kline AE, Ma X, Yan HQ, et al. 1999b. Amantadine improves water maze performance without affecting motor behavior following traumatic brain injury in rats. Restor Neurol Neurosci 14: 285–294.

    CAS  Google Scholar 

  • Dixon CE, Liu SJ, Jenkins LW, Bhattachargee M, Whitson J, et al. 1995. Time course of increased vulnerability of cholinergic neurotransmission following traumatic brain injury in the rats. Behav Brain Res 70: 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, et al. 1987. A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67: 110–119.

    Article  CAS  PubMed  Google Scholar 

  • Dow RS, Ulett G, Raaf J. 1944. Electroencephalographic studies immediately following head injury. Am J Psychiatry 101: 174–183.

    Google Scholar 

  • Drummond JC, Todd MM, Schubert A, Sang H. 1987. Effect of the acute administration of high dose pentobarbital on human brain stem auditory and median nerve somatosensory evoked responses. Neurosurgery 20: 830–835.

    Article  CAS  PubMed  Google Scholar 

  • Dunn-Meynell A, Pan S, Levin BE. 1994. Focal traumatic brain injury causes widespread reductions in rat brain norepinephrine turnover from 6 to 24 h. Brain Res 660: 88–95.

    Article  CAS  PubMed  Google Scholar 

  • Fábregas N, Gambus PL, Valero R, Carrero EJ, Salvador L, et al. 2004. Can bispectral index monitoring predict recovery of consciousness in patients with severe brain injury? Anesthesiology 101(1): 43–51.

    Article  PubMed  Google Scholar 

  • Facco E, Munari M, Baratto F, Behr AU, Giron GP. 1993. Multimodality evoked potentials (auditory, somatosensory and motor) in coma. Neurophysiol Clin 23: 237–258.

    Article  CAS  PubMed  Google Scholar 

  • Facco E, Behr AU, Munari M, Baratto F, Volpin SM, et al. 1998. Auditory and somatosensory evoked potentials in coma following spontaneous cerebral hemorrhage: Early prognosis and outcome. Electroencephalogr Clin Neurophysiol 107: 332–338.

    Article  CAS  PubMed  Google Scholar 

  • Faden AI, Demediuk P, Panter SS, Vink R. 1989. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244: 798–800.

    Article  CAS  PubMed  Google Scholar 

  • Faden AI, O'Leary DM, Fan L, Bao W, Mullins PG, et al. 2001. Selective blockade of the mGluR1 receptor reduces traumatic neuronal injury in vitro and improves outcome after brain trauma. Exp Neurol 167: 435–444.

    Article  CAS  PubMed  Google Scholar 

  • Feeney DM. 1991. Pharmacologic modulation of recovery after brain injury: A reconsideration of diaschisis. J Neurol Rehabil 5: 113–128.

    Google Scholar 

  • Feeney DM, Sutton RL. 1987. Pharmacotherapy for recovery of function after brain injury. Crit Rev Neurobiol 3: 135–197.

    CAS  PubMed  Google Scholar 

  • Feeney DM, De Smet AM, Rai S. 2004. Noradrenergic modulation of hemiplegia: Facilitation and maintenance of recovery. Restor Neurol Neurosci 22: 175–190.

    PubMed  Google Scholar 

  • Feeney DM, Gonzalez A, Law WA. 1982. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 217: 855–857.

    Article  CAS  PubMed  Google Scholar 

  • Feeney DM, Weisend MP, Kline AE. 1993. Noradrenergic pharmacotherapy, intracerebral infusion and adrenal transplantation promote functional recovery after cortical damage. J Neural Transplant Plast 4: 199–213.

    Article  CAS  PubMed  Google Scholar 

  • Feldman Z, Gurevitch B, Artru AA, Oppenheim A, Shohami E, et al. 1996. Effect of magnesium given 1 hour after head trauma on brain edema and neurological outcome. J Neurosurg 85: 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB. 1995. Adenosine, adenosine receptors and the action of caffeine. Pharmacol Toxicol 76: 93–101.

    Article  CAS  PubMed  Google Scholar 

  • Ganes T, Lundar T. 1988. EEG and evoked potentials in comatose patients with severe brain damage. Electroencephalogr Clin Neurophysiol 69: 6–13.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Larrea L, Fischer C, Artru F. 1993. Effect of anesthetics on sensory evoked potentials. Neurophysiol Clin 23: 141–162.

    Article  CAS  PubMed  Google Scholar 

  • Geiger JD, Parkinson FE, Kowaluk EL. 1997. Regulators of endogenous adenosine levels as therapeutic agents. Purinergic Approaches in Experimental Therapeutics. Jacobson KA, Jarvis MF, editors. New York: Wiley-Liss; pp. 55–84.

    Google Scholar 

  • Gerlak RP, Clark R, Stump JM, Vernier VG. 1970. Amantadine-dopamine interaction: Possible mode of action in Parkinsonism. Science 169: 203–204.

    Article  Google Scholar 

  • Gianutsos G, Chute S, Dunn JP. 1985. Pharmacological changes in dopaminergic systems induced by long-term administration of amantadine. Eur J Pharmacol 110: 357–361.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein LB, Davis JN. 1990. Post-lesion practice and amphetamine-facilitated recovery of beam-walking in the rat. Res Neurol Neurosci 1: 311–314.

    Google Scholar 

  • Gong Q-Z, Delahunty TM, Hamm RJ, Lyeth BG. 1995. Metabotropic glutamate antagonist, MCPG, treatment of traumatic brain injury in rats. Brain Res 700: 299–302.

    Article  CAS  PubMed  Google Scholar 

  • Gorji A. 2001. Spreading depression: A review of the clinical relevance. Brain Res Brain Res Rev 38: 33–60.

    Article  CAS  PubMed  Google Scholar 

  • Gorman LK, Fu K, Hovda DA. 1989. Analysis of acetylcholine release following concussive brain injury in the rat. J Neurotrauma 6: 203

    Google Scholar 

  • Gorman LK, Fu K, Hovda DA, Murray M, Traystman RJ. 1996. Effects of traumatic brain injury on the cholinergic system in the rat. J Neurotrauma 13: 457–463.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg RP, Newlon PG, Hyatt MS, Narayan RK, Becker DP. 1981. Prognostic implications of early multimodality evoked potentials in severely head-injured patients. A prospective study. J Neurosurg 55: 227–236.

    Article  CAS  PubMed  Google Scholar 

  • Gualtieri CT. 1988. Pharmacotherapy and the neurobehavioural sequelae of traumatic brain injury. Brain Inj 2: 101–129.

    Article  CAS  PubMed  Google Scholar 

  • Gualtieri T, Chandler M, Coons TB, Brown LT. 1989. Amantadine: A new clinical profile for traumatic brain injury. Clin Neuropharmacol 12: 258–270.

    Article  CAS  PubMed  Google Scholar 

  • Haber B, Grossman RG. 1980. Acetylcholine metabolism in intracranial and lumbar cerebrospinal fluid and in blood. Neurobiology and Cerebrospinal Fluid. Wood JH, editor. New York: Plenum Press; pp. 345–350.

    Google Scholar 

  • Hamm RJ, O'Dell DM, Pike BR, Lyeth BG. 1993. Cognitive impairment following traumatic brain injury: The effect of pre- and post-injury administration of scopolamine and MD-801. Brain Res Cogn Brain Res 1: 223–226.

    Article  CAS  PubMed  Google Scholar 

  • Hayes RL, Jenkins LW, Lyeth BG, Balster RL, Robinson SE, et al. 1988. Pretreatment with phencyclidine, an N-methyl-d-aspartate antagonist, attenuates long-term behavioral deficits in the rat produced by traumatic brain injury. J Neurotrauma 5: 259–274.

    Article  CAS  PubMed  Google Scholar 

  • Headrick JP, Bendall MR, Faden AI, Vink R. 1994. Dissociation of adenosine levels from bioenergetic state in experimental brain trauma: Potential role in secondary injury. J Cereb Blood Flow Metab 14: 853–861.

    CAS  PubMed  Google Scholar 

  • Heath DL, Vink R. 1999. Improved motor outcome in response to magnesium therapy received up to 24 hours after traumatic diffuse axonal brain injury in rats. J Neurosurg 90: 504–509.

    Article  CAS  PubMed  Google Scholar 

  • Henry JM, Talukder NK, Lee AB, Walker ML. 1997. Cerebral trauma-induced changes in corpus striatal dopamine receptor subtypes. J Invest Surg 10: 218–286.

    Article  Google Scholar 

  • Hicks RR, Smith DH, Gennarelli TA, McIntosh T. 1994. Kynurenate is neuroprotective following experimental brain injury in the rat. Brain Res 655: 91–96.

    Article  CAS  PubMed  Google Scholar 

  • Hoane MR. 2005. Treatment with magnesium improves reference memory but not working memory while reducing GFAP expression following traumatic brain injury. Restor Neurol Neurosci 23: 67–77.

    CAS  PubMed  Google Scholar 

  • Horiguchi T, Kis B, Rajapakse N, Shimizu K, Busija DW. 2005a. Cortical spreading depression (CSD)-induced tolerance to transient focal cerebral ischemia in halothane anesthetized rats is affected by anesthetic level but not ATP-sensitive potassium channels. Brain Res 1062: 127–133.

    Article  CAS  Google Scholar 

  • Horiguchi T, Snipes JA, Kis B, Shimizu K, Busija DW. 2005b. The role of nitric oxide in the development of cortical spreading depression-induced tolerance to transient focal cerebral ischemia in rats. Brain Res 1039: 84–89.

    Article  CAS  Google Scholar 

  • Hovda DA, Sutton RL, Feeney DM. 1989. Amphetamine-induced recovery of visual cliff performance after bilateral visual cortex ablation in cats: Measurements of depth perception thresholds. Behav Neurosci 103: 574–584.

    Article  CAS  PubMed  Google Scholar 

  • Ibayashi S, Ngai AC, Meno JR, Winn HR. 1991. Effects of topical adenosine analogs and forskolin on rat pial arterioles in vivo. J Cereb Blood Flow Metab 11: 72–76.

    CAS  PubMed  Google Scholar 

  • Ikonomidou C, Turski L. 1996. Prevention of trauma-induced neurodegeneration in infant and adult rat brain: Glutamate antagonists. Metab Brain Dis 11: 125–141.

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Duong H, Mangla S, Wang M, Libow AD, et al. 2002. In nonhuman primates intracarotid adenosine, but not sodium nitroprusside, increases cerebral blood flow. Anesth Analg 94: 393–399.

    Article  CAS  PubMed  Google Scholar 

  • Kalaria RN, Harik SI. 1988. Adenosine receptors and the nucleoside transporter in human brain vasculature. J Cereb Blood Flow Metab 8: 32–39.

    CAS  PubMed  Google Scholar 

  • Karli DC, Burke DT, Kim HJ, Calvanio R, Fitzpatrick M, et al. 1999. Effects of dopaminergic combination therapy for frontal lobe dysfunction in traumatic brain injury rehabilitation. Brain Inj 13: 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Kawahara N, Ruetzler CA, Klatzo I. 1995. Protective effect of spreading depression against neuronal damage following cardiac arrest cerebral ischaemia. Neurol Res 17: 9–16.

    CAS  PubMed  Google Scholar 

  • Kim YH, Ko MH, Na SY, Park SH, Kim KW. 2006. Effects of single-dose methylphenidate on cognitive performance in patients with traumatic brain injury: A double-blind placebo-controlled study. Clin Rehabil 20: 24–30.

    Article  PubMed  Google Scholar 

  • Kline AE, Dixon CE. 2001a. Contemporary in vivo models of brain trauma and a comparison of injury responses. Head Trauma: Basic, Preclinical, and Clinical Directions. Miller LP, Hayes RL, editors. New York: John Wiley & Sons; pp. 65–84.

    Google Scholar 

  • Kline AE, Chen MJ, Tso-Olivas DY, Feeney DM. 1994. Methylphenidate treatment following ablation-induced hemiplegia in rat: Experience during drug action alters effects on recovery of function. Pharmacol Biochem Behav 48: 773–779.

    Article  CAS  PubMed  Google Scholar 

  • Kline AE, Massucci JL, Marion DW, Dixon CE. 2002a. Attenuation of working memory and spatial acquisition deficits after a delayed and chronic bromocriptine treatment regimen in rats subjected to traumatic brain injury by controlled cortical impact. J Neurotrauma 19: 415–425.

    Article  Google Scholar 

  • Kline AE, Yu J, Massucci JL, Zafonte RD, Dixon CE. 2002b. Protective effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) against traumatic brain injury-induced cognitive deficits and neuropathology in adult male rats. Neurosci Lett 333: 179–182.

    Article  CAS  Google Scholar 

  • Kline AE, Massucci JL, Dixon CE, Zafonte RD, Bolinger BD. 2004a. The therapeutic efficacy conferred by the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) after experimental traumatic brain injury is not mediated by concomitant hypothermia. J Neurotrauma 21: 175–185.

    Article  Google Scholar 

  • Kline AE, Massucci JL, Ma X, Zafonte RD, Dixon CE. 2004b. Bromocriptine reduces lipid peroxidation and enhances spatial learning and hippocampal neuron survival in a rodent model of focal brain trauma. J Neurotrauma 21: 1712–1722.

    Article  Google Scholar 

  • Kline AE, Yan HQ, Bao J, Marion DW, Dixon CE. 2000. Chronic methylphenidate treatment enhances water maze performance following traumatic brain injury in rats. Neurosci Lett 280: 163–166.

    Article  CAS  PubMed  Google Scholar 

  • Kline AE, Yu J, Horváth E, Marion DW, Dixon CE. 2001b. The selective 5-HT1A receptor agonist repinotan HCL attenuates histopathology and spatial learning deficits following traumatic brain injury in rats. Neuroscience 106: 547–555.

    Article  CAS  Google Scholar 

  • Knutsen LJS, Murray TF. 1997. Adenosine and ATP in epilepsy. Purinergic Approaches in Experimental Therapeutics, Chapter 22. Jacobson KA, Jarvis MF, editors. New York: Wiley-Liss; pp. 423–447.

    Google Scholar 

  • Kobayashi S, Harris VA, Welsh FA. 1995. Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J Cereb Blood Flow Metab 15: 721–727.

    CAS  PubMed  Google Scholar 

  • Kochanek PM, Hendrich KS, Jackson EK, Wisniewski SR, Melick JA, et al. 2005. Characterization of the effects of adenosine receptor agonists on cerebral blood flow in uninjured and traumatically injured rat brain using continuous arterial spin-labeled magnetic resonance imaging. J Cereb Blood Flow Metab 25: 1596–1612.

    Article  CAS  PubMed  Google Scholar 

  • Kochanek PM, Vagni VA, Janesko KL, Washington CB, Crumrine PK, et al. 2006. Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab 26: 565–575.

    Article  CAS  PubMed  Google Scholar 

  • Kraus MF, Maki PM. 1997. Effect of amantadine hydrochloride on symptoms of frontal lobe dysfunction in brain injury: Case studies and review. J Neuropsychiatry Clin Neurosci 9: 222–230.

    CAS  PubMed  Google Scholar 

  • Kraus MF, Smith GS, Butters M, Donnell AJ, Dixon C, et al. 2005. Effects of the dopaminergic agent and NMDA receptor antagonist amantadine on cognitive function, cerebral glucose metabolism and D2 receptor availability in chronic traumatic brain injury: A study using positron emission tomography (PET). Brain Inj 19: 471–479.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Zou L, Yuan X, Long Y, Yang K. 2002. N-Methyl-d-aspartate receptors: Transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. J Neurosci Res 67: 781–786.

    Article  CAS  PubMed  Google Scholar 

  • Leão AAP. 1944. Spreading depression of activity in cerebral cortex. J Neurophysiol 7: 359–390.

    Google Scholar 

  • Lee H, Kim SW, Kim JM, Shin IS, Yang SJ, et al. 2005. Comparing effects of methylphenidate, sertraline and placebo on neuropsychiatric sequelae in patients with traumatic brain injury. Hum Psychopharmacol 20: 97–104.

    Article  CAS  PubMed  Google Scholar 

  • Leonard JR, Maris DO, Grady MS. 1994. Fluid percussion injury causes loss of forebrain choline acetyltransferase and nerve growth factor receptor immunoreactive cells in the rat. J Neurotrauma 11: 379–392.

    Article  CAS  PubMed  Google Scholar 

  • Leoni MJ, Chen XH, Mueller AL, Cheney J, McIntosh TK, et al. 2000. NPS 1506 attenuates cognitive dysfunction and hippocampal neuron death following brain trauma in the rat. Exp Neurol 166: 442–449.

    Article  CAS  PubMed  Google Scholar 

  • Lewen A, Fredriksson A, Li GL, Olsson Y, Hillered L. 1999. Behavioural and morphological outcome of mild cortical contusion trauma of the rat brain: Influence of NMDA-receptor blockade. Acta Neurochir (Wien) 141: 193–202.

    Article  CAS  Google Scholar 

  • Lindsay K, Pasaoglu A, Hirst D, Allardyce G, Kennedy I, et al. 1990. Somatosensory and auditory brain-stem conduction after head injury: A comparison with clinical features in prediction of outcome. Neurosurgery 26: 278–285.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Lyeth BG, Hamm RJ. 1994. Protective effect of galanin on behavioral deficits in experimental traumatic brain injury. J Neurotrauma 11: 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Madl C, Kramer L, Domanovits H, Woolard RH, Gervais H, et al. 2000. Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment. Crit Care Med 28: 721–726.

    Article  CAS  PubMed  Google Scholar 

  • Madl C, Kramer L, Yeganehfar W, Eisenhuber E, Kranz A, et al. 1996. Detection of nontraumatic comatose patients with no benefit of intensive care treatment by recording of sensory evoked potentials. Arch Neurol 53: 512–516.

    CAS  PubMed  Google Scholar 

  • Marrannes R, Willems R, De Prins E, Wauquier A. 1988. Evidence for a role of the N-methyl-d-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res 457: 226–240.

    Article  CAS  PubMed  Google Scholar 

  • Massucci JL, Kline AE, Ma X, Zafonte RD, Dixon CE. 2004. Time dependent alterations in dopamine tissue levels and metabolism after experimental traumatic brain injury in rats. Neurosci Lett 372: 127–131.

    Article  CAS  PubMed  Google Scholar 

  • Matsushima K, Hogan MJ, Hakim AM. 1996. Cortical spreading depression protects against subsequent focal cerebral ischemia in rats. J Cereb Blood Flow Metab 16: 221–226.

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama S, Nei K, Tanaka C. 1996. Regulation of glutamate release via NMDA and 5-HT1A receptors in guinea pig dentate gyrus. Brain Res 728: 175–180.

    Article  CAS  PubMed  Google Scholar 

  • Mauguiere F, Desmedt JE, Courjon J. 1983. Neural generators of N18 and P14 far-field somatosensory evoked potentials studied in patients with lesion of thalamus or thalamo-cortical radiations. Electroencephalogr Clin Neurophysiol 56: 283–292.

    Article  CAS  PubMed  Google Scholar 

  • Mauler F, Fahrig T, Horváth E, Jork R. 2001. Inhibition of evoked glutamate release by the neuroprotective 5-HT1A receptor agonist BAY x 3702 in vitro and in vivo. Brain Res 888: 150–157.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, et al. 1996. Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res 740: 268–274.

    Article  CAS  PubMed  Google Scholar 

  • McDowell S, Whyte J, D'Esposito M. 1998. Differential effect of a dopaminergic agonist on prefrontal function in traumatic brain injury patients. Brain 121: 1155–1164.

    Article  PubMed  Google Scholar 

  • McIntosh TK, Yu T, Gennarelli TA. 1994. Alterations in regional brain catecholamine concentrations after experimental brain injury in the rat. J Neurochem 63: 1426–1433.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TK, Faden AI, Yamakami I, Vink R. 1988. Magnesium deficiency exacerbates and pretreatment improves outcome following traumatic brain injury in rats: 31P magnetic resonance spectroscopy and behavioral studies. J Neurotrauma 5: 17–31.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TK, Noble L, Andrews B, Faden AI. 1987. Traumatic brain injury in the rat: Characterization of a midline fluid-percussion model. Cent Nerv Syst Trauma 4: 119–134.

    CAS  PubMed  Google Scholar 

  • McIntosh TK, Vink R, Yamakami I, Faden AI. 1989. Magnesium protects against neurological deficit after brain injury. Brain Res 482: 252–260.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TK, Smith DH, Voddi J, Perri BR, Stutzmann JM. 1996. Riluzole, a novel neuroprotective agent, attenuates both neurologic motor and cognitive dysfunction following experimental brain injury in the rat. J Neurotrauma 13: 767–780.

    Article  CAS  PubMed  Google Scholar 

  • Melena J, Chidlow G, Osborne NN. 2000. Blockade of voltage-sensitive Na+ channels by the 5-HT1A receptor agonist 8-OH-DPAT: Possible significance for neuroprotection. Eur J Pharmacol 406: 319–324.

    Article  CAS  PubMed  Google Scholar 

  • Metz B. 1971. Acetylcholine and experimental brain injury. J Neurosurg 35: 523–528.

    Article  CAS  PubMed  Google Scholar 

  • Mies G, Iijima T, Hossmann KA. 1993. Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4: 709–711.

    Article  CAS  PubMed  Google Scholar 

  • Miller LP, Lyeth BG, Jenkins LW, Oleniak L, Panchision D, et al. 1990. Excitatory amino acid receptor subtype binding following traumatic brain injury. Brain Res 526: 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki S, Katayama Y, Lyeth BG, Jenkins L, De Wit DS, et al. 1992. Enduring suppression of hippocampal long-term potentiation following traumatic brain injury in rat. Brain Res 585: 335–339.

    Article  CAS  PubMed  Google Scholar 

  • Molnar L, Hegedus K, Fekete I. 1991. Difference between the cerebrovascular effect of purinergic Co-ATP and that of the cholinesterase inhibitor, physostigmine, in vivo. Eur J Pharmacol 209: 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Mooney GF, Haas LJ. 1993. Effect of methylphenidate on brain injury-related anger. Arch Phys Med Rehabil 74: 153–160.

    CAS  PubMed  Google Scholar 

  • Moreau JL, Huber G. 1999. Central adenosine A(2A) receptors: An overview. Brain Res. Brain Res Rev 31: 65–82.

    Article  CAS  PubMed  Google Scholar 

  • Movsesyan VA, O'Leary DM, Fan L, Bao W, Mullins PGM, et al. 2001. mGluR5 antagonists 2-methyl-6-(phenylethynyl)-pyridine and (E)-2-methyl-6(2-phenylethenyl)-pyridine reduce traumatic neuronal injury in vitro and in vivo by antagonizing N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 296: 41–47.

    CAS  PubMed  Google Scholar 

  • Murdoch I, Perry EK, Court JA, Graham DI, Dewar D. 1998. Cortical cholinergic dysfunction after human head injury. J Neurotrauma 15: 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Ngai AC, Coyne EF, Meno JR, West GA, Winn HR. 2001. Receptor subtypes mediating adenosine-induced dilation of cerebral arterioles. Am J Physiol Heart Circ Physiol 280: H2329–H2335.

    CAS  PubMed  Google Scholar 

  • Narayan RK, Greenberg RP, Miller JD, Enas GG, Choi SC, et al. 1981. Improved confidence of outcome prediction in severe head injury. A comparative analysis of the clinical examination, multimodality evoked potentials, CT scanning and intracranial pressure. J Neurosurg 54: 751–762.

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Hansen AJ. 1988. Spreading depression is not associated with neuronal injury in the normal brain. Brain Res 449: 395–398.

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard S, Engberg I, Flatman JA. 1987. The modulation of excitatory amino acids responses by serotonin in the cat neocortex in vitro. Cell Mol Neurobiol 7: 367–379.

    Article  CAS  PubMed  Google Scholar 

  • Newlon PG, Greenberg RP, Enas GG, Becker DP. 1983. Effects of therapeutic pentobarbital coma on multimodality evoked potentials recorded from severely head-injured patients. Neurosurgery 12: 613–619.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson P, Hillered L, Ponten U, Ungerstedt U. 1990. Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab 10: 631–637.

    CAS  PubMed  Google Scholar 

  • O'Dell DM, Hamm RJ. 1995. Chronic post injury administration of MDL 26,479 (suritozol) a negative modulator at the GABAA receptor, and cognitive impairment in rats following traumatic brain injury. J Neurosurg 83: 878–883.

    Article  PubMed  Google Scholar 

  • O'Dell DM, Gibson CJ, Wilson MS, De Ford SM, Hamm RJ. 2000. Positive and negative modulation of the GABA(A) receptor and outcome after traumatic brain injury in rats. Brain Res 861: 325–332.

    Article  PubMed  Google Scholar 

  • Ohta K, Graf R, Rosner G, Heiss WD. 2001. Calcium ion transients in periinfarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats. Stroke 32: 535–543.

    CAS  PubMed  Google Scholar 

  • Okiyama K, Smith DH, White WF, McIntosh TK. 1998. Effects of the NMDA antagonist CP-98,113 on regional cerebral edema and cardiovascular, cognitive, and neurobehavioral function following experimental brain injury in the rat. Brain Res 792: 291–298.

    Article  CAS  PubMed  Google Scholar 

  • Osteen CL, Giza CC, Hovda DA. 2004. Injury-induced alterations in N-methyl-d-aspartate receptor subunit composition contribute to prolonged 45calcium accumulation following lateral fluid percussion. Neuroscience 128: 305–322.

    Article  CAS  PubMed  Google Scholar 

  • Pappius HM. 1981. Local cerebral glucose utilization in thermally traumatized rat brain. Ann Neurol 9: 484–491.

    Article  CAS  PubMed  Google Scholar 

  • Pappius HM, Dadoun R. 1987. Effects of injury on the indoleamines in cerebral cortex. J Neurochem 49: 321–325.

    Article  CAS  PubMed  Google Scholar 

  • Pappius HM, Dadoun R, McHugh M. 1988. The effect of p-chlorophenylalanine on cerebral metabolism and biogenic amine content of traumatized brain. J Cereb Blood Flow Metab 8: 324–334.

    CAS  PubMed  Google Scholar 

  • Passler MA, Riggs RV. 2001. Positive outcomes in traumatic brain injury-vegetative state: Patients treated with bromocriptine. Arch Phys Med Rehabil 82: 311–315.

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Schwarz G, Gravenstein N. 1985. Clinical relevance of long-latency SEPs and VEPs during coma and emergence from coma. Electroencephalogr Clin Neurophysiol 62: 88–98.

    Article  CAS  PubMed  Google Scholar 

  • Phillips JP, Devier DJ, Feeney DM. 2003. Rehabilitation pharmacology: Bridging laboratory work to clinical application. J Head Trauma Rehabil 18: 342–356.

    Article  PubMed  Google Scholar 

  • Pike BR, Hamm RJ. 1995. Post injury administration of BIBN 99, a selective muscarinic M2 receptor antagonist, improves cognitive performance following traumatic brain injury in rats. Brain Res 686: 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Plenger PM, Dixon CE, Castillo RM, Frankowski RF, Yablon SA, et al. 1996. Subacute methylphenidate treatment for moderate to moderately severe traumatic brain injury: A preliminary double-blind placebo-controlled study. Arch Phys Med Rehabil 77: 536–540.

    Article  CAS  PubMed  Google Scholar 

  • Pohlmann-Eden B, Dingethal K, Bender H-J, Koelfen W. 1997. How reliable is the predictive value of SEP (somatosensory evoked potentials) patterns in severe brain damage with special regard to the bilateral loss of cortical responses. Intensive Care Med 23: 301–308.

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Pintor A, Domenici MR, Frank C, Tebano MT, et al. 2002. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: Possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 22: 1967–1975.

    CAS  PubMed  Google Scholar 

  • Povlishock JT, Katz DI. 2005. Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil 20: 76–94.

    Article  PubMed  Google Scholar 

  • Powell JH, Al-Adawi S, Morgan J, Greenwood RJ. 1996. Motivational deficits after brain injury: Effects of bromocriptine in 11 patients. J Neurol Neurosurg Psychiatry 60: 416–421.

    Article  CAS  PubMed  Google Scholar 

  • Prehn JH, Backhauss C, Karkoutly C, Nuglisch J, Peruche B, et al. 1991. Neuroprotective properties of 5-HT1A receptor agonists in rodent models of focal and global cerebral ischemia. Eur J Pharmacol 203: 213–222.

    Article  CAS  PubMed  Google Scholar 

  • Prehn JH, Welsch M, Backhauss C, Nuglisch J, Ausmeier F, et al. 1993. Effects of serotonergic drugs in experimental brain ischemia: Evidence for a protective role of serotonin in cerebral ischemia. Brain Res 630: 10–20.

    Article  CAS  PubMed  Google Scholar 

  • Pulaski KH, Emmett L. 1994. The combined intervention of therapy and bromocriptine mesylate to improve functional performance after brain injury. Am J Occup Ther 48: 263–270.

    CAS  PubMed  Google Scholar 

  • Raiteri M, Maura G, Barzizza A. 1991. Activation of presynaptic 5-hydroxytryptamine1-like receptors on glutamatergic terminals inhibits N-methyl-d-aspartate-induced cyclic GMP production in rat cerebellar slices. J Pharmacol Exp Ther 257: 1184–1188.

    CAS  PubMed  Google Scholar 

  • Rappaport M, Hall K, Hopkins K, Belleza T, Berrol S, et al. 1977. Evoked brain potentials and disability in brain-damaged patients. Arch Phys Med Rehabil 58: 333–338.

    CAS  PubMed  Google Scholar 

  • Reeves TM, Phillips LL, Povlishock JT. 2005. Myelinated and unmyelinated axons of the corpus callosum differ in vulnerability and functional recovery following traumatic brain injury. Exp Neurol 196: 126–137.

    Article  PubMed  Google Scholar 

  • Robinson SE. 1986. 6-Hydroxydopamine lesion of the ventral noradrenergic bundle blocks the effect of amphetamine on hippocampal acetylcholine. Brain Res 397: 181–184.

    Article  CAS  PubMed  Google Scholar 

  • Robinson SE, Martin RM, Davis TR, Gyenes CA, Ryland JE, Enters EK. 1990. The effect of acetylcholine depletion on behavior following traumatic brain injury. Brain Res 509(1): 41-46.

    Article  CAS  PubMed  Google Scholar 

  • Rothstein TL. 2000. The role of evoked potentials in anoxic-ischemic coma and severe brain trauma. J Clin Neurophysiol 17: 486–497.

    Article  CAS  PubMed  Google Scholar 

  • Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB. 1992. Adenosine and brain ischemia. Cerebrovasc Brain Metab Rev 4(4): 346–369, 1992.

    CAS  PubMed  Google Scholar 

  • Ruge D. 1954. The use of cholinergic blocking agents in the treatment of craniocerebral injuries. J Neurosurg 11: 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Sachs EJr. 1957. Acetylcholine and serotonin in the spinal fluid. J Neurosurg 14: 22–27.

    Article  CAS  PubMed  Google Scholar 

  • Saija A, Hayes RL, Lyeth BG. 1988a. Effect of concussive head injury on central cholinergic neurons. Brain Res 452: 303–311.

    Article  CAS  Google Scholar 

  • Saija A, Robinson SE, Lyeth BG. 1988b. Effect of scopolamine and traumatic brain injury on central cholinergic neurons. J Neurotrauma 5: 161–169.

    Article  CAS  Google Scholar 

  • Sanders MJ, Sick TJ, Perez-Pinzon MA, Dietrich WD, Green EJ. 2000. Chronic failure in the maintenance long-term potentiation following fluid percussion injury in the rat. Brain Res 861: 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RH, Grady MS. 1995. Loss of forebrain cholinergic neurons following fluid-percussion injury: Implications for cognitive impairment in closed head injury. J Neurosurg 3: 496–502.

    Google Scholar 

  • Scremin OU. 1991. Pharmacological control of the cerebral circulation. Ann Rev Pharmacol Toxicol 31: 229–251.

    Article  CAS  Google Scholar 

  • Scremin OU, Li MG, Jenden DJ. 1997. Cholinergic modulation of cerebral cortical blood flow changes induced by trauma. J Neurotrauma 14: 573–586.

    Article  CAS  PubMed  Google Scholar 

  • Scremin OU, Rovere AA, Raynald AC, Giardini A. 1973. Cholinergic control of blood flow in the cerebral cortex of the rat. Stroke 4: 232–239.

    CAS  Google Scholar 

  • Shapira Y, Lam AM, Eng CC, Laohaprasit V, Michel M. 1994. Therapeutic time window and dose response of the beneficial effects of ketamine in experimental head injury. Stroke 25: 1637–1643.

    CAS  PubMed  Google Scholar 

  • Sherman AL, Tirschwell DL, Micklesen PJ, Longstreth WT, Robinson LR. 2000. Somatosensory potentials, CSF creatine kinase BB activity, and awakening after cardiac arrest. Neurology 54: 889–894.

    CAS  PubMed  Google Scholar 

  • Shin HK, Shin YW, Hong KW. 2000. Role of adenosine A(2B) receptors in vasodilation of rat pial artery and cerebral blood flow autoregulation. Am J Physiol Heart Circ Physiol 278(2): H339–H344.

    CAS  PubMed  Google Scholar 

  • Shohami E, Novikov M, Mechoulam R. 1993. A nonpsychotropic cannabinoid, HU-211, has cerebroprotective effects after closed head injury in the rat. J Neurotrauma 10: 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Sick TJ, Perez-Pinzon MA, Feng ZZ. 1998. Impaired expression of long-term potentiation in hippocampal slices 4 and 48 h following mild fluid-percussion brain injury in vivo. Brain Res 785: 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Sihver S, Marklund N, Hillered L, Langstrom B, Watanabe Y, et al. 2001. Changes in mACh, NMDA and GABA(A) receptor binding after lateral fluid-percussion injury: In vitro autoradiography of rat brain frozen sections. J Neurochem 78: 417–423.

    Article  CAS  PubMed  Google Scholar 

  • Sinson G, Perri BR, Trojanowski JQ, Flamm ES, McIntosh TK. 1997. Improvement of cognitive deficits and decreased cholinergic neuronal cell loss and apoptotic cell death following neurotrophin infusion after experimental traumatic brain injury. J Neurosurg 86: 511–518.

    Article  CAS  PubMed  Google Scholar 

  • Sleigh JW, Havill JH, Frith R, Kersei D, Marsh N, et al. 1999. Somatosensory evoked potentials in severe traumatic brain injury: A blinded study. J Neurosurg 91: 577–580.

    Article  CAS  PubMed  Google Scholar 

  • Smith DH, Okiyama K, Gennarelli TA, McIntosh TK. 1993. Magnesium and ketamine attenuate cognitive dysfunction following experimental brain injury. Neurosci Lett 157: 211–214.

    Article  CAS  PubMed  Google Scholar 

  • Smith DH, Perri BR, Raghupathi R, Saatman KE, McIntosh TK. 1997. Remacemide hydrochloride reduces cortical lesion volume following brain trauma in the rat. Neurosci Lett 231: 135–138.

    Article  CAS  PubMed  Google Scholar 

  • Smith JS, Fulop ZL, Levinsohn SA, Darrell RS, Stein DG. 2000. Effects of the novel NMDA receptor antagonist gacyclidine on recovery from medial frontal cortex contusion injury in rats. Neural Plast 7: 73–91.

    Article  CAS  PubMed  Google Scholar 

  • Sollevi A, Ericson K, Ericksson L, Lindqvist C, Langerkranser M, et al. 1987. Effect of adenosine on human cerebral blood flow as determined by positron emission tomography. J Cereb Blood Flow Metab 7: 673–678.

    CAS  PubMed  Google Scholar 

  • Soricelli A, Postiglione A, Cuocolo A, De Chiara S, Ruocco A, et al. 1995. Effect of adenosine on cerebral blood flow as evaluated by single-photon emission computed tomography in normal subjects and in patients with occlusive carotid disease. A comparison with acetazolamide. Stroke 26: 1572–1576.

    CAS  PubMed  Google Scholar 

  • Speech TJ, Rao SM, Osmon DC, Sperry LT. 1993. A double-blind control study of methylphenidate treatment in closed head injury. Brain Inj 7: 333–338.

    Article  CAS  PubMed  Google Scholar 

  • Stange K, Greitz D, Ingvar M, Hindmarsh T, Sollevi A. 1997. Global cerebral blood flow during infusion of adenosine in humans: Assessment by magnetic resonance imaging and positron emission tomography. Acta Physiol Scand 160: 117–122.

    Article  CAS  PubMed  Google Scholar 

  • Stover JF, Beyer TF, Unterberg AW. 2000. Riluzole reduces brain swelling and contusion volume in rats following controlled cortical impact injury. J Neurotrauma 17: 1171–1178.

    Article  CAS  PubMed  Google Scholar 

  • Strong AJ, Fabricius M, Boutelle MG, Hibbins SJ, Hopwood SE, et al. 2002. Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke 33: 2738–2743.

    Article  PubMed  Google Scholar 

  • Sun FY, Faden AI. 1995. Neuroprotective effects of 619C89, a use-dependent sodium channel blocker, in rat traumatic brain injury. Brain Res 673: 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Sutton RL, Feeney DM. 1992. A-noradrenergic agonists and antagonists affect recovery and maintenance of beam-walking ability after sensorimotor cortex ablation in the rat. Restor Neurol Neurosci 4: 1–11.

    CAS  Google Scholar 

  • Svenningsson P, Le Moine C, Fisone G, Fredholm BB. 1999. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59: 355–396.

    Article  CAS  PubMed  Google Scholar 

  • Takano K, Latour LL, Formato JE, Carano RA, Helmer KG, et al. 1996. The role of spreading depression in focal ischemia evaluated by diffusion mapping. Ann Neurol 39: 308–318.

    Article  CAS  PubMed  Google Scholar 

  • Tower DB, McEachern D. 1949. Cholinesterase patterns and acetylcholine in the cerebrospinal fluids of patients with craniocerebral trauma. Can J Res 27: 105–119.

    CAS  PubMed  Google Scholar 

  • Van DG, Wylen Park TS, Rubio R, Berne RM. 1989. The effect of local infusion of adenosine and adenosine analogues on local cerebral blood flow. J Cereb Blood Flow Metab 9: 556–562.

    Google Scholar 

  • Varma MR, Dixon CE, Jackson EK, Peters GW, Melick JA, et al. 2002. Administration of adenosine receptor agonists or antagonists after controlled cortical impact in mice: Effects on function and histopathology. Brain Res 951: 191–201.

    Article  CAS  PubMed  Google Scholar 

  • Verbois SL, Hopkins DM, Scheff SW, Pauly JR. 2003. Chronic intermittent nicotine administration attenuates traumatic brain injury-induced cognitive dysfunction. Neuroscience 119: 1199–1208.

    Article  CAS  PubMed  Google Scholar 

  • Vespa PM, Boscardin WJ, Hovda DA, McArthur DL, Nuwer MR, et al. 2002. Early and persistent impaired percent alpha variability on continuous electroencephalography monitoring as a predictive of poor outcome after traumatic brain injury. J Neurosurg 97: 84–92.

    Article  PubMed  Google Scholar 

  • von Voigtlander PF, Moore KE. 1971. Dopamine: Release from the brain in vivo by amantadine. Science 174: 408–410.

    Article  CAS  PubMed  Google Scholar 

  • Wagner AK, Chen X, Kline AE, Li Y, Zafonte RD, et al. 2005a. Gender and environmental enrichment impact dopamine transporter expression after experimental traumatic brain injury. Exp Neurology 195: 475–483.

    Article  CAS  Google Scholar 

  • Wagner AK, Sokoloski JE, Ren D, Chen X, Khan AS, et al. 2005b. Controlled cortical impact injury affects dopaminergic transmission in the rat striatum. J Neurochem 95: 457–465.

    Article  CAS  Google Scholar 

  • Walser H, Mattle H, Keller HM, Janzer R. 1985. Early cortical median nerve somatosensory evoked potentials. Prognostic value in anoxic coma. Arch Neurol 42: 32–38.

    CAS  PubMed  Google Scholar 

  • West M, Parkinson D, Havlicek V. 1982. Spectral analysis of the electroencephalographic response to experimental concussion in the rat. Electroencephalogr Clin Neurophysiol 53: 192–200.

    Article  CAS  PubMed  Google Scholar 

  • Whyte J, Hart T, Schuster K, Fleming M, Polansky M, et al. 1997. Effects of methylphenidate on attentional function after traumatic brain injury. A randomized, placebo-controlled trial. Am J Phys Med Rehabil 76: 440–450.

    Article  CAS  PubMed  Google Scholar 

  • Whyte J, Hart T, Vaccaro M, Grieb-Neff P, Risser A, et al. 2004. Effects of methylphenidate on attention deficits after traumatic brain injury: A multidimensional, randomized, controlled study. Am J Phys Med Rehabil 83: 401–420.

    Article  PubMed  Google Scholar 

  • Wilson MS, Chen X, Ma X, Ren D, Wagner AK, et al. 2005. Synaptosomal dopamine uptake in rat striatum following controlled cortical impact. J Neurosci Res 80: 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Yan HQ, Kline AE, Ma X, Li Y, Dixon CE. 2002. Traumatic brain injury reduces dopamine transporter protein expression in the rat frontal cortex. Neuroreport 13: 1899–1901.

    Article  CAS  PubMed  Google Scholar 

  • Yan HQ, Kline AE, Ma X, Hooghe-Peters EL, Marion DW, et al. 2001. Tyrosine hydroxylase, but not dopamine beta-hydroxylase, is increased in rat frontal cortex after traumatic brain injury. Neuroreport 12: 2323–2327.

    Article  CAS  PubMed  Google Scholar 

  • Yanamoto H, Hashimoto N, Nagata I, Kikuchi H. 1998. Infarct tolerance against temporary focal ischemia following spreading depression in rat brain. Brain Res 784: 239–249.

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Taft WC, Dixon CE, Todaro CA, Yu RK, et al. 1993. Alterations in protein kinase C in rat hippocampus following traumatic brain injury. J Neurotrauma 10: 287–295.

    Article  CAS  PubMed  Google Scholar 

  • Zentner J, Rohde V. 1992. The prognostic value of somatosensory and motor evoked potentials in comatose patients. Neurosurgery 31: 429–434.

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Hamm RJ, Reeves TM, Povlishock JT, Phillips LL. 2000. Postinjury administration of L-deprenyl improves cognitive function and enhances neuroplasticity after traumatic brain injury. Exp Neurol 166: 136–152.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Dixon, C.E., Kline, A.E. (2009). Neurotransmitters and Electrophysiology in Traumatic Brain Injury. In: Lajtha, A., Banik, N., Ray, S.K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30375-8_9

Download citation

Publish with us

Policies and ethics