Skip to main content

Brain Tumor Angiogenesis

  • Reference work entry
  • 839 Accesses

Abstract:

The growth of malignant tumors of the central nervous system requires adequate supplies of oxygen and nutrients obtained by the formation of new capilliaries from existing blood vessels. This process is called angiogenesis. Accordingly, anti-angiogenic therapy represents a promising modality for the treatment of brain tumors. This review describes the main biological events, molecular factors and critical signaling cascades implicated in brain tumor angiogenesis. We also summarized the key attributes of the emerging synthetic small molecular inhibitors and molecular targets with anti-angiogenic activities that make them potent anti-tumor agents. The studies reviewed here suggest that there is an urgent need for a new comprehensive treatment strategy combining anti-angiogenic agents with conventional cytoreductive treatments in the control of brain cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

bFGF:

basic fibroblast growth factor

EGF:

epidermal growth factor

EGFR:

Epidermal growth factor receptor

FGF:

Fibroblast growth factors

FKBP :

FK506-binding protein

FTS:

farnesylthiosalicylic acid

HGA:

High-grade astrocytoma

HIF:

hypoxia-inducible transcription factor

HIF-1:

Hypoxia-inducible factor 1

HIF-1alpha:

Hypoxia-inducible factor 1alpha

IM:

intramuscular

MMPs:

matrix metalloproteinases

NABTC:

North American Brain Tumor Consortium

PDGF:

platelet derived growth factor

PDGF-R:

Platelet derived growth factor receptor

PDGFR-beta:

platelet-derived growth factor receptor-beta

PI3K:

phosphatidyl inositol-3 kinase

PIGF:

placental growth factor

PIP2:

Phosphatidyl inositol bi phosphate

PIP3:

phosphatidyl inositol tri phosphate

TNF-alpha:

tumor necrosis factor alpha

TSP:

Thrombospondin

PTEN:

Phosphatese and tensin hemalog

VEGF:

vascular endothelial growth factor

vHL:

von Hippel–Lindau

References

  • Abe T, Terada K, Wakimoto H, Inoue R, Tyminski E, et al. 2003. PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res 63: 2300–2305.

    CAS  PubMed  Google Scholar 

  • Alavi A, Hood JD, Frausto R, Stupack DG, Cheresh DA. 2003. Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301: 94–96.

    CAS  PubMed  Google Scholar 

  • Aoki M, Batista O, Bellacosa A, Tsichlis P, Vogt PK. 1998. The akt kinase: Molecular determinants of oncogenicity. Proc Natl Acad Sci USA 95: 14950–14955.

    CAS  PubMed  Google Scholar 

  • Auguste P, Gursel DB, Lemiere S, Reimers D, Cuevas P, et al. 2001. Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and -independent mechanisms. Cancer Res 61: 1717–1726.

    CAS  PubMed  Google Scholar 

  • Barnett FH, Scharer-Schuksz M, Wood M, Yu X, Wagner TE, et al. 2004. Intra-arterial delivery of endostatin gene to brain tumors prolongs survival and alters tumor vessel ultrastructure. Gene Ther 11: 1283–1289.

    CAS  PubMed  Google Scholar 

  • Bello L, Giussani C, Carrabba G, Pluderi M, Costa F, et al. 2004. Angiogenesis and invasion in gliomas. Cancer Treat Res 117: 263–284.

    CAS  PubMed  Google Scholar 

  • Bello L, Lucini V, Giussani C, Carrabba G, Pluderi M, et al. 2003. IS20I, a specific alphavbeta3 integrin inhibitor, reduces glioma growth in vivo. Neurosurgery 52: 177–185.

    PubMed  Google Scholar 

  • Bergers G, Hanahan D, Coussens LM. 1998. Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis. Int J Dev Biol 42: 995–1002.

    CAS  PubMed  Google Scholar 

  • Berkman RA, Merrill MJ, Reinhold WC, Monacci WT, Saxena A, et al. 1993. Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest 91: 153–159.

    CAS  PubMed  Google Scholar 

  • Blazquez C, Gonzalez-Feria L, Alvarez L, Haro A, Casanova ML, et al. 2004. Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. Cancer Res 64: 5617–5623.

    CAS  PubMed  Google Scholar 

  • Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y. 2005. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res 65: 999–1006.

    CAS  PubMed  Google Scholar 

  • Boehm T, Folkman J, Browder T, O'Reilly MS. 1997. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390: 404–407.

    CAS  PubMed  Google Scholar 

  • Bornstein P. 1995. Diversity of function is inherent in matricellular proteins: An appraisal of thrombospondin 1. J Cell Biol 130: 503–506.

    CAS  PubMed  Google Scholar 

  • Brat DJ, Van Meir EG. 2001. Glomeruloid microvascular proliferation orchestrated by VPF/VEGF: A new world of angiogenesis research. Am J Pathol 158: 789–796.

    CAS  PubMed  Google Scholar 

  • Brem S. 1976. The role of vascular proliferation in the growth of brain tumors. Clin Neurosurg 23: 440–453.

    CAS  PubMed  Google Scholar 

  • Broholm H, Laursen H. 2004. Vascular endothelial growth factor (VEGF) receptor neuropilin-1's distribution in astrocytic tumors. APMIS 112: 257–263.

    CAS  PubMed  Google Scholar 

  • Chandrasekar N, Jasti S, Alfred-Yung WK, Ali-Osman F, Dinh DH, et al. 2000. Modulation of endothelial cell morphogenesis in vitro by MMP-9 during glial-endothelial cell interactions. Clin Exp Metastasis 18: 337–342.

    CAS  PubMed  Google Scholar 

  • Damert A, Machein M, Breier G, Fujita MQ, Hanahan D, et al. 1997. Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 57: 3860–3864.

    CAS  PubMed  Google Scholar 

  • de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, et al. 1992. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255: 989–991.

    CAS  PubMed  Google Scholar 

  • Dehm SM, Bonham K. 2004. SRC gene expression in human cancer: The role of transcriptional activation. Biochem Cell Biol 82: 263–274.

    CAS  PubMed  Google Scholar 

  • Dvorak HF. 2000. VPF/VEGF and the angiogenic response. Semin Perinatol 24: 75–78.

    CAS  PubMed  Google Scholar 

  • Dvorak HF, Brown LF, Detmar M, Dvorak AM. 1995. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146: 1029–1039.

    CAS  PubMed  Google Scholar 

  • Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. 1999. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237: 97–132.

    CAS  PubMed  Google Scholar 

  • Eckenstein FP. 1994. Fibroblast growth factors in the nervous system. J Neurobiol 25: 1467–1480.

    CAS  PubMed  Google Scholar 

  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, et al. 1991. Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51: 2164–2172.

    CAS  PubMed  Google Scholar 

  • Eleutherakis-Papaiakovou V, Bamias A, Dimopoulos MA. 2004. Thalidomide in cancer medicine. Ann Oncol 15: 1151–1160.

    CAS  PubMed  Google Scholar 

  • Farhadi MR, Capelle HH, Erber R, Ullrich A, Vajkoczy P. 2005. Combined inhibition of vascular endothelial growth factor and platelet-derived growth factor signaling: Effects on the angiogenesis, microcirculation, and growth of orthotopic malignant gliomas. J Neurosurg 102: 363–370.

    CAS  PubMed  Google Scholar 

  • Feldkamp MM, Lau N, Rak J, Kerbel RS, Guha A. 1999. Normoxic and hypoxic regulation of vascular endothelial growth factor (VEGF) by astrocytoma cells is mediated by Ras. Int J Cancer 81: 118–124.

    CAS  PubMed  Google Scholar 

  • Ferrara N. 1999. Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77: 527–543.

    CAS  PubMed  Google Scholar 

  • Ferrara N, Davis-Smyth T. 1997. The biology of vascular endothelial growth factor. Endocr Rev 18: 4–25.

    CAS  PubMed  Google Scholar 

  • Fidler IJ, Ellis LM. 1994. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79: 185–188.

    CAS  PubMed  Google Scholar 

  • Folkman J. 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27–31.

    CAS  PubMed  Google Scholar 

  • Folkman J, Shing Y. 1992. Angiogenesis. J Biol Chem 267: 10931–10934.

    CAS  PubMed  Google Scholar 

  • Gladson CL. 1996. Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 55: 1143–1149.

    CAS  PubMed  Google Scholar 

  • Goldbrunner RH, Bendszus M, Wood J, Kiderlen M, Sasaki M, et al. 2004. PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery 55: 426–432.

    PubMed  Google Scholar 

  • Goldman CK, Kim J, Wong WL, King V, Brock T, et al. 1993. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: A model of glioblastoma multiforme pathophysiology. Mol Biol Cell 4: 121–133.

    CAS  PubMed  Google Scholar 

  • Gondi CS, Lakka SS, Dinh D, Olivero W, Gujrati M, et al. 2004a. Downregulation of uPA, uPAR and MMP-9 using small, interfering, hairpin RNA (siRNA) inhibits glioma cell invasion, angiogenesis and tumor growth. Neuron Glia Biol 1: 165–176.

    Google Scholar 

  • Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, et al. 2004b. RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene 23: 8486–8496.

    CAS  Google Scholar 

  • Gondi CS, Lakka SS, Yanamandra N, Siddique K, Dinh DH, et al. 2003. Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene 22: 5967–5975.

    CAS  PubMed  Google Scholar 

  • Grossfeld GD, Ginsberg DA, Stein JP, Bochner BH, Esrig D, et al. 1997. Thrombospondin-1 expression in bladder cancer: Association with p53 alterations, tumor angiogenesis, and tumor progression. J Natl Cancer Inst 89: 219–227.

    CAS  PubMed  Google Scholar 

  • Guo P, Hu B, Gu W, Xu L, Wang D, et al. 2003. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 162: 1083–1093.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Folkman J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364.

    CAS  PubMed  Google Scholar 

  • Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, et al. 2002. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417: 975–978.

    CAS  PubMed  Google Scholar 

  • Hsu SC, Volpert OV, Steck PA, Mikkelsen T, Polverini PJ, et al. 1996. Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res 56: 5684–5691.

    CAS  PubMed  Google Scholar 

  • Ingber DE, Prusty D, Sun Z, Betensky H, Wang N. 1995. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J Biomech 28: 1471–1484.

    CAS  PubMed  Google Scholar 

  • Jeffes EW, Zhang JG, Hoa N, Petkar A, Delgado C, et al. 2005. Antiangiogenic drugs synergize with a membrane macrophage colony-stimulating factor-based tumor vaccine to therapeutically treat rats with an established malignant intracranial glioma. J Immunol 174: 2533–2543.

    CAS  PubMed  Google Scholar 

  • Jones N, Iljin K, Dumont DJ, Alitalo K. 2001. Tie receptors: New modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2: 257–267.

    CAS  PubMed  Google Scholar 

  • Kamiyama H, Takano S, Tsuboi K, Matsumura A. 2005. Anti-angiogenic effects of SN38 (active metabolite of irinotecan): Inhibition of hypoxia-inducible factor 1 alpha (HIF-1alpha)/vascular endothelial growth factor (VEGF) expression of glioma and growth of endothelial cells. J Cancer Res Clin Oncol 131: 205–213.

    CAS  PubMed  Google Scholar 

  • Kaur B, Brat DJ, Calkins CC, Van Meir EG. 2003. Brain angiogenesis inhibitor 1 is differentially expressed in normal brain and glioblastoma independently of p53 expression. Am J Pathol 162: 19–27.

    CAS  PubMed  Google Scholar 

  • Khatua S, Peterson KM, Brown KM, Lawlor C, Santi MR, et al. 2003. Overexpression of the EGFR/FKBP12/HIF-2alpha pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res 63: 1865–1870.

    CAS  PubMed  Google Scholar 

  • Kirsch M, Strasser J, Allende R, Bello L, Zhang J, et al. 1998. Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 58: 4654–4659.

    CAS  PubMed  Google Scholar 

  • Klagsbrun M, Knighton D, Folkman J. 1976. Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res 36: 110–114.

    CAS  PubMed  Google Scholar 

  • Kleihues P, Burger PC, Collins V, Newcomb EW, Ohgaki H, et al. 2000. Glioblastoma. Pathology and Genetics of Tumours of the Nervous System. Kleihues P, Cavenee WK, editors. Lyon: IARC Press; pp. 29–39.

    Google Scholar 

  • Korkolopoulou P, Patsouris E, Konstantinidou AE, Pavlopoulos PM, Kavantzas N, et al. 2004. Hypoxia-inducible factor 1alpha/vascular endothelial growth factor axis in astrocytomas. Associations with microvessel morphometry, proliferation and prognosis. Neuropathol Appl Neurobiol 30: 267–278.

    CAS  PubMed  Google Scholar 

  • Lakka SS, Rao JS. 2005. Role and Regulation of Proteases in Human Glioma. Proteases in the Brain. Lendeckel U, Hooper NM, editors. New York: Springer; pp. 151–177.

    Google Scholar 

  • Lakka SS, Gondi CS, Yanamandra N, Dinh DH, Olivero WC, et al. 2003. Synergistic down-regulation of urokinase plasminogen activator receptor and matrix metalloproteinase-9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth. Cancer Res 63: 2454–2461.

    CAS  PubMed  Google Scholar 

  • Lakka SS, Gondi CS, Yanamandra N, Olivero WC, Dinh DH, et al. 2004. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 23: 4681–4689.

    CAS  PubMed  Google Scholar 

  • Leon SP, Folkerth RD, Black PM. 1996. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77: 362–372.

    CAS  PubMed  Google Scholar 

  • Li VW, Folkerth RD, Watanabe H, Yu C, Rupnick M, et al. 1994. Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 344: 82–86.

    CAS  PubMed  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, et al. 1997. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.

    CAS  PubMed  Google Scholar 

  • Ma HI, Lin SZ, Chiang YH, Li J, Chen SL, et al. 2002. Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther 9: 2–11.

    CAS  PubMed  Google Scholar 

  • Maehama T, Dixon JE. 1998. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: 13375–13378.

    CAS  PubMed  Google Scholar 

  • Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, et al. 2001. Malignant glioma: Genetics and biology of a grave matter. Genes Dev 15: 1311–1333.

    CAS  PubMed  Google Scholar 

  • Maity A, Pore N, Lee J, Solomon D, O'Rourke DM. 2000. Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3′-kinase and distinct from that induced by hypoxia. Cancer Res 60: 5879–5886.

    CAS  PubMed  Google Scholar 

  • Maxwell M, Naber SP, Wolfe HJ, Hedley-Whyte ET, Galanopoulos T, et al. 1991. Expression of angiogenic growth factor genes in primary human astrocytomas may contribute to their growth and progression. Cancer Res 51: 1345–1351.

    CAS  PubMed  Google Scholar 

  • Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. 1994. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367: 576–579.

    CAS  PubMed  Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, et al. 1993. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835–846.

    CAS  PubMed  Google Scholar 

  • Morabito A, Fanelli M, Carillio G, Gattuso D, Sarmiento R, et al. 2004. Thalidomide prolongs disease stabilization after conventional therapy in patients with recurrent glioblastoma. Oncol Rep 11: 93–95.

    CAS  PubMed  Google Scholar 

  • Morrison RS, Yamaguchi F, Bruner JM, Tang M, McKeehan W, et al. 1994. Fibroblast growth factor receptor gene expression and immunoreactivity are elevated in human glioblastoma multiforme. Cancer Res 54: 2794–2799.

    CAS  PubMed  Google Scholar 

  • Naski MC, Ornitz DM. 1998. FGF signaling in skeletal development. Front Biosci 3: d781–d794.

    CAS  PubMed  Google Scholar 

  • Nirmala C, Jasti SL, Sawaya R, Kyritsis AP, Konduri SD, et al. 2000. Effects of radiation on the levels of MMP-2, MMP-9 and TIMP-1 during morphogenic glial-endothelial cell interactions. Int J Cancer 88: 766–771.

    CAS  PubMed  Google Scholar 

  • Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, et al. 1997. A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15: 2145–2150.

    CAS  PubMed  Google Scholar 

  • O'Leary J, Muggia FM. 1998. Camptothecins: A review of their development and schedules of administration. Eur J Cancer 34: 1500–1508.

    PubMed  Google Scholar 

  • Oehring RD, Miletic M, Valter MM, Pietsch T, Neumann J, et al. 1999. Vascular endothelial growth factor (VEGF) in astrocytic gliomas–a prognostic factor? J Neurooncol 45: 117–125.

    CAS  PubMed  Google Scholar 

  • Pietsch T, Valter MM, Wolf HK, von Deimling A, Huang HJ, et al. 1997. Expression and distribution of vascular endothelial growth factor protein in human brain tumors. Acta Neuropathol (Berl) 93: 109–117.

    CAS  Google Scholar 

  • Plate KH. 1999. Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58: 313–320.

    CAS  PubMed  Google Scholar 

  • Plate KH, Risau W. 1995. Angiogenesis in malignant gliomas. Glia 15: 339–347.

    CAS  PubMed  Google Scholar 

  • Plate KH, Breier G, Weich HA, Risau W. 1992. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359: 845–848.

    CAS  PubMed  Google Scholar 

  • Plate KH, Breier G, Weich HA, Mennel HD, Risau W. 1994. Vascular endothelial growth factor and glioma angiogenesis: Coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 59: 520–529.

    CAS  PubMed  Google Scholar 

  • Roberts WG, Whalen PM, Soderstrom E, Moraski G, Lyssikatos JP, et al. 2005. Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673,451. Cancer Res 65: 957–966.

    CAS  PubMed  Google Scholar 

  • Ruggeri B, Singh J, Gingrich D, Angeles T, Albom M, et al. 2003. CEP-7055: A novel, orally active pan inhibitor of vascular endothelial growth factor receptor tyrosine kinases with potent antiangiogenic activity and antitumor efficacy in preclinical models. Cancer Res 63: 5978–5991.

    CAS  PubMed  Google Scholar 

  • Saleh M, Stacker SA, Wilks AF. 1996. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 56: 393–401.

    CAS  PubMed  Google Scholar 

  • Samoto K, Ikezaki K, Ono M, Shono T, Kohno K, et al. 1995. Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res 55: 1189–1193.

    CAS  PubMed  Google Scholar 

  • Sandstrom M, Johansson M, Andersson U, Bergh A, Bergenheim AT, et al. 2004. The tyrosine kinase inhibitor ZD6474 inhibits tumour growth in an intracerebral rat glioma model. Br J Cancer 91: 1174–1180.

    CAS  PubMed  Google Scholar 

  • Sasaki M, Wizigmann- Voos S, Risau W, Plate KH. 1999. Retrovirus producer cells encoding antisense VEGF prolong survival of rats with intracranial GS9L gliomas. Int J Dev Neurosci 17: 579–591.

    CAS  PubMed  Google Scholar 

  • Schmidt NO, Westphal M, Hagel C, Ergun S, Stavrou D, et al. 1999. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 84: 10–18.

    CAS  PubMed  Google Scholar 

  • Schober R, Bilzer T, Waha A, Reifenberger G, Wechsler W, et al. 1995. The epidermal growth factor receptor in glioblastoma: Genomic amplification, protein expression, and patient survival data in a therapeutic trial. Clin Neuropathol 14: 169–174.

    CAS  PubMed  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E. 1992. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845.

    CAS  PubMed  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, et al. 1997. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15: 356–362.

    CAS  PubMed  Google Scholar 

  • Stratmann A, Risau W, Plate KH. 1998. Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153: 1459–1466.

    CAS  PubMed  Google Scholar 

  • Suri C, McClain J, Thurston G, McDonald DM, Zhou H, et al. 1998. Increased vascularization in mice overexpressing angiopoietin-1. Science 282: 468–471.

    CAS  PubMed  Google Scholar 

  • Taga T, Suzuki A, Gonzalez-Gomez I, Gilles FH, Stins M, et al. 2002. alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 98: 690–697.

    CAS  PubMed  Google Scholar 

  • Takahashi JA, Mori H, Fukumoto M, Igarashi K, Jaye M, et al. 1990. Gene expression of fibroblast growth factors in human gliomas and meningiomas: Demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues. Proc Natl Acad Sci USA 87: 5710–5714.

    CAS  PubMed  Google Scholar 

  • Tenan M, Fulci G, Albertoni M, Diserens AC, Hamou MF, et al. 2000. Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J Exp Med 191: 1789–1798.

    CAS  PubMed  Google Scholar 

  • Thurston G, Suri C, Smith K, McClain J, Sato TN, et al. 1999. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286: 2511–2514.

    CAS  PubMed  Google Scholar 

  • Tse V, Xu L, Yung YC, Santarelli JG, Juan D, et al. 2003. The temporal-spatial expression of VEGF, angiopoietins-1 and 2, and Tie-2 during tumor angiogenesis and their functional correlation with tumor neovascular architecture. Neurol Res 25: 729–738.

    CAS  PubMed  Google Scholar 

  • Ueba T, Nosaka T, Takahashi JA, Shibata F, Florkiewicz RZ, et al. 1994. Transcriptional regulation of basic fibroblast growth factor gene by p53 in human glioblastoma and hepatocellular carcinoma cells. Proc Natl Acad Sci USA 91: 9009–9013.

    CAS  PubMed  Google Scholar 

  • Vajkoczy P, Menger MD, Vollmar B, Schilling L, Schmiedek P, et al. 1999. Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia 1: 31–41.

    CAS  PubMed  Google Scholar 

  • Van Meir EG, Polverini PJ, Chazin VR, Su Huang HJ, de Tribolet N, et al. 1994. Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet 8: 171–176.

    CAS  PubMed  Google Scholar 

  • Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K. 2000. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60: 203–212.

    CAS  PubMed  Google Scholar 

  • Venetsanakos E, Mirza A, Fanton C, Romanov SR, Tlsty T, et al. 2002. Induction of tubulogenesis in telomerase-immortalized human microvascular endothelial cells by glioblastoma cells. Exp Cell Res 273: 21–33.

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW. 1992. p53 function and dysfunction. Cell 70: 523–526.

    CAS  PubMed  Google Scholar 

  • Wen S, Stolarov J, Myers MP, Su JD, Wigler MH, et al. 2001. PTEN controls tumor-induced angiogenesis. Proc Natl Acad Sci USA 98: 4622–4627.

    CAS  PubMed  Google Scholar 

  • Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, et al. 1998. Induction of endothelial PAS domain protein-1 by hypoxia: Characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92: 2260–2268.

    CAS  PubMed  Google Scholar 

  • Woods SA, McGlade CJ, Guha A. 2002. Phosphatidylinositol 3′-kinase and MAPK/ERK kinase 1/2 differentially regulate expression of vascular endothelial growth factor in human malignant astrocytoma cells. Neuro-oncol 4: 242–252.

    CAS  PubMed  Google Scholar 

  • Yanamandra N, Gumidyala KV, Waldron KG, Gujrati M, Olivero WC, et al. 2004. Blockade of cathepsin B expression in human glioblastoma cells is associated with suppression of angiogenesis. Oncogene 23: 2224–2230.

    CAS  PubMed  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, et al. 2000. Vascular-specific growth factors and blood vessel formation. Nature 407: 242–248.

    CAS  PubMed  Google Scholar 

  • Yoshida D, Takahashi H, Teramoto A. 2004. Inhibition of glioma angiogenesis and invasion by SI-27, an anti-matrix metalloproteinase agent in a rat brain tumor model. Neurosurgery 54: 1213–1220.

    PubMed  Google Scholar 

  • Zadeh G, Qian B, Okhowat A, Sabha N, Kontos CD, et al. 2004. Targeting the Tie2/Tek receptor in astrocytomas. Am J Pathol 164: 467–476.

    CAS  PubMed  Google Scholar 

  • Zagzag D, Hooper A, Friedlander DR, Chan W, Holash J, et al. 1999. In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159: 391–400.

    CAS  PubMed  Google Scholar 

  • Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, et al. 2000. Expression of hypoxia-inducible factor 1 alpha in brain tumors: Association with angiogenesis, invasion, and progression. Cancer 88: 2606–2618.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Lakka, S., Rao, J.S. (2009). Brain Tumor Angiogenesis. In: Lajtha, A., Banik, N., Ray, S.K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30375-8_1

Download citation

Publish with us

Policies and ethics