Skip to main content

Oxygen Sensors of the Peripheral and Central Nervous Systems

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology
  • 778 Accesses

Abstract:

Neural systems exposed to diminished oxygen availability have a compromised metabolism that leads to pathophysiological changes or neuronal death, depending on the severity and duration of oxygen deprivation. A distributed network of oxygen sensors responds to protect cells by slowing or ameliorating pathophysiological changes and forestalling neuronal death via short-term or long-term changes involving gene expression and the modification of sensors and effectors. In mammalian systems such protective changes are not sufficient to prevent damage under extreme conditions, unlike some hypoxia- and anoxia-tolerant vertebrates which demonstrate oxygen-dependent, reversible reprogramming to protect vital organs such as the brain and heart.

This chapter examines (1) the nature of the signal for oxygen sensors; (2) the molecules used to sense oxygen; (3) how the primary signal is generated, converted, and used in an oxygen-dependent manner; (4) how effector systems function in different cell types; and (5) how oxygen-sensing pathways are interconnected to more general protective stress responses which confer cross-protection for a number of physiological stressors.

While future therapies may focus on the activation of hypoxia-inducible factor (HIF) and its downstream gene products, selected gene products could be administered to reduce neuronal loss and improve recovery after acute insults due to ischemic events and degenerative diseases of the brain and retina. Activation of neuroprotective pathways by oxygen sensors and other physiological stressors could be used as pretreatment to minimize neurotrauma associated with neurosurgical procedures and as an ancillary treatment during early stages of rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HIF:

hypoxia-inducible factor

HREs:

hypoxia response elements

Hsps:

heat-shock proteins

iNOS:

inducible nitric oxide synthase

NE:

noradrenaline

ODG:

oxygen-dependent genes

ROS:

reactive oxygen species

TH:

tyrosine hydroxylase

References

  • Acker H. 2005. The oxygen sensing signal cascade under the influence of reactive oxygen species. Philos Trans R Soc Lond B Biol Sci 360: 2201–2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acker H, Xue D. 1995. Mechanisms of O2 sensing in the carotid body in comparison with other O2-sensing cells. News Physiol Sci 10: 211–216.

    CAS  Google Scholar 

  • Acker T, Acker H. 2004. Cellular oxygen sensing need in CNS function: Physiological and pathological implications. J Exp Biol 207: 3171–3188.

    Article  CAS  PubMed  Google Scholar 

  • Acker T, Fandrey J, Acker H. 2006. The good, the bad and the ugly in oxygen-sensing: ROS, cytochromes and prolyl-hydroxylases. Cardiovasc Res 71: 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen S, Rabergh CM, Sistonen L, Nikinmaa M. 1998. Effects of heat shock and hypoxia on protein synthesis in rainbow trout (Oncorhynchus mykiss) cells. J Exp Biol 201: 2543–2551.

    Article  CAS  PubMed  Google Scholar 

  • Ameln H, Gustafsson T, Sundberg CJ, Okamoto K, Jansson E, et al. 2005. Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J 19: 1009–1011.

    Article  CAS  PubMed  Google Scholar 

  • Araya R, Uehara T, Nomura Y. 1998. Hypoxia induces apoptosis in human neuroblastoma SK-N-MC cells by caspase activation accompanying cytochrome c release from mitochondria. FEBS Lett 439: 168–172.

    Article  CAS  PubMed  Google Scholar 

  • Archer SL, Weir EK, Reeve HL, Michelakis E. 2000. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol 475: 219–240.

    CAS  PubMed  Google Scholar 

  • Archer SL, Wu XC, Thebaud B, Moudgil R, Hashimoto K, et al. 2004. O2 sensing in the human ductus arteriosus: Redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide. Biol Chem 385: 205–216.

    Article  CAS  PubMed  Google Scholar 

  • Banasiak KJ, Xia Y, Haddad GG. 2000. Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog Neurobiol 62: 215–249.

    Article  CAS  PubMed  Google Scholar 

  • Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, et al. 2002. Heat shock protein genes and their functional significance in fish. Gene 295: 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Berenbrink M, Volkel S, Heisler N, Nikinmaa M. 2000. O2-dependent K+ fluxes in trout red blood cells: The nature of O2 sensing revealed by the O2 affinity, cooperativity and pH dependence of transport. J Physiol (Lond) 526: 69–80.

    Article  CAS  Google Scholar 

  • Berenbrink M, Volkel S, Koldkjaer P, Heisler N, Nikinmaa M. 2006. Two different oxygen sensors regulate oxygen-sensitive K+ transport in crucian carp red blood cells. J Physiol (Lond) 575: 37–48.

    Article  CAS  Google Scholar 

  • Berra E, Ginouves A, Pouyssegur J. 2006. The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signalling. EMBO Rep 7: 41–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickler PE, Buck LT. 1998. Adaptations of vertebrate neurons to hypoxia and anoxia: Maintaining critical Ca2+ concentrations. J Exp Biol 201: 1141–1152.

    Article  CAS  PubMed  Google Scholar 

  • Bickler PE, Donohoe PH. 2002. Adaptive responses of vertebrate neurons to hypoxia. J Exp Biol 205: 3579–3586.

    Article  CAS  PubMed  Google Scholar 

  • Bisgard GE. 2000. Carotid body mechanisms in acclimatization to hypoxia. Resp Physiol 121: 237–246.

    Article  CAS  Google Scholar 

  • Bogdanova A, Nikinmaa M. 2001. Reactive oxygen species regulate oxygen-sensitive potassium flux in rainbow trout erythrocytes. J Gen Physiol 117: 181–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanova A, Ogunshola OO, Bauer C, Nikinmaa M, Gassmann M. 2003. Molecular mechanisms of oxygen-induced regulation of Na+/K+ pump. Adv Exp Med Biol 536: 231–238.

    Article  CAS  PubMed  Google Scholar 

  • Bracken CP, Whitelaw ML, Peet DJ. 2003. The hypoxia-inducible factors: Key transcriptional regulators of hypoxic responses. Cell Mol Life Sci 60: 1376–1393.

    Article  CAS  PubMed  Google Scholar 

  • Buck LT, Pamenter ME. 2006. Adaptive responses of vertebrate neurons to anoxia—Matching supply to demand. Respir Physiol Neurobiol 154: 226–240.

    Article  CAS  PubMed  Google Scholar 

  • Bunn HF, Poyton RO. 1996. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76: 839–885.

    Article  CAS  PubMed  Google Scholar 

  • Burleson ML, Mercer SE, Wilk-Blaszczak MA. 2006. Isolation and characterization of putative O2 chemoreceptor cells from the gills of channel catfish (Ictalurus punctatus). Brain Res 1092: 100–107.

    Article  CAS  PubMed  Google Scholar 

  • Burmester T, Hankeln T. 2004. Neuroglobin: A respiratory protein of the nervous system. News Physiol Sci 19: 110–113.

    CAS  PubMed  Google Scholar 

  • Burmester T, Weich B, Reinhardt S, Hankeln T. 2000. A vertebrate globin expressed in the brain. Nature 407: 520–523.

    Article  CAS  PubMed  Google Scholar 

  • Burston SG, Clarke AR. 1995. Molecular chaperones: Physical and mechanistic properties. Essays Biochem 29: 125–136.

    CAS  PubMed  Google Scholar 

  • Camenisch G, Wenger RH, Gassmann M. 2002. DNA-binding activity of hypoxia-inducible factors (HIFs). Methods Mol Biol 196: 117–129.

    CAS  PubMed  Google Scholar 

  • Canbolat O, Fandrey J, Jelkmann W. 1998. Effects of modulators of the production and degradation of hydrogen peroxide on erythropoietin synthesis. Resp Physiol 114: 175–183.

    Article  CAS  Google Scholar 

  • Chae HJ, Kim SC, Han KS, Chae SW, An NH, et al. 2001. Hypoxia induces apoptosis by caspase activation accompanying cytochrome c release from mitochondria in MC3T3E1 osteoblasts, p38 MAPK is related in hypoxia-induced apoptosis. Immunopharm Immunotox 23: 133–152.

    Article  CAS  Google Scholar 

  • Chan WK, Yao G, Gu YZ, Bradfield CA. 1999. Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways—Demonstration of competition and compensation. J Biol Chem 274: 12115–12123.

    Article  CAS  PubMed  Google Scholar 

  • Chandel NS, Schumacker PT. 2000. Cellular oxygen sensing by mitochondria: Old questions, new insight. J Appl Physiol 88: 1880–1889.

    Article  CAS  PubMed  Google Scholar 

  • Chen XQ, Qin LY, Zhang CG, Yang LT, Gao Z, et al. 2005. Presence of neuroglobin in cultured astrocytes. Glia 50: 182–286.

    Article  PubMed  Google Scholar 

  • Chilov D, Hofer T, Bauer C, Wenger RH, Gassmann M. 2001. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J 15: 2613–2622.

    Article  CAS  PubMed  Google Scholar 

  • Choi SL, Kim SJ, Lee KT, Kim J, Mu J, et al. 2001. The regulation of AMP-activated protein kinase by H2O2. Biochem Biophys Res Comm 287: 92–97.

    Article  CAS  PubMed  Google Scholar 

  • Christians ES, Yan LJ, Benjamin IJ. 2002. Heat shock factor 1 and heat shock proteins: Critical partners in protection against acute cell injury. Crit Care Med 30: S43–S50.

    Article  CAS  PubMed  Google Scholar 

  • Couture M, Burmester T, Hankeln T, Rousseau DL. 2001. The heme environment of mouse neuroglobin. Evidence for the presence of two conformations of the heme pocket. J Biol Chem 276: 36377–36382.

    Article  CAS  PubMed  Google Scholar 

  • Cross AR, Henderson L, Jones OT, Delpiano MA, Hentschel J, et al. 1990. Involvement of an NAD(P)H oxidase as a Po 2 sensor protein in the rat carotid body. Biochem J 272: 743–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummins EP, Taylor CT. 2005. Hypoxia-responsive transcription factors. Pflugers Arch Eur J Physiol 450: 363–371.

    Article  CAS  Google Scholar 

  • Dahan I, Issaeva I, Gorzalczany Y, Sigal N, Hirshberg M, et al. 2002. Mapping of functional domains in the p22(phox) subunit of flavocytochrome b 559 participating in the assembly of the NADPH oxidase complex by “peptide walking”. J Biol Chem 277: 8421–8432.

    Article  CAS  PubMed  Google Scholar 

  • D'Amico G, Lam F, Hagen T, Moncada S. 2006. Inhibition of cellular respiration by endogenously produced carbon monoxide. J Cell Sci 119: 2291–2298.

    Article  CAS  PubMed  Google Scholar 

  • Dayan F, Roux D, Brahimi-Horn MC, Pouyssegur J, Mazure NM. 2006. The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-α. Cancer Res 66: 3688–3698.

    Article  CAS  PubMed  Google Scholar 

  • Del Toro R, Levitsky KL, Lopez-Barneo J, Chiara MD. 2003. Induction of T-type calcium channel gene expression by chronic hypoxia. J Biol Chem 278: 22316–22324.

    Article  CAS  PubMed  Google Scholar 

  • de Paula PM, Branco LG. 2003. Nitric oxide in the rostral ventrolateral medulla modulates hyperpnea but not anapyrexia induced by hypoxia. Brain Res 977: 231–238.

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio C, Bianchi G, Cacchio M, Artese L, Piccirilli M, et al. 2006. Neuroglobin, a new oxygen binding protein is present in the carotid body and increases after chronic intermittent hypoxia. Berlin: Springer-Verlag; pp. 15–19.

    Google Scholar 

  • Dirnagl U, Simon RP, Hallenbeck JM. 2003. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Donnelly DF. 1997. Are oxygen dependent K+ channels essential for carotid body chemo-transduction? Resp Physiol 110: 211–218.

    Article  CAS  Google Scholar 

  • Donnelly DF. 1999. K+ currents of glomus cells and chemosensory functions of carotid body. Resp Physiol 115: 151–160.

    Article  CAS  Google Scholar 

  • Drew C, Ball V, Robinson H, Ellory JC, Gibson JS. 2004. Oxygen sensitivity of red cell membrane transporters revisited. Bioelectrochemistry 62: 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Dunel-Erb S, Bailly Y, Laurent P. 1982. Neuroepithelial cells in fish gill primary lamellae. J Appl Physiol 53: 1342–1353.

    Article  CAS  PubMed  Google Scholar 

  • Duranteau J, Chandel NS, Kulisz A, Shao ZH, Schumacker PT. 1998. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273: 11619–11624.

    Article  CAS  PubMed  Google Scholar 

  • Ehleben W, Bolling B, Merten E, Porwol T, Strohmaier AR, et al. 1998. Cytochromes and oxygen radicals as putative members of the oxygen sensing pathway. Resp Physiol 114: 25–36.

    Article  CAS  Google Scholar 

  • Ehrenreich H, Aust C, Krampe H, Jahn H, Jacob S, et al. 2004. Erythropoietin: Novel approaches to neuroprotection in human brain disease. Metab Brain Dis 19: 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Fago A, Mathews AJ, Moens L, Dewilde S, Brittain T. 2006. The reaction of neuroglobin with potential redox protein partners cytochrome b 5 and cytochrome c. FEBS Lett 580: 4884–4888.

    Article  CAS  PubMed  Google Scholar 

  • Fan CG, Li Q, Ross D, Engelhardt JF. 2003. Tyrosine phosphorylation of I kappa B α activates NF kappa B through a redox-regulated and c-Src-dependent mechanism following hypoxia/reoxygenation. J Biol Chem 278: 2072–2080.

    Article  CAS  PubMed  Google Scholar 

  • Fandrey J, Frede S, Ehleben W, Porwol T, Acker H, et al. 1997. Cobalt chloride and desferrioxamine antagonize the inhibition of erythropoietin production by reactive oxygen species. Kidney Int 51: 492–496.

    Article  CAS  PubMed  Google Scholar 

  • Fandrey J, Frede S, Jelkmann W. 1994. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem J 303: 507–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fandrey J, Gorr TA, Gassmann M. 2006. Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res 71: 642–651.

    Article  CAS  PubMed  Google Scholar 

  • Finkel T. 1998. Oxygen radicals and signaling. Curr Opin Cell Biol 10: 248–253.

    Article  CAS  PubMed  Google Scholar 

  • Firth JD, Ebert BL, Ratcliffe PJ. 1995. Hypoxic regulation of lactate dehydrogenase A: Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem 270: 21021–21027.

    Article  CAS  PubMed  Google Scholar 

  • Flatman PW. 2005. Activation of ferret erythrocyte Na+-K+-2Cl cotransport by deoxygenation. J Physiol (Lond) 563: 421–431.

    Article  CAS  Google Scholar 

  • Fordel E, Geuens E, Dewilde S, De Coen W, Moens L. 2004. Hypoxia/ischemia and the regulation of neuroglobin and cytoglobin expression. IUBMB Life 56: 681–687.

    Article  CAS  PubMed  Google Scholar 

  • Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, Currie RW. 2005. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia 21: 379–392.

    Article  CAS  PubMed  Google Scholar 

  • Fraser J, de Mello LV, Ward D, Rees HH, Williams DR, et al. 2006. Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proc Natl Acad Sci USA 103: 2977–2981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fratelli M, Goodwin LO, Orom UA, Lombardi S, Tonelli R, et al. 2005. Gene expression profiling reveals a signaling role of glutathione in redox regulation. Proc Natl Acad Sci USA 102: 13998–14003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridovich I. 1986. Biological effects of the superoxide radical. Arch Biochem Biophys 247: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Fu XW, Nurse CA, Wong V, Cutz E. 2002. Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. J Physiol 539: 503–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fung ML, Tipoe GL. 2003. Role of HIF-1 in physiological adaptation of the carotid body during chronic hypoxia. Adv Exp Med Biol 536: 593–601.

    Article  CAS  PubMed  Google Scholar 

  • Gassmann M, Heinicke K, Soliz J, Ogunshola OO. 2003. Non-erythroid functions of erythropoietin. Adv Exp Med Biol 543: 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Gassmann M, Kvietikova I, Rolfs A, Wenger RH. 1997. Oxygen- and dioxin-regulated gene expression in mouse hepatoma cells. Kidney Int 51: 567–574.

    Article  CAS  PubMed  Google Scholar 

  • Geuens E, Brouns I, Flamez D, Dewilde S, Timmermans JP, et al. 2003. A globin in the nucleus! J Biol Chem 278: 30417–30420.

    Article  CAS  PubMed  Google Scholar 

  • Gibson JS, Cossins AR, Ellory JC. 2000. Oxygen-sensitive membrane transporters in vertebrate red cells. J Exp Biol 203: 1395–1407.

    Article  CAS  PubMed  Google Scholar 

  • Gloire G, Legrand-Poels S, Piette J. 2006. NF-κB activation by reactive oxygen species: Fifteen years later. Biochem Pharmacol 72: 1493–1505.

    Article  CAS  PubMed  Google Scholar 

  • Gnaiger E, Lassnig B, Kuznetsov A, Rieger G, Margreiter R. 1998. Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol 201: 1129–1139.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez C, Lopez-Lopez JR, Obeso A, Perez-Garcia MT, Rocher A. 1995a. Cellular mechanisms of oxygen chemoreception in the carotid body. Resp Physiol 102: 137–147.

    Article  CAS  Google Scholar 

  • Gonzalez C, Vicario I, Almaraz L, Rigual R 1995b. Oxygen sensing in the carotid body. Biol Signals 4: 245–256.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez MF, Lowenstein D, Fernyak S, Hisanaga K, Simon R, et al. 1991. Induction of heat shock protein 72 like immunoreactivity in the hippocampal formation following transient global ischemia. Brain Res Bull 26: 241–250.

    Article  CAS  PubMed  Google Scholar 

  • Gourine AV. 2005. On the peripheral and central chemoreception and control of breathing: An emerging role of ATP. J Physiol 568: 715–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gradin K, Mcguire J, Wenger RH, Kvietikova I, Whitelaw ML, et al. 2004. Erythropoietin as a tissue-protective cytokine in brain injury: What do we know and where do we go? Neuroscientist 10: 93–98.

    Article  CAS  Google Scholar 

  • Gradin K, Toftgard R, Poellinger L, Berghard A. 1999. Repression of Dioxin signal transduction in fibroblasts. Identification of a putative repressor associated with Arnt. J Bioc Chem 274: 13511-13518.

    Google Scholar 

  • Guyenet PG. 2000. Neural structures that mediate sympathoexcitation during hypoxia. Resp Physiol 121: 147–162.

    Article  CAS  Google Scholar 

  • Guzy RD, Hoyos B, Robin E, Chen H, Liu LP, et al. 2005. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1: 401–408.

    Article  CAS  PubMed  Google Scholar 

  • Guzy RD, Schumacker PT. 2006. Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91: 807–819.

    Article  CAS  PubMed  Google Scholar 

  • Haddad JJ. 2002. Oxygen-sensing mechanisms and the regulation of redox-responsive transcription factors in development and pathophysiology. Respir Res 3: 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammarstrom AK, Gage PW. 2002. Hypoxia and persistent sodium current. Eur Biophys J 31: 323–330.

    Article  PubMed  CAS  Google Scholar 

  • Hammerer-Lercher A, Mair J, Bonatti J, Watzka SBC, Puschendorf B, et al. 2001. Hypoxia induces heat shock protein expression in human coronary artery bypass grafts. Cardiovasc Res 50: 115–124.

    Article  CAS  PubMed  Google Scholar 

  • Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, et al. 2005. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J Inorg Biochem 99: 110–119.

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG. 2003. Minireview: The AMP-activated protein kinase cascade: The key sensor of cellular energy status. Endocrinology 144: 5179–5183.

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Hawley SA, Scott J. 2006. AMP-activated protein kinase—development of the energy sensor concept. J Physiol (Lond) 574: 7–15.

    Article  CAS  Google Scholar 

  • Harrison PJ, Procter AW, Exworthy T, Robert GW, Najlerahim A, et al. 1993. Heat shock protein (hsp70) mRNA expression in human brain: Effects of neurodegenerative disease and agonal state. Neuropathol Appl Neurobiol 19: 10–21.

    Article  CAS  PubMed  Google Scholar 

  • Ho VT, Bunn HF. 1996. Effects of transition metals on the expression of the erythropoietin gene: Further evidence that the oxygen sensor is a heme protein. Biochem Biophys Res Comm 223: 175–180.

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW, Lutz PL. 2001. Mechanism, origin, and evolution of anoxia tolerance in animals. Comp Biochem Physiol B Biochem Mol Biol 130: 435–459.

    Article  CAS  PubMed  Google Scholar 

  • Hofer T, Pohjanvirta R, Spielmann P, Viluksela M, Buchmann DP, et al. 2004. Simultaneous exposure of rats to dioxin and carbon monoxide reduces the xenobiotic but not the hypoxic response. Biol Chem 385: 291–294.

    Article  CAS  PubMed  Google Scholar 

  • Honess NA, Gibson JS, Cossins AR. 1996. The effects of oxygenation upon the Cl dependent K flux pathway in equine red cells. Pflugers Arch Eur J Physiol 432: 270–277.

    Article  CAS  Google Scholar 

  • Hoop B, Beagle JL, Maher TJ, Kazemi H. 1999. Brainstem amino acid neurotransmitters and hypoxic ventilatory response. Resp Physiol 118: 117–1129.

    Article  CAS  Google Scholar 

  • Horn EM, Waldrop TG. 1997. Oxygen-sensing neurons in the caudal hypothalamus and their role in cardiorespiratory control. Resp Physiol 110: 219–228.

    Article  CAS  Google Scholar 

  • Huang LE, Willmore WG, Gu J, Goldberg MA, Bunn HF. 1999. Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling. J Biol Chem 274: 9038–9044.

    Article  CAS  PubMed  Google Scholar 

  • Ivan M, Kondo K, Yang HF, Kim W, Valiando J, et al. 2001. HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 292: 464–468.

    Article  CAS  PubMed  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, et al. 2001. Targeting of HIFα to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472.

    Article  CAS  PubMed  Google Scholar 

  • Johansson D, Nilsson GE, Doving KB. 1997 Anoxic depression of light-evoked potentials in retina and optic tectum of crucian carp. Neurosci Lett 237: 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Jonz MG, Fearon IM, Nurse CA. 2004. Neuroepithelial oxygen chemoreceptors of the zebrafish gill. J Physiol 560: 737–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • KaelinWG. 2005. Proline hydroxylation and gene expression. Ann Rev Biochem 74: 115–128.

    Article  CAS  PubMed  Google Scholar 

  • Katschinski DM, Le L, Heinrich D, Wagner KF, Hofer T, et al. 2002. Heat induction of the unphosphorylated form of hypoxia-inducible factor-1α is dependent on heat shock protein-90 activity. J Biol Chem 277: 9262–9267.

    Article  CAS  PubMed  Google Scholar 

  • Katschinski DM, Le L, Schindler SG, Thomas T, Voss AK, et al. 2004. Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1α stabilization. Cell Physiol Biochem 14: 351–360.

    Article  CAS  PubMed  Google Scholar 

  • Kazemian P, Stephenson R, Yeger H, Cutz E. 2001. Respiratory control in neonatal mice with NADPH oxidase deficiency. Resp Physiol 126: 89–101.

    Article  CAS  Google Scholar 

  • Kiang JG, Tsokos GC. 1998. Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacol Ther 80: 183–201.

    Article  CAS  PubMed  Google Scholar 

  • Kietzmann T, Gorlach A. 2005. Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Sem Cell Devel Biol 16: 474–486.

    Article  CAS  Google Scholar 

  • Kietzmann T, Krones-Herzig A, Jungermann K. 2002. Signaling cross-talk between hypoxia and glucose via hypoxia- inducible factor 1 and glucose response elements. Biochem Pharmacol 64: 903–911.

    Article  CAS  PubMed  Google Scholar 

  • Kim EH, Surh YJ. 2006. 15-Deoxy-δ-12,14-prostaglandin J2 as a potential endogenous regulator of redox-sensitive transcription factors. Biochem Pharmacol 72: 1516–1528.

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Park JH. 2003. ROS-dependent caspase-9 activation in hypoxic cell death. FEBS Lett 549: 94–98.

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Song MJ, Chung J, Park H, Kim JB. 2005. Hypoxia inhibits adipocyte differentiation in a HDAC-independent manner. Biochem Biophys Res Comm 333: 1178–1184.

    Article  CAS  PubMed  Google Scholar 

  • Kirino T. 2002. Ischemic tolerance. J Cereb Blood Flow Metab 22: 1283–1296.

    Article  PubMed  Google Scholar 

  • Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, et al. 1990. ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528: 21–24.

    Article  CAS  PubMed  Google Scholar 

  • Kodama T, Shimizu N, Yoshikawa N, Makino Y, Ouchida R, et al. 2003. Role of the glucocorticoid receptor for regulation of hypoxia-dependent gene expression. J Biol Chem 278: 33384–33391.

    Article  CAS  PubMed  Google Scholar 

  • Koivisto A, Matthias A, Bronnikov G, Nedergaard J. 1997. Kinetics of the inhibition of mitochondrial respiration by NO. FEBS Lett 417: 75–80.

    Article  CAS  PubMed  Google Scholar 

  • Krumschnabel G, Schwarzbaum PJ, Lisch J, Biasi C, Wieser W. 2000. Oxygen-dependent energetics of anoxia-tolerant and anoxia-intolerant hepatocytes. J Exp Biol 203: 951–959.

    Article  CAS  PubMed  Google Scholar 

  • Lahiri S, Acker H. 1999. Redox-dependent binding of CO to heme protein controls Po 2-sensitive chemoreceptor discharge of the rat carotid body. Resp Physiol 115: 169–177.

    Article  CAS  Google Scholar 

  • Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, et al. 2006. Oxygen sensing in the body. Prog Biophys Mol Biol 91: 249–286.

    Article  CAS  PubMed  Google Scholar 

  • Lahiri S, Rozanov C, Roy A, Storey B, Buerk DG. 2001. Regulation of oxygen sensing in peripheral arterial chemoreceptors. Int J Biochem Cell Biol 33: 755–774.

    Article  CAS  PubMed  Google Scholar 

  • LaManna JC, Haxhiu MA, Kutina-Nelson KL, Pundik S, Erokwu B, et al. 1996. Decreased energy metabolism in brain stem during central respiratory depression in response to hypoxia. J Appl Physiol 81: 1772–1777.

    Article  CAS  PubMed  Google Scholar 

  • Lando D, Pongratz I, Poellinger L, Whitelaw ML. 2000. A redox mechanism controls differential DNA binding activities of hypoxia-inducible factor (HIF) 1α and the HIF-like factor. J Biol Chem 275: 4618–4627.

    Article  CAS  PubMed  Google Scholar 

  • Lauweryns JM, de Bock V, Decramer M. 1987. Effects of unilateral vagal stimulation on intrapulmonary neuroepithelial bodies. J Appl Physiol 63: 1781–1787.

    Article  CAS  PubMed  Google Scholar 

  • Law SH, Wu RS, Ng PK, Yu RM, Kong RY. 2006. Cloning and expression analysis of two distinct HIF-α isoforms–gcHIF-1α and gcHIF-4α–from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. BMC Mol Biol 7: 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, et al. 1997. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 272: 5375–5381.

    Article  CAS  PubMed  Google Scholar 

  • Lei BA, Matsuo K, Labinskyy V, Sharma N, Chandler MP, et al. 2005. Exogenous nitric oxide reduces glucose transporters translocation and lactate production in ischemic myocardium in vivo. Proc Natl Acad Sci USA 102: 6966–6971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leloup C, Magnan C, Benani A, Bonnet E, Alquier T, et al. 2006. Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing. Diabetes 55: 2084–2090.

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP. 2006. Oxidative stress in marine environments. Annu Rev Physiol 68: 253–278.

    Article  CAS  PubMed  Google Scholar 

  • Li RC, Lee SK, Pouranfar F, Brittian KR, Clair HB, et al. 2006. Hypoxia differentially regulates the expression of neuroglobin and cytoglobin in rat brain. Brain Res 1096: 173–179.

    Article  CAS  PubMed  Google Scholar 

  • Liang P, MacRae TH. 1997. Molecular chaperones and the cytoskeleton. J Cell Sci 110: 1431–1440.

    Article  CAS  PubMed  Google Scholar 

  • Lipton P. 1999. Ischemic cell death in brain neurons. Physiol Rev 79: 1431–1568.

    Article  CAS  PubMed  Google Scholar 

  • Liu LP, Cash TP, Jones RG, Keith B, Thompson CB, et al. 2006. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21: 521–531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Q, Berchner-Pfannschmidt U, Moller U, Brecht M, Wotzlaw C, et al. 2004. A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc Natl Acad Sci USA 101: 4302–4307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locke M, Noble EG. 1995. Stress proteins: The exercise response. Can J Appl Physiol 20: 155–167.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Barneo J. 2003. Oxygen and glucose sensing by carotid body glomus cells. Curr Opin Neurobiol 13: 493–499.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Barneo J, Pardal R, Montoro RJ, Smani T, Garcia- Hirschfeld J, et al. 1999. K+ and Ca2+ channel activity and cytosolic [Ca2+] in oxygen-sensing tissues. Resp Physiol 115: 215–227.

    Article  CAS  Google Scholar 

  • Lopez-Barneo J, Pardal R, Ortega-Saenz P. 2001. Cellular mechanism of oxygen sensing. Annu Rev Physiol 63: 259–287.

    Article  CAS  PubMed  Google Scholar 

  • Lund PA. 1995. The roles of molecular chaperones in vivo. Essays Biochem 29: 113–123.

    CAS  PubMed  Google Scholar 

  • Lutz PL, Nilsson GE. 2004. Vertebrate brains at the pilot light. Resp Physiol Neurobiol 141: 285–296.

    Article  CAS  Google Scholar 

  • Lutz PL, Nilsson GE, Prentice HM. 2003. The brain without oxygen: Causes of failure—physiological and molecular mechanisms for survival. Kluwer Academic Publishers.Dordrecht, Boston, London: Third edition.

    Google Scholar 

  • Lutz PL, Prentice HM. 2002. Sensing and responding to hypoxia, molecular and physiological mechanisms. Integ Comp Biol 42: 463–468.

    Article  CAS  Google Scholar 

  • Ma Y, Freitag P, Zhou J, Brune B, Frede S, et al. 2004. Thyroid hormone induces erythropoietin gene expression through augmented accumulation of hypoxia-inducible factor-1. Am J Physiol Regul Integr Comp Physiol 287: R600–R607.

    Article  CAS  PubMed  Google Scholar 

  • Madamanchi NR, Li S, Patterson C, Runge MS. 2001. Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arterioscler Thromb Vasc Biol 21: 321–326.

    Article  CAS  PubMed  Google Scholar 

  • Madesh M, Ramachandran A, Balasubramanian KA. 1999. Nitric oxide prevents anoxia-induced apoptosis in colonic HT29 cells. Arch Biochem Biophys 366: 240–248.

    Article  CAS  PubMed  Google Scholar 

  • Mahon PC, Hirota K, Semenza GL. 2001. FIH-1: A novel protein that interacts with HIF-1 α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15: 2675–2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra R, Brosius FC. 1999. Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 274: 12567–12575.

    Article  CAS  PubMed  Google Scholar 

  • Maloyan A, Eli-Berchoer L, Semenza GL, Gerstenblith G, Stern MD, et al. 2005. HIF-1α-targeted pathways are activated by heat acclimation and contribute to acclimation-ischemic cross-tolerance in the heart. Physiol Genomics 23: 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Mammen PP, Shelton JM, Goetsch SC, Williams SC, Richardson JA, et al. 2002. Neuroglobin, a novel member of the globin family, is expressed in focal regions of the brain. J Histochem Cytochem 50: 1591–1598.

    Article  CAS  PubMed  Google Scholar 

  • Mammen PP, Shelton JM, Ye Q, Kanatous SB, McGrath AJ, et al. 2006. Cytoglobin is a stress-responsive hemoprotein expressed in the developing and adult brain. J Histochem Cytochem 54: 1349–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mander P, Borutaite V, Moncada S, Brown GC. 2005. Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death. J Neurosci Res 79: 208–215.

    Article  CAS  PubMed  Google Scholar 

  • Marla SS, Lee J, Groves JT. 1997. Peroxynitrite rapidly permeates phospholipid membranes. Proc Natl Acad Sci USA 94: 14243–14248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazza E Jr, Edelman NH, Neubauer JA. 2000. Hypoxic excitation in neurons cultured from the rostral ventrolateral medulla of the neonatal rat. J Appl Physiol 88: 2319–2329.

    Article  PubMed  Google Scholar 

  • Michelakis ED, Hampl V, Nsair A, Wu XC, Harry G, et al. 2002. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res 90: 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  • Michiels C, Minet E, Mottet D, Raes M. 2002. Regulation of gene expression by oxygen: NF-kappa B and HIF-1, two extremes. Free Radic Biol Med 33: 1231–1242.

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Raese JD, Morrison-Bogorad M. 1991. Expression of heat shock protein 70 and heat shock cognate 70 messenger RNAs in rat cortex and cerebellum after heat shock or amphetamine treatment. J Neurochem 56: 2060–2071.

    Article  CAS  PubMed  Google Scholar 

  • Miller P, Peers C, Kemp PJ. 2004. Polymodal regulation of hTREK1 by pH, arachidonic acid, and hypoxia: Physiological impact in acidosis and alkalosis. Am J Physiol Cell Physiol 286: C272–C282.

    Article  CAS  PubMed  Google Scholar 

  • Milton SL, Nayak G, Lutz PL, Prentice HM. 2006. Gene transcription of neuroglobin is upregulated by hypoxia and anoxia in the brain of the anoxia-tolerant turtle Trachemys scripta. J Biomed Sci 13: 509–514.

    Article  CAS  PubMed  Google Scholar 

  • Minet E, Mottet D, Michel G, Roland I, Raes M, et al. 1999. Hypoxia-induced activation of HIF-1, role of HIF-1α-Hsp90 interaction. FEBS Lett 460: 251–256.

    Article  CAS  PubMed  Google Scholar 

  • Mulvey JM, Renshaw GM. 2000. Neuronal oxidative hypometabolism in the brainstem of the epaulette shark (Hemiscyllium ocellatum) in response to hypoxic pre-conditioning. Neurosci Lett 290: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Muzyamba MC, Cossins AR, Gibson JS. 1999. Regulation of Na+-K+-2Cl cotransport in turkey red cells: The role of oxygen tension and protein phosphorylation. J Physiol 517: 421–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muzyamba MC, Speake PF, Gibson JS. 2000. Oxidants and regulation of K+-Cl cotransport in equine red blood cells. Am J Physiol Cell Physiol 279: C981–C989.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Kumita H, Imai K, Iizuka T, Shiro Y. 2004. ADP reduces the oxygen-binding affinity of a sensory histidine kinase, FixL: The possibility of an enhanced reciprocating kinase reaction. Proc Natl Acad Sci USA 101: 2742–2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neubauer JA, Sunderram J. 2004. Oxygen-sensing neurons in the central nervous system. J Appl Physiol 96: 367–374.

    Article  CAS  PubMed  Google Scholar 

  • Nie MH, Blankenship AL, Giesy JP. 2001. Interactions between aryl hydrocarbon receptor (AhR) and hypoxia signaling pathways. Envir Toxicol Pharmacol 10: 17–27.

    Article  CAS  Google Scholar 

  • Nikinmaa M. 2003. Gas transport. Red Cell Membrane Transport in Health and Disease. Bernhardt I, Ellory JC, editors. Berlin: Springer; pp. 489–509.

    Chapter  Google Scholar 

  • Nikinmaa M, Bogdanova A, Lecklin T. 2003. Oxygen dependency of the adrenergic Na/H exchange in rainbow trout erythrocytes is diminished by a hydroxyl radical scavenger. Acta Physiologica Scandinavica 178: 149–154.

    Article  CAS  PubMed  Google Scholar 

  • Nikinmaa M, Rees BB. 2005. Oxygen-dependent gene expression in fishes. Am J Physiol Reg Integr Comp Physiol 288: R1079–R1090.

    Article  CAS  Google Scholar 

  • Oehme F, Ellinghaus P, Kolkhof P, Smith TJ, Ramakrishnan S, et al. 2002. Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem Biophys Res Com 296: 343–349.

    Article  CAS  PubMed  Google Scholar 

  • Olson KR. 2005. Vascular actions of hydrogen sulfide in nonmammalian vertebrates. Antiox Redox Signal 7: 804–812.

    Article  CAS  Google Scholar 

  • O'Reilly JP, Cummins TR, Haddad GG. 1997. Oxygen deprivation inhibits Na1 current in rat hippocampal neurones via protein kinase C. J Physiol (Lond) 503: 479–488.

    Article  CAS  Google Scholar 

  • Page EL, Robitaille GA, Pouyssegur J, Richard DE. 2002. Induction of hypoxia-inducible factor-1α by transcriptional and translational mechanisms. J Biol Chem 277: 48403–48409.

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Oprysko PR, Asham AM, Koch CJ, Simon MC. 2004. p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene 23: 4975–4983.

    Article  CAS  PubMed  Google Scholar 

  • Pardal R, Lopez-Barneo J. 2002. Carotid body thin slices: Responses of glomus cells to hypoxia and K+-channel blockers. Respir Physiol Neurobiol 132: 69–79.

    Article  CAS  PubMed  Google Scholar 

  • Patel B, Khaliq A, Jarvis-Evans J, Boulton M, Arrol S, et al. 1995. Hypoxia induces HSP 70 gene expression in human hepatoma (HEP G2) cells. Biochem Mol Biol Int 36: 907–912.

    CAS  PubMed  Google Scholar 

  • Peers C. 2004. Interactions of chemostimuli at the single cell level: Studies in a model system. Exp Physiol 89: 60–65.

    Article  PubMed  Google Scholar 

  • Pek M, Lutz PL. 1997. Role for adenosine in channel arrest in the anoxic turtle brain. J Exp Biol 200: 1913–1917.

    Article  CAS  PubMed  Google Scholar 

  • Pesce A, De Sanctis D, Nardini M, Dewilde S, Moen L, et al. 2004. Reversible hexa- to penta-coordination of the heme Fe atom modulates ligand binding properties of neuroglobin and cytoglobin. IUBMB Life 56: 657–664.

    Article  CAS  PubMed  Google Scholar 

  • Porwol T, Ehleben W, Brand V, Acker H. 2001. Tissue oxygen sensor function of NADPH oxidase isoforms, an unusual cytochrome aa 3 and reactive oxygen species. Respir Physiol 128: 331–348.

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar NR, Overholt JL. 2000. Cellular mechanisms of oxygen sensing at the carotid body: Heme proteins and ion channels. Respir Physiol 122: 209–221.

    Article  CAS  PubMed  Google Scholar 

  • Rees BB, Bowman JA, Schulte PM. 2001. Structure and sequence conservation of a putative hypoxia response element in the lactate dehydrogenase-B gene of Fundulus. Biol Bull 200: 247–251.

    Article  CAS  PubMed  Google Scholar 

  • Ren JM, Finklestein SP. 2005. Growth factor treatment of stroke. Curr Drug Targets CNS Neurol Disord 4: 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Renshaw GM, Dyson SE. 1999. Increased nitric oxide synthase in the vasculature of the epaulette shark brain following hypoxia. Neuroreport 10: 1707–1712.

    Article  CAS  PubMed  Google Scholar 

  • Renshaw GM, Kerrisk CB, Nilsson GE. 2002. The role of adenosine in the anoxic survival of the epaulette shark, Hemiscyllium ocellatum. Comp Biochem Physiol B Biochem Mol Biol 131: 133–141.

    Article  PubMed  Google Scholar 

  • Renshaw GM, Warburton J, Girjes A. 2004. Oxygen sensors and energy sensors act synergistically to achieve a graded alteration in gene expression: Consequences for assessing the level of neuroprotection in response to stressors. Front Biosci 9: 110–116.

    Article  CAS  PubMed  Google Scholar 

  • Richard DE, Berra E, Pouyssegur J. 2000. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1α in vascular smooth muscle cells. J Biol Chem 275: 26765–26771.

    Article  CAS  PubMed  Google Scholar 

  • Richmond KN, Burnite S, Lynch RM. 1997. Oxygen sensitivity of mitochondrial metabolic state in isolated skeletal and cardiac myocytes. Am J Physiol 273: C1613–1622.

    Article  CAS  PubMed  Google Scholar 

  • Rissanen E, Tranberg HK, Nikinmaa M. 2006a. Oxygen availability regulates metabolism and gene expression in trout hepatocyte cultures. Am J Physiol Regul Integr Comp Physiol 291: R1507–R1515.

    Article  CAS  PubMed  Google Scholar 

  • Rissanen E, Tranberg HK, Sollid J, Nilsson GE, Nikinmaa M. 2006b. Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J Exp Biol 209: 994–1003.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers KR, Lukat-Rodgers GS. 2005. Insights into heme-based O2 sensing from structure-function relationships in the FixL proteins. J Inorg Biochem 99: 963–977.

    Article  CAS  PubMed  Google Scholar 

  • Roesner A, Hankeln T, Burmester T. 2006. Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J Exp Biol 209: 2129–2137.

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal M, LaManna JC, Jobsis FF, Levasseur JE, Kontos HA, et al. 1976. Effects of respiratory gases on cytochrome a in intact cerebral cortex: Is there a critical Po 2? Brain Res 108: 143–154.

    Article  CAS  PubMed  Google Scholar 

  • Roux JC, Pequignot JM, Dumas S, Pascual O, Ghilini G, et al. 2000. O2-sensing after carotid chemodenervation: Hypoxic ventilatory responsiveness and upregulation of tyrosine hydroxylase mRNA in brainstem catecholaminergic cells. Eur J Neurosci 12: 3181–3190.

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Rozanov C, Mokashi A, Daudu P, Al-mehdi AB, et al. 2000. Mice lacking in gp91 phox subunit of NAD(P)H oxidase showed glomus cell [Ca2+]i and respiratory responses to hypoxia. Brain Res 872: 188–193.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt P, Pequignot J, Garcia C, Pujol JF, Pequignot JM. 1993. Regional specificity of the long-term regulation of tyrosine hydroxylase in some catecholaminergic rat brainstem areas. I. Influence of long-term hypoxia. Brain Res 611: 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL. 2001. HIF-1, O2, and the 3 PHDs: How animal cells signal hypoxia to the nucleus. Cell 107: 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL, Wang GL. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12: 5447–5454.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shams I, Avivi A, Nevo E. 2004. Hypoxic stress tolerance of the blind subterranean mole rat: Expression of erythropoietin and hypoxia-inducible factor 1α. Proc Natl Acad Sci USA 101: 9698–9703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon IC. 2000. Excitation of phrenic and sympathetic output during acute hypoxia: Contribution of medullary oxygen detectors. Respir Physiol 121: 101–117.

    Article  CAS  PubMed  Google Scholar 

  • Soulier V, Cottet-Emard JM, Pequignot J, Hanchin F, Peyrin L, et al. 1992. Differential effects of long-term hypoxia on norepinephrine turnover in brain stem cell groups. J Appl Physiol 73: 1810–1814.

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, et al. 1997. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276: 2034–2037.

    Article  CAS  PubMed  Google Scholar 

  • Summers BA, Overholt JL, Prabhakar NR. 2000. Augmentation of calcium current by hypoxia in carotid body glomus cells. Adv Exp Med Biol 475: 589–599.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Jin K, Peel A, Mao XO, Xie L, et al. 2003. Neuroglobin protects the brain from experimental stroke in vivo. Proc Natl Acad Sci USA 100: 3497–3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tofighi R, Tillmark N, Dare E, Aberg AM, Larsson JE, et al. 2006. Hypoxia-independent apoptosis in neural cells exposed to carbon monoxide in vitro. Brain Res 1098: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Treinin M, Shliar J, Jiang H, Powell-Coffman JA, Bromberg Z, et al. 2003. HIF-1 is required for heat acclimation in the nematode Caenorhabditis elegans. Physiol Genomics 14: 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Trent JT 3rd, Watts RA, Hargrove MS. 2001. Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen. J Biol Chem 276: 30106–30110.

    Article  CAS  PubMed  Google Scholar 

  • Tuominen A, Rissanen E, Bogdanova A, Nikinmaa M. 2003. Intracellular pH regulation in rainbow trout (Oncorhynchus mykiss): Hypoxia stimulates sodium/proton exchange. J Comp Physiol B Biochem Syst Env Physiol 173: 301–308.

    Article  CAS  Google Scholar 

  • Underwood MD, Iadecola C, Reis DJ. 1994. Lesions of the rostral ventrolateral medulla reduce the cerebrovascular response to hypoxia. Brain Res 635: 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Youngson C, Wong V, Yeger H, Dinauer MC, et al. 1996. NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines. Proc Natl Acad Sci USA 93: 13182–13187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GL, Semenza GL. 1993. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: Implications for models of hypoxia signal transduction. Blood 82: 3610–3615.

    Article  CAS  PubMed  Google Scholar 

  • Weir EK, Hong ZG, Porter VA, Reeve HL. 2002. Redox signaling in oxygen sensing by vessels. Respir Physiol Neurobiol 132: 121–130.

    Article  CAS  PubMed  Google Scholar 

  • Weishaupt JH, Rohde G, Polking E, Siren AL, Ehrenreich H, et al. 2004. Effect of erythropoietin axotomy-induced apoptosis in rat retinal ganglion cells. Invest Ophthalmol Vis Sci 45: 1514–1522.

    Article  PubMed  Google Scholar 

  • Welch WJ. 1992. Mammalian stress response: Cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72: 1063–1081.

    Article  CAS  PubMed  Google Scholar 

  • Wenger RH. 2000. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 203: 1253–1263.

    Article  CAS  PubMed  Google Scholar 

  • Wenger RH, Gassmann M. 1996. Little difference. Nature 380: 100.

    Article  CAS  PubMed  Google Scholar 

  • Werner E. 2004. GTPases and reactive oxygen species: Switches for killing and signaling. J Cell Sci 117: 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Wilson DF, Mokashi A, Chugh D, Vinogradov S, Osanai S, et al. 1994. The primary oxygen sensor of the cat carotid body is cytochrome a 3 of the mitochondrial respiratory chain. FEBS Lett 351: 370–374.

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg JB, Wittenberg BA. 2003. Myoglobin function reassessed. J Exp Biol 206: 2011–2020.

    Article  CAS  PubMed  Google Scholar 

  • Wolin MS, Ahmad M, Gupte SA. 2005. Oxidant and redox signaling in vascular oxygen sensing mechanisms: Basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol 289: L159–L173.

    Article  CAS  PubMed  Google Scholar 

  • Wyatt CN, Peers C. 1995. Ca2+-activated K+ channels in isolated type I cells of the neonatal rat carotid body. J Physiol 483: 559–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Fung ML, O'Reilly JP, Haddad GG. 2000. Increased neuronal excitability after long-term O2 deprivation is mediated mainly by sodium channels. Brain Res Mol Brain Res 76: 211–219.

    Article  CAS  PubMed  Google Scholar 

  • Youngson C, Nurse C, Yeger H, Curnutte JT, Vollmer C, et al. 1997. Immunocytochemical localization on O2-sensing protein (NADPH oxidase) in chemoreceptor cells. Microsc Res Tech 37: 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Yun H, Lee M, Kim SS, Ha J. 2005. Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma. J Biol Chem 280: 9963–9972.

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Xue J, Gu XQ, Haddad GG, Xia Y. 2005. Intermittent hypoxia modulates Na+ channel expression in developing mouse brain. Int J Dev Neurosci 23: 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Bunn HF. 1999. Oxygen sensing and signaling: Impact on the regulation of physiologically important genes. Respir Physiol 115: 239–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Sun Y, Jin K, Greenberg DA. 2002. Hemin induces neuroglobin expression in neural cells. Blood 100: 2494–2498.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Renshaw, G.M.C., Nikinmaa, M. (2007). Oxygen Sensors of the Peripheral and Central Nervous Systems. In: Lajtha, A., Johnson, D.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30374-1_11

Download citation

Publish with us

Policies and ethics